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Abstract. Pentagonal quasigroups are IM-quasigroups in which the
additional identity (ab·a)b·a = b holds. GS-quasigroups are IM-quasigroups
in which the identity a(ab · c) · c = b holds. The relation between these
two subclasses of IM-quasigroups is studied. The geometric concepts of
GS-trapezoid and affine regular pentagon, previously defined and studied
in GS-quasigroups, are now defined in a general pentagonal quasigroup.
Along with the concepts of the regular pentagon and the centre of the
regular pentagon, previously defined in pentagonal quasigroups, this en-
ables formulations and proofs of some theorems of the Euclidean plane in
a general pentagonal quasigroup. Among these theorems is the famous
Napoleon-Barlotti theorem in the case n = 5.

1. Introduction

A quasigroup (Q, ·) is a groupoid in which for given a, b ∈ Q each of the
equations a ·x = b and y ·a = b has the unique solution. A quasigroup (Q, ·) is
called IM-quasigroup if it satisfies the identities of idempotency and mediality:

(1.1) aa = a,

(1.2) ab · cd = ac · bd.

The immediate consequences of these identities are the identities known
as elasticity, left distributivity and right distributivity:

(1.3) ab · a = a · ba,

(1.4) a · bc = ab · ac,
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(1.5) ab · c = ac · bc.

Definition 1.1. Pentagonal quasigroup is an IM-quasigroup (Q, ·) in
which the identity of pentagonality holds:

(1.6) (ab · a)b · a = b.

The previous definition can be found in [8]. In pentagonal quasigroups,
along with pentagonality and the identities that hold in any IM-quasigroup,
some other identities hold. They are stated in the next theorem proved in [8].

Theorem 1.2. In every IM-quasigroup (Q, ·) the identity (1.6) and the
identities

(1.7) (ab · a)c · a = bc · b,

(1.8) (ab · a)a · a = ba · b,

(1.9) ab · (ba · a)a = b

are mutually equivalent and they imply the identity

(1.10) a(b · (ba · a)a) · a = b

for every a, b, c ∈ Q.

Example 1.3. The basic example of the pentagonal quasigroup is C(q) =
(C, ∗), where ∗ is defined by

a ∗ b = (1− q)a+ qb

and q is a solution of the equation

(1.11) q4 − 3q3 + 4q2 − 2q + 1 = 0.

This example motivates the introduction of many geometric concepts in
pentagonal quasigroups. Actually, some concepts can be defined more gener-
ally in medial and IM-quasigroups and the whole idea of geometry of medial
quasigroups and its subclasses comes from [10, 12].

We can regard elements of the set C as points of the Euclidean plane. For
any two different points a, b ∈ C the equality a ∗ b = (1 − q)a + qb can be
written in the form

a ∗ b− a

b− a
=
q − 0

1− 0
.

That means that the points a, b and a ∗ b are vertices of a triangle directly
similar to the triangle with vertices 0, 1 and q. Each qi, i = 1, 2, 3, 4 gives
a certain type of triangle and we get so called characteristic triangles for
pentagonal quasigroups (see [8]). In C(q1) the point a ∗ b is the third vertex
of the regular pentagon determined by its adjacent vertices a and b. Any
identity in the pentagonal quasigroup C(q) = (C, ∗) can be interpreted as a
theorem of the Euclidean geometry. Some illustrations can be found in [8].
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In [9] basic geometry of pentagonal quasigroups was developed. In this
paper the concepts of the regular pentagon, the regular decagon and the centre
of the regular pentagon, all defined and studied in [9], will be of a particular
interest.

Definition 1.4. GS-quasigroup is an idempotent quasigroup (Q, ·) in
which the identity

(1.12) a(ab · c) · c = b

holds.

Example 1.5. The basic example of the GS-quasigroup is C(q) = (C, ∗),
where ∗ is defined by

a ∗ b = (1− q)a+ qb

and q is a solution of the equation

(1.13) q2 − q − 1 = 0.

GS-quasigroups were defined and studied in [11] where the next theorem
was proved.

Theorem 1.6. In any GS-quasigroup (Q, ·) the mediality holds.

It follows immediately that GS-quasigroups are actually IM-quasigroups
in which the identity (1.12) holds.

In already mentioned article some other identities that hold in GS-quasi-
groups were studied and some basic geometric concepts in GS-quasigroups
were defined. Further geometric concepts were defined and studied in [4, 5].
Among these the most important for this paper will be the GS-trapezoid
and the affine regular pentagon which we revisit in the third section. In the
Euclidean geometry GS-trapezoid is a trapezoid whose lengths of parallel sides
are in the golden section ratio and affine regular pentagon is the affine image
of a regular pentagon.

Motivated by the example C(q) of pentagonal quasigrops, where q is a
solution of (1.11), we prove that we can ”find” a GS-quasigroup ”inside”
any pentagonal quasigroup. More precisely, in a given pentagonal quasigroup
(Q, ·) we can define a new binary operation ∗ on the set Q by a∗b = (ba·a)a·b,
for a, b ∈ Q. It turns out that (Q, ∗) is a GS-quasigroup. Furthermore, using
that result in the third section we define the concepts of the GS-trapezoid and
the affine regular pentagon in pentagonal quasigroups.

In the last section we bring two theorems of the Euclidean plane stated
and proved in a pentagonal quasigroup. First is the famous Napoleon-Barlotti
theorem (see [1]) in the case n = 5. The claim of the theorem is:

On the sides of an affine regular n-gon regular n-gons (all either of the
same orientation as the base n-gon or all opposite to it) are constructed. Then
the centres of these regular n-gons form a regular n-gon.
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In order to state and prove it the concept of the regular pentagon and its
centre and the concept of the affine regular pentagon will be needed.

The other theorem is a problem proposed in [3]. In the statement and
the proof of this theorem the concept of the affine regular pentagon and the
concept of the regular decagon, along with its centre, will be needed.

2. Relation between pentagonal and GS-quasigroups

Firstly we bring a very useful identity that holds in GS-quasigroups and
give a characterization of GS-quasigroups involving that identity.

Theorem 2.1. Let (Q, ·) be a GS-quasigroup. Then for every a, b ∈ Q
the identity

(2.1) (a · ab)b = a

holds.

Proof. We have

(a · ab)b
(1.1)
= a(aa · b) · b

(1.12)
= a,

which proves (2.1).

Theorem 2.2. Let (Q, ·) be an IM-quasigroup in which (2.1) holds. Then
the identity (1.12) holds in Q.

Proof. Since (Q, ·) is an IM-quasigroup, besides idempotency (1.1) and
mediality (1.2), the elasticity (1.3) holds. Let a, b, c ∈ Q. Then there exists
d ∈ Q such that a = bd. We have:

a(ab · c) · c = (bd · (bd · b)c)c
(1.2)
= (b(bd · b) · dc)c

(1.3)
= ((b · bd)b · dc)c

(1.2)

= ( (b · bd)d · bc)c
(2.1)
= (b · bc)c

(2.1)
= b.

That proves (1.12).

The previous two results combined give the next theorem.

Theorem 2.3. A quasigroup (Q, ·) is a GS-quasigroup if and only if it is
an IM-quasigroup in which the identity (2.1) holds.

This theorem is very useful when showing that a certain quasigroup is
actually a GS-quasigroup, since (2.1) has less number of variables and multi-
plications than (1.12).

In a quasigroup (Q, ·) operations of left and right division are defined by

a\c = b ⇔ ab = c ⇔ c/b = a.

Formula is an expression built up from variables using the operations ·, \ and
/. More precisely:

(1) elements of the set Q (variables) are formulae;
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(2) if ϕ and ψ are formulae, then so are ϕ · ψ, ϕ\ψ and ϕ/ψ.

A formula ϕ containing at most two variables gives rise to a new binary
operation Q×Q→ Q, which will also be denoted by ϕ.

In [6] the next corollary was proved. We will use it in the proof of the
main theorem of the section.

Corollary 2.4. If (Q, ·) is a medial quasigroup, then binary operation
defined by the formula ϕ is also medial.

If we choose the model C(q1) for pentagonal quasigroups, the elements a,
b and ab of a pentagonal quasigroup (Q, ·) form an isosceles triangle (a, b, ab)
with angle sizes 36◦, 108◦ and 36◦ respectively (so called characteristic trian-
gle). Similarly, if a and b are elements of a GS-quasigroup (Q, ∗), then the
point a ∗ b lies on the line determined by the points a and b and divides the
segment {a, b} in the golden section ratio.

Figure 1. Definition of GS-quasigroup ”inside” of pentago-
nal quasigroup

The next statement is justified by consideration of the geometrical inter-
pretation of a binary operation in a pentagonal quasigroup.

Theorem 2.5. Let (Q, ·) be a pentagonal quasigroup and let ∗ : Q×Q→ Q
be a binary operation defined by

a ∗ b = (ba · a)a · b.

Then (Q, ∗) is a GS-quasigroup.

Proof. By Theorem 2.3 it is enough to prove that (Q, ∗) is a quasigroup
which satisfies identities of idempotency, mediality and (2.1).

Let a, b ∈ Q and we observe the equation a ∗ x = b. We want to prove
that there exists a unique x ∈ Q which satisfies this equation. Rewriting the
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expression a ∗ x we get:

a ∗ x = (xa · a)a · x
(1.9)
= (xa · a)a · (ax · (xa · a)a)

(1.2)
= ((xa · a) · ax)(a · (xa · a)a)

(1.3),(1.8)
= ((xa · a) · ax)(xa · x)

(1.2)
= ((xa · a) · xa)(ax · x)

(1.5)
= (xa · x)a · (ax · x)

(1.4),(1.6)
= ((xa · x)a · ax)a

(1.4),(1.6)
= ((xa · x)a · a)a · a

(1.8)
= (((ax · a)a · a)a · a)a · a.

We get the equation

(((ax · a)a · a)a · a)a · a = b.

Since (Q, ·) is a quasigroup, dividing by a seven times we get the equivalent
equation

ax = c,

where c ∈ Q and c = ϕ(a, b) for some formula ϕ. Now we know that there
exists a unique x ∈ Q such that ax = c holds so we conclude that there exists
a unique x ∈ Q which satisfies

a ∗ x = (((ax · a)a · a)a · a)a · a = b.

Let us now check that y = (ab · a)a satisfies the equation y ∗ a = b. We
have:

y ∗ a = (ay · y)y · a = (((a · (ab · a)a) · (ab · a)a) · (ab · a)a)a

(1.2)
= ((a(ab · a) · ((ab · a)a · a)) · (ab · a)a)a

(1.8)
= ((a(ab · a) · (ba · b)) · (ab · a)a)a

(1.2)
= (((a · ba) · (ab · a)b) · (ab · a)a)a

(1.3),(1.2)
= ((ab · a)(ab · a) · ((ab · a)b · a))a

(1.1),(1.6)
= (ab · a)b · a

(1.6)
= b.

Let us assume that there exist y1, y2 ∈ Q such that y1 ∗ a = y2 ∗ a = b.
Rewriting that we get

(ay1 · y1)y1 · a = (ay2 · y2)y2 · a.

Cancelling by a from the right that equation is equivalent to

(ay1 · y1)y1 = (ay2 · y2)y2.

Multiplying by y1a from the left and applying (1.9) we get

a = y1a · (ay2 · y2)y2.
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Using (1.9) again it follows

y2a · (ay2 · y2)y2 = y1a · (ay2 · y2)y2.

Cancelling by (ay2 · y2)y2 from the right we get

y2a = y1a,

which canceling from the right by a finally gives y2 = y1. We conclude that
there is a unique y ∈ Q such that y ∗ a = b holds and

(2.2) y = (ab · a)a.

Hence, (Q, ∗) is a quasigroup.

We have a ∗ a = (aa · a)a · a
(1.1)
= a so idempotency holds in (Q, ∗). By

Corollary 2.4 mediality in (Q, ∗) follows immediately.
It remains to prove

(a ∗ (a ∗ b)) ∗ b = a.

Since the solution of the equation y ∗ b = a is unique, by (2.2) it is enough to
prove

a ∗ (a ∗ b) = (ba · b)b.

Since a ∗ b = (ba · a)a · b holds, we get:

a ∗ (a ∗ b) = ((a ∗ b)a · a)a · (a ∗ b) = ((a ∗ b)a · a)a · ((ba · a)a · b)

(1.2)
= (((a ∗ b)a · a) · (ba · a)a) · ab

= ((((ba · a)a · b)a · a) · (ba · a)a) · ab

(1.5),(1.3),(1.8)
= (((ba · a)a · b)a · (ba · a)a)(ba · b) · ab

(1.5),(1.3),(1.8)
= ((((ba · a)a · b) · (ba · a)a)(ba · b) · (ba · b)) · ab

(1.2),(1.5)
= ((((ba · b)a · a) · ba)(ba · b) · (ba · b)) · ab

(1.5)
= (((ba · b)a · b)a · (ba · b))(ba · b) · ab

(1.6),(1.1)
= (a(ba · b) · (ba · b)) · ab

(1.2)
= (a(ba · b) · a)(ba · b)b

(1.4)
= ((a · ba) · ab)a · (ba · b)b

(1.3)
= ((ab · a) · ab)a · (ba · b)b

(1.4)
= ((ab · a)a · (ab · a)b)a · (ba · b)b

(1.5),(1.8),(1.6)
= (ba · b)b · (ba · b)b

(1.1)
= (ba · b)b.

Finally, (Q, ∗) is a GS-quasigroup.

In the previous proof we implicitly proved an identity which will be of a
great use in the following sections. We bring it as a corollary.



366 S. VIDAK

Corollary 2.6. Let (Q, ·) be a pentagonal quasigroup and a, b ∈ Q. Let
(Q, ∗) be its associated GS-quasigroup, where a ∗ b = (ba · a)a · b. Then

a ∗ (a ∗ b) = (ba · b)b

holds.

3. Affine regular pentagons in pentagonal quasigroups

In [4] the concept of GS-trapezoid was defined in a GS-quasigroup. That

is, according to the example C(1+
√
5

2 ), a trapezoid whose lengths of parallel
sides are in the golden section ratio. In [4] it was formulated in the following
way.

Definition 3.1. Let (Q, ·) be a GS-quasigroup and a, b, c, d ∈ Q.
We say that quadrilateral (a, b, c, d) is GS-trapezoid and we denote it by
GST (a, b, c, d) if

a · ab = d · dc

holds (Figure 2).

We notice that a GS-trapezoid in a GS-quasigroup is completely deter-
mined by its three vertices. It is obvious that GST (a, b, c, d) ⇔ GST (d, c, b, a)
holds.

Figure 2. GS-trapezoid in GS-quasigroup ([4])

In the already mentioned article the next theorem was proved.
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Theorem 3.2. Let (Q, ·) be a GS-quasigroup and a, b, c, d ∈ Q. The
relation GST (a, b, c, d) is equivalent to any of the following four equalities

a = (d · dc)b, b = d(ac · c), c = a(db · b), d = (a · ab)c.

In the previous section we proved that ”inside” of any pentagonal quasi-
group we can define a GS-quasigroup. Now we want to define GS-trapezoid
in a pentagonal quasigroup.

Theorem 3.3. Let (Q, ·) be a pentagonal quasigroup and a, b, c, d ∈ Q.
Let (Q, ∗) be its associated GS-quasigroup, where a ∗ b = (ba · a)a · b. Then

GST (a, b, c, d) in (Q, ∗) ⇔ d = (ca · b)a · c.

Proof. The relation GST (a, b, c, d) in (Q, ∗) is by Theorem 3.2 equiva-
lent to the equality d = (a ∗ (a ∗ b)) ∗ c. By Corollary 2.6 a ∗ (a ∗ b) = (ba · b)b
holds. That implies:

d = (a ∗ (a ∗ b)) ∗ c = (ba · b)b ∗ c

= (((c · (ba · b)b) · (ba · b)b) · (ba · b)b)c

(1.2),(1.8)
= ((c(ba · b) · (ab · a)) · (ba · b)b)c

(1.2)
= (((c · ab) · (ba · b)a) · (ba · b)b)c

(1.2),(1.6)
= ((c · ab)(b · ab) · a)c

(1.5)
= (cb · ab)a · c

(1.5)
= (ca · b)a · c.

That justifies the next definition of a GS-trapezoid in a pentagonal quasi-
group.

Definition 3.4. Let (Q, ·) be a pentagonal quasigroup and a, b, c, d ∈ Q.
We say that quadrilateral (a, b, c, d) is a GS-trapezoid and we denote it by
GST (a, b, c, d) if

d = (ca · b)a · c

holds (Figure 3).

We immediately see that a GS-trapezoid in a pentagonal quasigroup is
completely determined by its three vertices.

Affine regular pentagon in the Euclidean plane is the affine image of a
regular pentagon. In [5] the notion of the affine regular pentagon in GS-
quasigroups was defined. In the mentioned paper the next theorem was
proved.

Theorem 3.5. Let (Q, ·) be a GS-quasigroup and a, b, c, d, e ∈ Q. Any
two out of five following relations imply the remaining ones:

GST (a, b, c, d), GST (b, c, d, e), GST (c, d, e, a), GST (d, e, a, b), GST (e, a, b, c).
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Figure 3. Definition of GS-trapezoid in pentagonal quasigroup

That enables the next definition.

Definition 3.6. Let (Q, ·) be a GS-quasigroup and a, b, c, d, e ∈ Q. We
say that pentagon (a, b, c, d, e) is affine regular pentagon and we denote it
by ARP (a, b, c, d, e), if any two (and then all five) out of the following five
relations

GST (a, b, c, d), GST (b, c, d, e), GST (c, d, e, a), GST (d, e, a, b), GST (e, a, b, c)

hold (Figure 4).

It is immediately clear that an affine regular pentagon in GS-quasigroup
is uniquely determined by any of its three vertices. We would like to define
the affine regular pentagon in the pentagonal quasigroup associated to the
GS-quasigroup where that pentagon is already defined.

Theorem 3.7. Let (Q, ·) be a pentagonal quasigroup and a, b, c, d, e ∈ Q.
Let (Q, ∗) be its associated GS-quasigroup, where a ∗ b = (ba · a)a · b. Then

ARP (a, b, c, d, e) in (Q, ∗) ⇔ d = (ca · b)a · c, e = (ac · b)c · a.

Proof. In (Q, ∗) we have the equivalence

ARP (a, b, c, d, e) ⇔ GST (a, b, c, d), GST (e, a, b, c).

By Theorem 3.3 GST (a, b, c, d) ⇔ d = (ca · b)a · c. Since GST (e, a, b, c) ⇔
GST (c, b, a, e) (see [4]) and by Theorem 3.3 we have GST (c, b, a, e) ⇔ e =
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(ac · b)c · a, we get GST (e, a, b, c) ⇔ e = (ac · b)c · a. Finally we conclude

ARP (a, b, c, d, e) in (Q, ∗) ⇔ d = (ca · b)a · c, e = (ac · b)c · a.

Figure 4. Definition of affine regular pentagon in GS-quasigroup

That brings us to the next definition.

Definition 3.8. Let (Q, ·) be a pentagonal quasigroup and a, b, c, d, e ∈ Q.
We say that pentagon (a, b, c, d, e) is affine regular pentagon and we denote it
by ARP (a, b, c, d, e) if

d = (ca · b)a · c, e = (ac · b)c · a

hold (Figure 5).

It is clear that an affine regular pentagon is uniquely determined by its
three vertices.

The concept of the regular pentagon in pentagonal quasigroups was de-
fined in [9].

Definition 3.9. We shall say that the points a, b, c, d, e in a pentago-
nal quasigroup (Q, ·) are the vertices of regular pentagon and denote it by
RP (a, b, c, d, e) if ab = c, bc = d and cd = e hold.

The next theorem says that any regular pentagon in pentagonal quasi-
groups is affine regular.

Theorem 3.10. Let (Q, ·) be a pentagonal quasigroup and a, b, c, d, e ∈ Q.
The next implication holds

RP (a, b, c, d, e) ⇒ ARP (a, b, c, d, e).
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Figure 5. Definition of affine regular pentagon in pentago-
nal quasigroup

Proof. Because of RP (a, b, c, d, e) we have c = ab and d = bc = b · ab
(see [9]). We get

(ca · b)a · c = ((ab · a)b · a) · ab
(1.6)
= b · ab = d.

Similarly, because of RP (a, b, c, d, e) we have e = (ab · a)b (see [9]). We get

(ac · b)c · a = ((a · ab)b · ab)a
(1.5)
= ((a · ab)a · b)a

(1.7)
= (ab · b) · ab

(1.5)
= (ab · a)b = e,

which means that ARP (a, b, c, d, e) holds.
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Along with the concepts of GS-trapezoid and affine regular pentagon,
Theorem 2.5 enables us to define all other geometric concepts from GS-
quasigroups in pentagonal quasigroups. We can say that pentagonal quasi-
groups ”inherit” the entire geometry of GS-quasigroups (see [4, 5]) and have
their own geometry based on regular pentagons and regular decagons (see [9]).

4. The Napoleon-Barlotti theorem and similar results

In [7] the famous Napoleon-Barlotti theorem in the case n = 3 was stated
and proved in Napoleon’s quasigroups. The Napoleon-Barlotti theorem in the
case n = 5 says:

On the sides of an affine regular pentagon regular pentagons are con-
structed (all on the outer or all on the inner side of that pentagon). Then the
centres of these regular pentagons form a regular pentagon.

It is enough to treat the case where all regular pentagons are constructed
on the outer side of the affine regular pentagon. In the Figure 6 all regular
pentagons are constructed on the outer side of the original affine regular pen-
tagon and that figure is made in the model C(q1) for pentagonal quasigroups.
The case where regular pentagons are constructed on the inner side would
correspond to the model C(q2), so once the theorem is proved in a general
pentagonal quasigroup, the both cases are covered.

A minor problem occurs in the statement of the Napoleon-Barlotti theo-
rem in pentagonal quasigroups since the centre of a regular pentagon does not
have to exists and if it exists, it does not have to be unique. That problem
produces a slightly weaker version of the theorem. The concept of the centre
of a regular pentagon was defined in [9].

Definition 4.1. Let (Q, ·) be a pentagonal quasigroup and a, b, c, d, e ∈ Q
such that RP (a, b, c, d, e) holds. We say that o ∈ Q is the centre of the regular
pentagon (a, b, c, d, e) if oa · b = o holds.

Example 4.2. The smallest non-trivial example of finite pentagonal
quasigroup is (Q5, ·1).

Table 1. Pentagonal quasigroup (Q5, ·1)

·1 0 1 2 3 4
0 0 2 4 1 3
1 4 1 3 0 2
2 3 0 2 4 1
3 2 4 1 3 0
4 1 3 0 2 4

In (Q5, ·1) the statementRP (0, 1, 2, 3, 4) holds. The pentagon (0, 1, 2, 3, 4)
is determined by its vertices 0 and 1 and it has no centre, as shown in [9].
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Figure 6. The Napoleon-Barlotti theorem

However, the statement RP (0, 0, 0, 0, 0) also holds. The pentagon (0, 0, 0, 0, 0)
is determined by its vertices 0 and 0. It is easily checked that every element
of Q5 is its centre:

00 ·1 0 = 00 = 0, 10 ·1 0 = 40 = 1, 20 ·1 0 = 30 = 2,

30 ·1 0 = 20 = 3, 40 ·1 0 = 10 = 4.

Example 4.3. The next example of pentagonal quasigroup is (Q11, ·2).
In (Q11, ·2) the statement RP (0, 1, 4, 2, 7) holds. The pentagon

(0, 1, 4, 2, 7) is determined by its vertices 0 and 1. We have:

00 ·2 1 = 4 6= 0, 10 ·2 1 = 2 6= 1, 20 ·2 1 = 0 6= 2, 30 ·2 1 = 9 6= 3,

40 ·2 1 = 7 6= 4, 50 ·2 1 = 5, 60 ·2 1 = 3 6= 6, 70 ·2 1 = 1 6= 7,

80 ·2 1 = 10 6= 8, 90 ·2 1 = 8 6= 9, 10 0 ·2 1 = 6 6= 10.

That means that 5 is the unique centre of the pentagon (0, 1, 4, 2, 7).
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Table 2. Pentagonal quasigroup (Q11, ·2)

·2 0 1 2 3 4 5 6 7 8 9 10
0 0 4 8 1 5 9 2 6 10 3 7
1 8 1 5 9 2 6 10 3 7 0 4
2 5 9 2 6 10 3 7 0 4 8 1
3 2 6 10 3 7 0 4 8 1 5 9
4 10 3 7 0 4 8 1 5 9 2 6
5 7 0 4 8 1 5 9 2 6 10 3
6 4 8 1 5 9 2 6 10 3 7 0
7 1 5 9 2 6 10 3 7 0 4 8
8 9 2 6 10 3 7 0 4 8 1 5
9 6 10 3 7 0 4 8 1 5 9 2
10 3 7 0 4 8 1 5 9 2 6 10

Example 4.4. The direct product of the pentagonal quasigroups (Q5, ·1)
and (Q11, ·2) is the pentagonal quasigroup (Q55, ·). For (a1, a2), (b1, b2) ∈ Q55

we have

(a1, a2) · (b1, b2) = (a1 ·1 b1, a2 ·2 b2).

From the previous two examples we see that RP ((0, 0), (0, 1), (0, 4), (0, 2),
(0, 7)) holds. The pentagon ((0, 0), (0, 1), (0, 4), (0, 2), (0, 7)) is determined by
its vertices (0, 0) and (0, 1). From

(0, 5)(0, 0) · (0, 1) = (0, 5),

(1, 5)(0, 0) · (0, 1) = (1, 5),

(2, 5)(0, 0) · (0, 1) = (2, 5),

(3, 5)(0, 0) · (0, 1) = (3, 5),

(4, 5)(0, 0) · (0, 1) = (4, 5),

we conclude that (0, 5), (1, 5), (2, 5), (3, 5), (4, 5) are 5 distinct centres of the
pentagon ((0, 0), (0, 1), (0, 4), (0, 2), (0, 7)).

Here we bring the version of the Napoleon-Barlotti theorem in pentagonal
quasigroups.

Theorem 4.5.Let (Q, ·) be a pentagonal quasigroup. Let ARP (a, b, c, d, e),
RP (b, a, a1, a2, a3), RP (c, b, b1, b2, b3), RP (d, c, c1, c2, c3), RP (e, d, d1, d2, d3),
RP (a, e, e1, e2, e3) hold and let oa be the centre of (b, a, a1, a2, a3) and ob be
the centre of (c, b, b1, b2, b3). If RP (oa, ob, oc, od, oe) holds, then oc, od and oe
are the centres of the regular pentagons (d, c, c1, c2, c3), (e, d, d1, d2, d3) and
(a, e, e1, e2, e3), respectively.
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Proof. Since oa and ob are centres of the regular pentagons (b, a, a1, a2,
a3) and (c, b, b1, b2, b3), respectively, we have

(4.1) oab · a = oa,

(4.2) obc · b = ob.

Multiplying the equalities (4.1) and (4.2) and using (1.2) we get:

(oab · a)(obc · b) = oaob,

(oab · obc) · ab = oaob,

(oaob · bc) · ab = oaob.

Because of RP (oa, ob, oc, od, oe), we have oc = oaob, and we want to prove
that oc is the centre of the regular pentagon (d, c, c1, c2, c3). Hence, we have

(4.3) oc = (oc · bc) · ab,

and it is enough to prove
ocd · c = oc.

Since ARP (a, b, c, d, e) holds, by Theorem 3.7 or by Definition 3.8, we have
d = (ca · b)a · c. Hence, we get successively:

ocd · c = oc((ca · b)a · c) · c
(4.3)
= ((oc · bc) · ab)((ca · b)a · c) · c

(1.2)
= ((oc · bc) · (ca · b)a)(ab · c) · c

(1.2)
= (oc(ca · b) · (bc · a))(ab · c) · c

(1.2)
= ((oc(ca · b) · ab) · (bc · a)c)c

(1.2)
= ((oca · (ca · b)b) · (bc · a)c)c

(1.2)
= (oca · (bc · a))((ca · b)b · c) · c

(1.5)
= ((oc · bc)a · ((ca · b)b · c))c

(1.2)
= (((oc · bc) · (ca · b)b) · ac)c

(1.2)
= ((oc(ca · b) · (bc · b)) · ac)c

(1.3)
= ((oc(ca · b) · (b · cb)) · ac)c

(1.2),(1.5)
= ((ocb · (ca · c)b) · ac)c

(1.2)
= (ocb · a)((ca · c)b · c) · c

(1.7)
= (ocb · a)(ab · a) · c

(1.5)
= (ocb · ab)a · c

(1.5)
= (oca · b)a · c

(1.6)
= (oca · b)a · ((bc · b)c · b)

(1.2)
= ((oca · b) · (bc · b)c) · ab

(1.2)
= ((oca · (bc · b)) · bc) · ab

(1.2)
= (((oc · bc) · ab) · bc) · ab

(4.3)
= (oc · bc) · ab

(4.3)
= oc,

exactly what we wanted to show. Hence, oc is the centre of the regular
pentagon (d, c, c1, c2, c3).

It can be shown analogously that od is the centre of the regular pen-
tagon (e, d, d1, d2, d3) and that oe is the centre of the regular pentagon
(a, e, e1, e2, e3).
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At the end we bring another interesting theorem of the Euclidean plane
in pentagonal quasigroups. In [3] the next theorem was stated as a problem:

Let ABCDE be an affine regular pentagon and D′ and E′ vertices of the
regular pentagons on the sides BA and CB opposite to that sides, respectively.
Let B′′ be the vertex of the regular pentagon on the side D′E′ opposite to that
side. Then B′′ = CD ∩ EA.

In order to state and prove that theorem in pentagonal quasigroups we
can firstly notice that the vertex of the regular pentagon on the side BA
opposite to that side is actually the fourth vertex of that regular pentagon
and that is exactly the centre of the regular decagon on BA. We also have to
determine what is the intersection of the mentioned lines CD and EA. Since
AEDC is a GS-trapezoid, that intersection can be reached using only golden
section ratio on the line EA or on the line CD (see Figure 2 and [4]).

Figure 7. The geometrical presentation of Theorem 4.6

Theorem 4.6. Let (Q, ·) be a pentagonal quasigroup and let (Q, ∗) be its
associated GS-quasigroup. Let ARP (a, b, c, d, e) hold and let x and y be the
fourth vertices of the regular pentagons determined by segments {b, a} and
{c, b}, respectively. If z = a ∗ (a ∗ e), then z is the fourth vertex of the regular
pentagon determined by segment {x, y}.
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Proof. Since GST (a, e, d, c) holds, z = a ∗ (a ∗ e) = c ∗ (c ∗ d). By
Corollary 2.6 we have z = a ∗ (a ∗ e) = (ea · e)e.

Since x is the vertex of the regular pentagon determined by segment {b, a},
we have x = ab · a (see [9]). Analogously we have y = bc · b.

In order to prove the statement of the theorem it is enough to prove
z = yx · y. Since ARP (a, b, c, d, e) holds, by Theorem 3.7 or by Definition 3.8
we have e = (ac · b)c · a. We get successively:

z = (ea · e)e = (((ac · b)c · a)a · ((ac · b)c · a))e

(1.5)
= (((ac · b)c · a) · (ac · b)c)a · e

(1.2)
= (((ac · b)c · (ac · b)) · ac)a · e

(1.2)
= ((((ac · b) · ac) · cb) · ac)a · e

(1.7)
= ((b · cb)b · a) · ((ac · b)c · a)

(1.3),(1.5)
= ((bc · b)b · (ac · b)c)a

(1.2)
= ((bc · b)(ac · b) · bc)a

(1.5),(1.5)
= ((ba · c)b · bc)a

(1.5)
= (((ba · b) · cb) · bc)a

(1.2)
= ((ba · b)b · (cb · c))a

(1.8),(1.6)
= (((ab · a)a · a)((ab · a)b · a) · (cb · c))a

(1.5)
= (((ab · a)a · (ab · a)b)a · (cb · c))a

(1.4)
= (((ab · a) · ab)a · (cb · c))a

(1.5)
= (((ab · a)a · (ab · a)) · (cb · c))a

(1.2)
= (((ab · a)a · cb) · (ab · a)c)a

(1.2)
= (((ab · a)c · ab) · (ab · a)c)a

(1.5)
= ((ab · a)c · ab)a · ((ab · a)c · a)

(1.5)
= ((ab · a)c · a)(ab · a) · ((ab · a)c · a)

(1.7),(1.7)
= (bc · b)(ab · a) · (bc · b)

= yx · y,

which is exactly what we needed to prove.
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