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Abstract. We consider a mathematical model which describes the
frictional unilateral contact between a thermo-piezoelectric body and a
rigid electrically conductive foundation. The thermo-piezoelectric consti-
tutive law is assumed to be nonlinear and the contact is modeled with the
Signorini condition, the nonlocal Coulomb friction law with slip dependent
friction coefficient and the regularized electrical and thermal conductivity
conditions. The variational form of this problem is a coupled system which
consists of a nonlinear variational inequality for the displacement field and
two nonlinear variational equations for the electric potential and the tem-
perature. The existence of a unique weak solution to the problem is proved
by using abstract results for elliptic variational inequalities and fixed point
arguments.

1. Introduction

The piezoelectricity represents the interaction between the electrical and
mechanical characteristics of some materials like crystals and ceramics. In
piezoelectric materials an electrical voltage is developed when mechanical
loading is applied, that’s a direct piezoelectric effect. In a converse effect,
the piezoelectric materials undergo mechanical strain when a voltage is ap-
plied across them. The two effects form the fundamental basis for the use
of piezoelectric materials, both as sensors and strain actuators. The electro-
elastic characteristics of piezoelectric materials have been studied extensively
and their dependence on temperature is well established. Currently, it is
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interesting to incorporate the thermal effects in the electromecanical mod-
els. The resulting thermoelectromechanical models include temperature as
an additional state variable to account the thermal effects in addition to the
piezoelectric effects.

The literature concerning the modeling in piezoelectricity is very rich,
see for example [2, 7, 13]. General models for elastic materials with thermo-
piezoelectric effects can be found in [4,11,14] and, more recently, in [1]. Some
theoretical results for static frictional contact models taking into account the
interaction between the electric and the mechanic fields have been obtained
in [3, 8, 9, 12], under the assumption that the foundation is insulated, and in
[5, 6, 10] under the assumption that the foundation is electrically conductive.

This work deals a new mathematical model which describes the frictional
contact between a thermo-piezoelectric body and a conductive foundation.
The novelty of this model consists in the thermo-electro-elastic behavior of
the body and the thermal contact conditions. The motivation of this approach
is that the thermal effects, such as thermal deformation and pyroelectric ef-
fects, are especially important for many smart ceramic materials. So, it may
be impossible to predict the electromechanical behavior without taking into
account these effects. Our interest is to describe a mathematical model in
which contact, friction and thermo-piezoelectric effects are involved. To this
end we will study a static problem of frictional contact, under small deforma-
tions hypothesis, wherein the material’s behavior is modeled by a nonlinear
thermo-electro-elastic constitutive law and the contact is described by Sig-
norini’s condition, by nonlocal Coulomb friction law of dry friction where the
coefficient of friction depends on the slip and by regularized electrical and
thermal conductivity conditions. To our knowledge, this model has not been
studied yet and no result has been obtained for this type problem. The unique
weak solvability of the associated variational formulation will be established.

The paper is structured as follows. In Section (2) we state the model of
equilibrium process of the thermo-elctro-elastic body in frictional contact with
a conductive rigid foundation. In Section (3) we introduce the notation, we
list the assumptions on problem’s data, we derive the variational formulation
of the problem and also present our main result stated in Theorem (3.1).
The proof of the theorem is provided in Section (4), where it is carried out
in several steps and is based on arguments of variational inequalities and a
Schauder fixed point theorem.

2. Problem statement

We consider a piezoelectric body that occupies an open bounded subset
Ω in Rd with d = 2or3. The boundary Γ = ∂Ω is assumed to be Lipschitz
continuous, divided into three open disjoint parts Γ1, Γ2 and Γ3 on the one
hand and a partition of Γ1 ∪ Γ2 into two open parts Γa and Γb on the other
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hand, such that meas(Γ1) > 0 and meas(Γa) > 0. This body is supposed
to be stress free and at a free temperature. Here the temperature variations,
accompanying the deformations, produce changes in the material parameters
which are considered as depending on temperature. We assume that the body
is fixed on Γ1 where the displacement field vanishes, body forces of density
f0 act on Ω, a surface traction of density f2 acts on Γ2, a volume electric
charge of density q0 acts on Ω, a surface electric charge of density q2 acts on
Γb, the electrical potential vanishes on Γa and the temperature is assumed to
be zero on Γ1 ∪ Γ2. Moreover, the body is subjected to a volume heat source
qth and it comes on Γ3 in friction contact with an electrically and thermally
conductive obstacle, the so-called foundation.

Here and below, to simplify the notation, we do not indicate the depen-
dence of various functions on the spatial variable x ∈ Ω, the indices i, j, k, l
take values in {1, . . . , d}, the summation convention over repeated indices is
used and the index that follows a comma indicates a partial derivative with re-
spect to the corresponding component of the spatial variable ui,j = ∂ui/∂xj.
We denote by Sd the space of second order symmetric tensors on Rd or equiv-
alently, the space of real symmetric matrices of order d. We define the inner
products and the corresponding norms on Rd and Sd by

u · v = ui · vi; ‖v‖ = (v · v) 1

2 ∀u, v ∈ R
d,

σ · τ = σij · τij ; ‖τ‖ = (τ · τ) 1

2 ∀σ, τ ∈ S
d.

Since the boundary Γ is sufficiently regular, the unit outward normal field n on
Γ is defined. Then the normal and the tangential components of displacement
vector and stress on the boundary are

vn = v · n; vτ = v − vnn,

σn = σn · n; στ = σn− σnn.

Under these conditions, the mechanical problem may be formulated as follows.
Problem (P) : Find a displacement field u : Ω → Rd, a stress field σ : Ω → S,

an electric potential ϕ : Ω → R, an electric displacement field D : Ω → Rd, a

temperature field θ : Ω → R and the heat flux q : Ω → Rd such that

σ = F ε(u)− E∗E(ϕ)−M θ in Ω,(2.1)

D = E ε(u) + β E(ϕ) + P θ in Ω,(2.2)

q = −K∇θ in Ω,(2.3)

Div σ + f0 = 0 in Ω,(2.4)

divD = q0 in Ω,(2.5)

div q = qth in Ω,(2.6)

u = 0 on Γ1,(2.7)

σn = f2 on Γ2,(2.8)
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σn(u) ≤ 0, un ≤ 0, σn(u)un = 0 on Γ3,(2.9)





‖στ‖ ≤ µ(‖uτ‖)|Rσn(u)|
‖στ‖ < µ(‖uτ‖)|Rσn(u)| ⇒ uτ = 0
στ = −µ(‖uτ‖)|Rσn(u)| uτ

‖uτ‖
⇒ uτ 6= 0

on Γ3,(2.10)

ϕ = 0 on Γa,(2.11)

D · n = q2 on Γb,(2.12)

D · n = ψ(un)φL(ϕ− ϕ0) on Γ3,(2.13)

θ = 0 on Γ1 ∪ Γ2,(2.14)

q · n = kc(un)φL(θ − θf ) on Γ3.(2.15)

Here, equations (2.1)-(2.2) represent the thermo-electro-elastic constitutive
law of the material in which σ = (σij) denotes the stress tensor, ε(u) is the
linearized strain tensor, E(ϕ) is the electric field, F is the nonlinear elasticity
operator, β = (βij) is the electric permittivity tensor, E = (eijk) represents the
third-order piezoelectric tensor, E∗ is its transpose, M = (mij) and P = (pi)
are, respectively, the thermal expansion and the pyroelectric tensors. We re-
call that ε(u) = (εij(u)) = (12 (ui,j +uj,i)) and E(ϕ) = −∇ϕ = −(ϕ,i). Notice
that (2.1) takes into account the dependence of the stress on the electric po-
tential and the temperature and (2.2) describes a linear dependence of the
electric displacement on the strain, the electric potential and the temperature
(see [3, 14] for details). The equation (2.3) is the Fourier law of heat conduc-
tion where K = (kij) denotes the thermal conductivity tensor. The equation
(2.4)-(2.6) represent the equilibrium equations for the stress, the electric dis-
placement and the heat flux fields where Div σ = (σij,j) and divD = (Di,i)
denote the divergence operator, respectively, for tensor and vector valued
functions. The relations (2.7)-(2.8), (2.11)-(2.12) and (2.14) represent the
mechanical, the electrical and the thermal boundary conditions. The unilat-
eral boundary conditions (2.9) represent the Signorini law and (2.10) represent
the coulomb’s friction law in which µ is the coefficient of friction and R is a
regularization operator. The equation (2.15) represent the heat flux condi-
tion where θF is the foundation’s temperature and kc is the coefficient of heat
exchange between it and the body (see [16]). The function kc is assumed to
depend on the normal pressure such that there is no heat flux at points where
there is no contact (kc(un) = 0 for un < 0 and kc(un) ≥ 0 otherwise). The
relation (2.13) represents the regularization of the electrical contact condition
on Γ3 (see [15]). Finally, the function φL, used in (2.13) and (2.15), is the
truncation function

φL(s) =





−L if s < −L
s if − L ≤ s ≤ L,where L is a large positive constant.
L if s > L
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3. Variational formulation and the main result

To derive the variational formulation of our problem, we consider the real
Hilbert spaces

H = {u = (ui), ui ∈ L2(Ω)}, H1 = {u ∈ H, ε(u) ∈ H},
H = {σ = (σij), σij = σji ∈ L2(Ω)}, H1 = {σ ∈ H,Div σ ∈ H},

endowed with the inner products

(u, v)H =

∫

Ω

uivi dx, (u, v)H1
= (u, v)H + (ε(u), ε(v))H,

(σ, τ)H =

∫

Ω

σijτij dx, (σ, τ)H1
= (σ, τ)H + (Div σ,Div τ)H,

and the associated norms ‖ · ‖H , ‖ · ‖H1
, ‖ · ‖H, ‖ · ‖H1

. Let HΓ = H1/2(Γ)d,

H
′

Γ its dual and 〈·, ·〉 the duality pairing between the two spaces. Let also
γ : H1 → HΓ be the trace map. For every v ∈ H1, we denote the trace γv
of v on Γ, again by v. For every σ ∈ H1, there exists an element σn ∈ H

′

Γ

satisfying the following Green formula

(3.1) 〈σn, γv〉 = (σ, ε(v))H + (Div σ, v)H , ∀v ∈ H1.

Moreover, if σ is continuously differentiable on Ω, then

(3.2) 〈σn, γv〉 =
∫

Γ

σn · γv da, ∀v ∈ H1,

where da is the surface element.
Let us now consider the closed subspace of H1 defined by

V = {v ∈ H1; v = 0 onΓ1},

and K be the set of admissible displacements

K = {v ∈ V, vn ≤ 0 onΓ3}.

Since meas(Γ1) > 0, the following Korn’s inequality holds

(3.3) ‖ε(v)‖H ≥ ck‖v‖H1
, ∀v ∈ V.

where ck > 0 is a constant which depends only on Ω and Γ1. Therefore the
space V endowed with the inner product (u, v)V = (ε(u), ε(v))H is a real
Hilbert space and its associated norm ‖v‖V = ‖ε(v)‖H is equivalent on V to
the usual norm ‖·‖H1

. By the Sobolev’s trace theorem, there exists a constant
c0 > 0 which depends only on Ω, Γ3 and Γ1 such that

(3.4) ‖v‖L2(Γ3)d ≤ c0‖v‖V , ∀v ∈ V.
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We also introduce the spaces

Q = {η ∈ H1(Ω)|η = 0 onΓ1 ∪ Γ2},
W = {ψ ∈ H1(Ω)|ψ = 0 onΓa},
W = {D = (Di) ∈ H1|Di ∈ L2(Ω), Di,i ∈ L2(Ω)}.

On Q and W we consider the inner products and the corresponding norms
given by

(θ, η)Q = (θ, η)H1(Ω), ‖η‖Q = ‖η)‖H1(Ω), for all θ, η ∈ Q,

(ϕ, ψ)W = (ϕ, ψ)H1(Ω), ‖ψ‖W = ‖ψ)‖H1(Ω), for all ϕ, ψ ∈W.

Since meas(Γ1∪Γ2) and meas(Γa) are positive, it follows that (Q, ‖ · ‖Q) and
(W, ‖ · ‖W ) are Hilbert spaces.

The spaces W is real Hilbert space with the inner product

(D,E)W = (D,E)L2(Ω)d + (divD, divE)L2(Ω),

The associated norm will be denoted by ‖ · ‖W .
Moreover, by the Sobolev trace theorem, there exist two positive constants

c1 and c2 such that

(3.5) ‖η‖L2(Γ3) ≤ c1‖η‖Q, ∀η ∈ Q,

(3.6) ‖ξ‖L2(Γ3) ≤ c2‖ξ‖W , ∀ξ ∈ W.

When q,D ∈ W are sufficiently regular functions, the following Green’s type
formulas hold

(3.7) (q,∇η)L2(Ω)d + (div q, η)L2(Ω) =

∫

Γ

q · νη da, ∀η ∈ H1(Ω),

(3.8) (D,∇ξ)L2(Ω)d + (divD, ξ)L2(Ω) =

∫

Γ

D · nξ da, ∀ξ ∈ H1(Ω).

Recall also that the transposite E∗ is given by

(3.9) Eσv = σE∗v, ∀σ ∈ S
d and ∀v ∈ R

d.

In the study of the mechanical problem (2.1)-(2.15), we need the following
assumptions.

(h1) The elasticity operator F : Ω× Sd → Sd satisfies

‖F(x, ξ1)− F(x, ξ2)‖ ≤MF‖ξ1 − ξ2‖,

(F(x, ξ1)− F(x, ξ2))(ξ1 − ξ2) ≥ mF‖ξ1 − ξ2‖2,
for all ξ1, ξ2 ∈ Sd and x ∈ Ω, where mF and MF are positive constants.

The mapping x → F(x, ξ) is measurable on Ω for all ξ ∈ Sd and
belongs to H for ξ = 0.
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(h2) The piezoelectric tensor E : Ω × Sd → Rd, the thermal expansion
tensor M : Ω × Rd → Rd and the pyroelectric tensor P : Ω → Rd

satisfy
eijk = eikj ∈ L∞(Ω), mij = mji ∈ L∞(Ω), pi ∈ L∞(Ω).

Notice that the above conditions allows us to define
MM = supij ‖mij‖L∞(Ω) and MP = supi ‖pi‖L∞(Ω).

(h3) The electric permittivity tensor β : Ω×Rd → Rd and the thermal
conductivity tensor K : Ω×Rd → Rd satisfy

βij = βji ∈ L∞(Ω) and βijzizj ≥ mβ‖z‖2,
kij = kji ∈ L∞(Ω) and kijzizj ≥ mK‖z‖2,

for all z ∈ R
d, where mβ and mK are a positive constants.

(h4) The coefficient of friction function µ : Γ3 × R+ → R+ satisfy
∃Mµ > 0 such that |µ(x, u)| ≤Mµ, for all u ∈ R+ and x ∈ Γ3,
x→ µ(x, u) is measurable on Γ3 for all u ∈ R+.

(h5) The surface electrical conductivity ψ : Γ3 × R → R+ and the
thermal conductance kc : Γ3 ×R → R+ satisfy for π = ψ or kc

∃Mπ > 0 such that |π(x, u)| ≤Mπ, for all u ∈ R and x ∈ Γ3,
x→ π(x, u) is measurable on Γ3 for all u ∈ R,
π(x, u) = 0 for all x ∈ Γ3 and u ≤ 0.

(h6) The functions u→ π(x, u) for π = µ(resp.π = ψ, kc) are a Lipschitz
functions on R+(resp.R) ; for all x ∈ Γ3 and u1, u2 ∈ R,

∃Lπ > 0 such that |π(x, u1)− π(x, u2)| ≤ Lπ|u1 − u2|.
(h7) The forces, the traction, the volume, surface charge densities, the
volume heat source, the potential and temperature of the contact sur-
face satisfy

f0 ∈ L2(Ω)d, f2 ∈ L2(Γ3)
d, q0 ∈ L2(Ω), q2 ∈ L2(Γb),

qth ∈ L2(Ω), ϕF ∈ L2(Γ3), θF ∈ L2(Γ3).

(h8) The mapping R : H
′

Γ3
→ L∞(Γ3) is a linear and continuous.

Next, we use the Riesz’s representation theorem to define the elements
f ∈ V, q ∈ W by

(f, v)V =

∫

Ω

f0 v dx+

∫

Γ2

f2 v da, ∀ v ∈ V,(3.10)

(q, ξ)W =

∫

Ω

q0 ξ dx−
∫

Γb

q2 ξ da, ∀ ξ ∈W(3.11)

and we define the mappings

(3.12) j : V × V → R, l : V ×W ×W → R, χ : V ×Q×Q→ R,

respectively, given by

j(u, v) =

∫

Γ3

µ(‖uτ‖)|Rσn(u)|‖vτ‖ da, ∀u, v ∈ V,(3.13)
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l(u, ϕ, ξ) =

∫

Γ3

ψ(un)φL(ϕ− ϕF )ξ da, ∀ϕ, ξ ∈W,(3.14)

χ(u, θ, η) =

∫

Γ3

kc(un)φL(θ − θf )η da, ∀θ, η ∈ Q.(3.15)

It follows from the assumptions (h4) and (h5) that the above integrals are well-
defined. According to this notation and by a standard procedure based on
Green’ s formulas, we can deduce the variational formulation of the problem
P .

Problem (PV ): Find a displacement field u ∈ K, an electric potential ϕ ∈W
and a temperature field θ ∈ Q such that

(Fε(u), ε(v)− ε(u))H + (E∗∇ϕ, ε(v)− ε(u))L2(Ω)d

− (Mθ, ε(v)− ε(u))L2(Ω)d + j(u, v)− j(u, u)

≥ (f, v − u)V , ∀ v ∈ K,

(3.16)

(β∇ϕ,∇ξ)L2(Ω)d − (Eε(u),∇ξ)L2(Ω)d − (Pθ,∇ξ)L2(Ω)d

+ l((u, ϕ), ξ) = (q, ξ)W , ∀ ξ ∈W,
(3.17)

(K∇θ,∇η)L2(Ω)d + χ((u, θ), η) = (qth, η)L2(Ω), ∀ η ∈ Q.(3.18)

Now, we are able to state the following existence and uniqueness main result

Theorem 3.1. Assume that (h1)-(h5) and (h7)-(h8) hold, then

1) The problem (PV ) has at least one solution (u, ϕ, θ) ∈ K ×W ×Q.

2) Under (h6), there exist a positive constant L∗ such that if

Lµ +Mµ +Mψ +Mkc + LLψ + LLkc +max(MM,MP) < L∗,

then the problem (PV ) has an unique solution.

The proof of this result will be treated in the next section.

4. Proof of the main result

The proof of Theorem 3.1 is carried out in several steps, in the sequel, we
define the tree closed convex sets of L2(Γ3)

K1 = {z1 ≥ 0 ∈ L2(Γ3), ‖z1‖L2(Γ3) ≤ k1},
K2 = {z2 ∈ L2(Γ3), ‖z2‖L2(Γ3) ≤ k2},
K3 = {z2 ∈ L2(Γ3), ‖z3‖L2(Γ3) ≤ k3},
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with k1, k2 and k3 to be specified later and let z = (z1, z2, z3) ∈ L2(Γ3)
3
to

be given. We define the functions

j1(z, v) =

∫

Γ3

z1‖vτ‖ da, ∀v ∈ K,(4.1)

ℓ1(z, ξ) =

∫

Γ3

z2ξ da, ∀ ξ ∈W,(4.2)

χ1(z, η) =

∫

Γ3

z3η da, ∀ η ∈ Q.(4.3)

Now, we consider the following intermediate variational problem (PV I).
We can remark that this problem is decomposed into two separate problems,
one is a thermal problem and the other is an electro-elastic problem.

Problem (PV I): Find a displacement field u(z) ∈ K, an electric potential

ϕ(z) ∈ W and a temperature field θ(z) ∈ Q such that

(Fε(u(z)), ε(v)− ε(u(z)))H + (E∗∇ϕ(z), ε(v)− ε(u(z)))L2(Ω)d

− (Mθ(z), ε(v)− ε(u(z)))L2(Ω)d + j1(z, v)− j1(z, u(z))

≥ (f, v − u(z))V , ∀ v ∈ K,

(4.4)

(β∇ϕ(z),∇ξ)L2(Ω)d − (Eε(u(z)),∇ξ)L2(Ω)d − (Pθ(z),∇ξ)L2(Ω)d

= (q, ξ)W − ℓ1(z, ξ), ∀ ξ ∈ W,
(4.5)

(K∇θ(z),∇η)L2(Ω)d = (qth, η)L2(Ω) − χ1(z, η), ∀ η ∈ Q.(4.6)

First, we will solve the thermal problem in which the unknown is the tem-
perature θ(z). Then, its solution will be an input data for the electro-elastic
problem. The thermal problem is written as follows

(PV Iθ) : (K∇θ(z),∇η)L2(Ω)d = (qth, η)L2(Ω) − χ1(z, η), ∀ η ∈ Q.

We use the Riesz’s representation theorem to define the element qz ∈ Q such
that

(qz, η)Q = (qth, η)L2(Ω) − χ1(z, η), ∀ η ∈ Q(4.7)

and the operator T : Q→ Q such that

(T θ(z), η)Q = (K∇θ(z),∇η)L2(Ω)d , ∀ η ∈ Q.

Thus the variational formulation of (PV Iθ) will be

Find θ(z) ∈ Q such that (T θz, η)Q = (qz , η)Q, ∀ η ∈ Q.(4.8)

Lemma 4.1. Under the assumption (h3), the problem (4.8) has an unique

solution θ(z), which depends Lipchitz continuously on z ∈ L2(Γ3)
3
.
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Proof. It follows from the assumptions of K (see (h3)) that T is a linear
symmetric and positive definite operator. Hence, T is a linear continuous
and invertible operator on Q and let C denote its inverse. Thus, by the Lax-
Milgram theorem, we conclude that the problem (4.8) has an unique solution

θ(z) = Cqz ∈ Q satisfying ‖θ(z)‖Q ≤ mC‖qz‖Q,(4.9)

with mC = 1
mK

.

Let z = (zi)i, z
′ = (z′i)i to be two given elements of L2(Γ3)

3
and θ(z),

θ(z′) the corresponding solutions of the problem (4.8). From the linearity of
T we deduce that

‖θ(z′)− θ(z)‖Q ≤ mC‖qz′ − qz‖Q.

From (4.7) and (3.5) we obtain

(qz′ − qz, η)Q = χ1(z
′, η)− χ1(z, η) ≤ c1‖z′3 − z3‖L2(Γ3)

‖η‖Q, ∀η ∈ Q,

then

‖qz1 − qz2‖Q ≤ c1‖z′3 − z3‖L2(Γ3).

Finally, combine the previous inequalities to get

‖θz2 − θz1‖Q ≤ c1mC‖z′3 − z3‖L2(Γ3) ≤ c1mC‖z′ − z‖L2(Γ3)3 ,

which finishes the proof.

For the electro-elastic problem (PV Iuϕ), we use the solution θ(z) = Cqz as
input data and its variational formulation becomes

(Fε(u(z)), ε(v)− ε(u(z)))H + (E∗∇ϕ(z), ε(v)− ε(u(z)))L2(Ω)d

+j1(z, v)− j1(z, u(z))

≥ (f, v − u(z))V + (MCqz, ε(v)− ε(u(z)))L2(Ω)d , ∀ v ∈ K,(4.10)

(β∇ϕ(z),∇ξ)L2(Ω)d − (Eε(u(z)),∇ξ)L2(Ω)d

= (q, ξ)W + (PCqz,∇ξ)L2(Ω)d − ℓ1(z, ξ), ∀ ξ ∈ W.(4.11)

Notice that the two facts, T is linear continuous invertible operator on Q and
the properties of the operators M and P imply that MC and PC are linear
continuous operators. Hence, we use the Riesz’s representation theorem to
define the elements fz ∈ V and qz ∈W such that

(fz, v)V = (f, v)V + (MCqz, ε(v))L2(Ω)d , ∀ v ∈ K,(4.12)

(qz , ξ)W = (q, ξ)W + (PCqz,∇ξ)L2(Ω)d − ℓ1(z, ξ), ∀ ξ ∈W.(4.13)
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In the sequel, we consider the product spaces X = V ×W and Y = (L2(Γ3))
3

endowed with theirs canonical inner products and the associated norms

(x, y)X = (u, v)V + (ϕ, ξ)W , ∀x = (u, ϕ), y = (v, ξ) ∈ X,(4.14)

(z, ζ)Y =

3∑

i=1

(zi, ζi)L2(Γ3)
, ∀z = (zi)i, ζ = (ζi)i ∈ Y(4.15)

and U = K ×W a nonempty closed convex subset of X .
We also consider the operator A : U → X , the function j̃1(z, .) : U → R

defined as follows

(Ax, y)X = (Fε(u), ε(v))H + (β∇ϕ,∇ξ)L2(Ω)d(4.16)

− (E∗∇ϕ, ε(v))L2(Ω)d − (Eε(uz),∇ξ)L2(Ω)d ,

j̃1(z, y) = j1(z, v), ∀y = (v, ξ) ∈ U(4.17)

and the element

f̃z = (fz, qz) ∈ X.

According to these notations, we have the following equivalence result

Lemma 4.2. The pair x(z) = (u(z), ϕ(z)) ∈ U is a solution to problem

(PV Iuϕ) if and only if

(4.18) (Ax(z), y − x(z))X − j̃1(z, y)− j̃1(z, x(z)) ≥ (f̃z, y − x(z))X .

Proof. let x(z) = (u(z), ϕ(z)) ∈ U be a solution of (PV Iuϕ) and y =
(v, ξ) ∈ U . We use (ξ − ϕ(z)) in (4.11) and add the corresponding inequality
to (4.10), we deduce (4.18). Conversely, let x(z) = (u(z), ϕ(z)) ∈ U be a
solution of the elliptic variational inequality (4.18). By taking y = (v, ϕ(z))
in (4.18), where v is an arbitrary element of K, we obtain (4.10). Moreover,
if we take successively y = (u(z), ϕ(z) + ξ) and y = (u(z), ϕ(z)− ξ) in (4.18),
where ξ is an arbitrary element of W , we will obtain (4.11), which finishes
the proof.

We use now Lemma 4.2 to obtain the following existence and uniqueness
result.

Lemma 4.3. For any z ∈ K1 ×K2 ×K3, assumed to be known, we have

1. Under the assumptions (h1) and (h3), the electro-elastic problem

(PV Iuϕ) has an unique solution x(z) = (u(z), ϕ(z)) ∈ K ×W and

we have

∃ c > 0 such that ‖x(z)‖X ≤ c‖f̃z‖X .
2. The solution x(z) of (PV Iuϕ) depends Lipschitz continuously on z.

Proof. First, we can easily check that the operator A : X → X is
strongly monotone, Lipschitz continuous and the functional v → j̃1(z, v) is
proper, convex and continuous (see [6]). Therefore, the problem (PV Iuϕ) has
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an unique solution x(z) ∈ K ×W . Moreover, if we take y = 0 in (4.18), we
get

(Ax(z), x(z))X + j̃1(z, x(z)) ≤ (f̃z, x(z))X .

As z ∈ K1 ×K2 ×K3, we have z1 ≥ 0 and then j̃1(z, x(z)) ≥ 0. Thus

(Ax(z), x(z))X ≤ (f̃z, x(z))X .

Keeping in mind the strong monotony of A, we deduce that there exists a
positive constant c = 1

m such that

‖x(z)‖X ≤ c‖f̃z‖X .(4.19)

For the second part of the lemma (4.2), let us consider z = (zi)i, z
′ = (z′i)i

two given elements of L2(Γ3)
3
and x(z), x(z′) theirs corresponding solutions

of the problem (4.18). We have

(Ax(z), y − x(z))X + j̃1(z, y)− j̃1(z, x(z)) ≥ (f̃z, y − x(z))X ,

(Ax(z′), y − x(z′))X + j̃1(z
′, y)− j̃1(z

′, x(z′)) ≥ (f̃z′ , y − x(z′))X , ∀y ∈ U.

We take y = x(z′) in the first inequality and y = x(z) in the second, to get

(Ax(z), x(z′)− x(z))X + j̃1(z, x(z
′))− j̃1(z, x(z)) ≥ (f̃z, x(z

′)− x(z))X ,

(Ax(z′), x(z)− x(z′))X + j̃1(z
′, x(z))− j̃1(z

′, x(z′)) ≥ (f̃z′ , x(z)− x(z′))X .

Keeping in mind the definition of j̃1, we deduce

(4.20)

(Ax(z)−Ax(z′), x(z)− x(z′))X

≤ (f̃z − f̃z′ , x(z)− x(z′))X +

∫

Γ3

(z1 − z′1) (‖uτ (z)‖ − ‖uτ(z′)‖) da.

It follows from (4.12), (4.13) that

(f̃z − f̃z′ , x(z)− x(z′))X

=

∫

Γ3

(z2 − z′2)(ϕ(z)− ϕ(z′)) da

+ (MC(qz − qz′), ε(u(z))− ε(u(z′)))L2(Ω)d

+ (PC(qz − qz′),∇ϕ(z)−∇ϕ(z′))L2(Ω)d

≤ ‖z2 − z′2‖L2(Γ3)‖ϕ(z)− ϕ(z′)‖L2(Γ3)

+mCMM ‖qz − qz′‖L2(Ω)‖ε(u(z))− ε(u(z′))‖L2(Ω)d

+mCMP ‖qz − qz′‖L2(Ω)‖∇ϕ(z)−∇ϕ(z′))‖L2(Ω)
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and from (4.7) that

(f̃z − f̃z′ , x(z)− x(z′))X

≤ ‖z2 − z′2‖L2(Γ3)‖ϕ(z)− ϕ(z′)‖L2(Γ3)

+ c1mCMM‖z3 − z′3‖L2(Ω)‖ε(u(z))− ε(u(z′))‖L2(Ω)d

+ c1mCMP‖z3 − z′3‖L2(Ω)‖∇ϕ(z)−∇ϕ(z′))‖L2(Ω).

Combining (4.20), (4.21) and (3.4), (3.6) to get

(Ax(z) −Ax(z′), x(z)− x(z′))X

≤ c0‖z1 − z′1‖L2(Γ3)‖u(z)− u(z′)‖V
+ c2‖z2 − z′2‖L2(Γ3)‖ϕ(z)− ϕ(z′)‖W
+ c1mCMM‖z3 − z′3‖L2(Γ3)‖u(z)− u(z′)‖V
+ c1mCMP‖z3 − z′3‖L2(Γ3)‖ϕ(z)− ϕ(z′))‖W .

The above inequality, the strong monotony of A, combined with (4.21) and
(4.15) assures that there exists a positive constant c3 > 0 such that

‖x(z)− x(z′)‖X ≤ c3‖z − z′‖Y .(4.21)

Hence the second part of this lemma is established.

Lemma 4.4. For any z ∈ K1×K2×K3, assumed to be known and under the

assumptions (h1)-(h3), the solution x̃(z) = (x(z), ϕ(z), θ(z)) of the problem

(PV I) depends Lipschitz continuously on z.

Proof. It is a direct result of the two lemmas (4.1) and (4.3).

Now, we consider the following operator Λ : Y → Y defined by

(4.22) Λz = (µ(‖uτ‖) |Rσn(u)|, ψ(un)φL(ϕ− ϕF ), kc(un)φL(θ − θF ))

and notice that under the assumptions (h5) and (h6), this operator is well
defined. Our aim is to prove that Λ has a fixed point and for that we need
some auxiliary lemmas.

Lemma 4.5. The mapping z → x̃(z), where x̃(z) is the solution of the

problem (PV I), is weakly continuous from Y = L2(Γ3)
3
to V ×W ×Q.

Proof. Recall that x̃(z) = (u(z), ϕ(z), θ(z)) is a solution of (PV I),
means that θ(z) is a solution of (PV Iθ) and that x(z) = (u(z), ϕ(z)) is a so-
lution of (PV Iuϕ). Therefore, it suffices to prove that the mapping z → θ(z)
(resp. z → x(z)) is weakly continuous from Y to Q (resp. Y to V ×W ).

Let zn = (zn1
, zn2

, zn3
) be a sequence of Y converging weakly to z =

(z1, z2, z3) and let x̃(zn) = (x(zn), θ(zn)) ∈ U × Q be its associated solution
of the (PV I). From (4.9) and (4.7),(3.5) we can deduce

‖θ(zn)‖Q ≤ mC‖qzn‖Q ≤ mC( ‖qth‖Q + c1‖zn3
‖L2(Γ3) )

≤ mC( ‖qth‖Q + c1‖zn‖Y ).
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So, the sequence (θ(zn)) is bounded in Q and then, there exist θ̃ ∈ Q and a

subsequence (θ(znk
)) such that θ(znk

) converge weakly to θ̃. By (4.8) we get

(T θ̃, θ̃ − η) ≤ lim
n→∞

(T θ(znk
), θ(znk

)− η) ≤ (qz , θ̃ − η)Q.(4.23)

Taking η = θ̃ ± η∗ in the previous inequality, we find

(T θ̃, η∗) = (qz, η
∗)Q, ∀η∗ ∈ Q.(4.24)

According to (4.8) and (4.24), we conclude that θ̃ is a solution of (PV Iθ)
and by the uniqueness of the solution of this variational equality we deduce

that θ̃ = θ(z). Since θ(z) is the unique limit of any subsequence (θ(znk
)), we

deduce that the whole sequence (θ(zn)) is weakly convergent to θ(z) in Q and
it leads to the weak continuity of z → θ(z) from Y to Q.

On another side, we recall that x(zn) is a solution of (PV Iuϕ) means

(4.25) (Ax(zn), y − x(zn))X + j̃1(zn, y)− j̃1(zn, x(zn)) ≥ (f̃zn , y − x(zn))X .

and if we take y = 0, we get

(4.26) (Ax(zn), x(zn))X ≤ (f̃zn , x(zn))X − j̃1(zn, x(zn)).

From the definition of the element f̃ , we deduce

(f̃zn , x(zn))X = (f, u(zn))V + (q, ϕ(zn))W − ℓ1(zn, ϕ(zn))

+ (MCqzn , ε(u(zn)))L2(Ω)d + (PCqzn ,∇ϕ(zn))L2(Ω)d ,

from (3.6) and (4.13), it exists c4 = mC (MM +MP) > 0 such that

(4.27) ‖f̃zn‖X ≤ ‖f‖V + ‖q‖W + c2‖zn2
‖L2(Γ3) + c4‖qzn‖Q,

from (3.5) and (4.7), we have

(4.28) ‖qzn‖Q ≤ ‖qth‖Q + c1‖zn3
‖L2(Γ3)

and from the definition of the functional j̃1, we have

(4.29) j̃1(zn, x(zn)) ≤ c0‖zn1
‖L2(Γ3)‖x(zn)‖X .

The strong monotony of A, combined with (4.26)-(4.29), leads to

m ‖x(zn)‖X ≤ ‖f‖V + ‖q‖W + c4 ‖qth‖Q + c0 ‖zn1
‖L2(Γ3)

+ c2 ‖zn2
‖L2(Γ3) + c1c4 ‖zn3

‖L2(Γ3)

≤ ‖f‖V + ‖q‖W + c4 ‖qth‖Q
+ c5 (‖zn1

‖L2(Γ3) + ‖zn2
‖L2(Γ3) + ‖zn3

‖L2(Γ3)),

where c5 = max(c0, c2, c1c4).

Applying the inequality (a+ b+ c) ≤
√
3
√
a2 + b2 + c2 to get

‖x(zn)‖X ≤ 1

m
{‖f‖V + ‖q‖W + c4 ‖qth‖Q +

√
3 c5 ‖zn‖Y }.(4.30)
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Thus, the sequence (x(zn)) is bounded in the Hilbert space X , then there
exists x̃ = (ũ, ϕ̃) ∈ X and a subsequence (x(znk

)) such that x(znk
)⇁ x̃. Since

U ⊂ X is closed convex subset, it is weakly closed and hence x̃ ∈ U . Moreover,
by using the compactness of the trace map γ : X → L2(Γ3)

d × L2(Γ3), it
follows from the weak convergence of (x(znk

)) that

(x(znk
)) → x̃ strongly in L2(Γ3)

d × L2(Γ3).(4.31)

Next, let us prove that x̃ is solution of (4.29). We have

(f̃zn , y − x(zn))X = (f, v − u(zn))V + (q, ξ − ϕ(zn))W − ℓ1(zn, ξ − ϕ(zn))

+ (MCqzn , ε(v)− ε(u(zn)))L2(Ω)d

+ (PCqzn ,∇ξ −∇ϕ(zn))L2(Ω)d .

From (4.3), (4.7) and the weak convergence of (zn) to z, we get

(4.32)
(MCqzn , ε(v)− ε(u(zn)))L2(Ω)d → (MCqz, ε(v)− ε(u(z)))L2(Ω)d

(PCqzn ,∇ξ −∇ϕ(zn))L2(Ω)d → (PCqz,∇ξ −∇ϕ(z))L2(Ω)d ,

from the definition of ℓ1, we get

|ℓ1(zn, ξ − ϕn)− ℓ1(zn, ξ − ϕ̃)| ≤ ‖zn2
‖L2(Γ3)

‖ϕ(zn)− ϕ̃‖L2(Γ3)

≤ ‖zn‖L2(Γ3)3
‖x(zn)− x̃‖L2(Γ3)2

,

and hence, we deduce

ℓ1(zn, ξ − ϕ(zn)) → ℓ1(z, ξ − ϕ̃).(4.33)

The two previous results (4.32) and (4.33) give

(4.34) (f̃zn , y − x(zn))X → (f̃z, y − x̃)X .

Furthermore, the following inequality

| j̃1(zn, x(zn))− j̃1(zn, x̃) | ≤ ‖zn1
‖L2(Γ3)

‖u(zn)− ũ‖L2(Γ3)d

≤ c0‖zn‖L2(Γ3)3
‖x(zn)− x̃‖L2(Γ3)2

leads to

(4.35) j̃1(zn, x(zn)) → j̃1(z, x̃).

On the other hand, it follows from (4.25) that

(Ax(zn), x(zn)− y)X ≤ (f̃zn , x(zn)− y)X

+ (j̃1(zn, y)− j̃1(z, x̃))− (j̃1(zn, x(zn))− j̃1(z, x̃)).

Using (4.34) and (4.35) we deduce

lim
n→∞

(Ax(zn), x(zn)− y)X ≤ (f̃z, x̃− y)X + (j̃1(z, y)− j̃1(z, x̃)),
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and, then

lim
n→∞

(Ax(zn), x(zn)−x̃)X = lim
n→∞

{(Ax(zn), x(zn)− y)X + (Ax(zn), y − x̃)X}

≤ lim
n→∞

{(Ax(zn), x(zn)− y)X + ‖Ax(zn)‖X‖y − x̃‖X}

≤ (f̃z, x̃− y)X + (j̃1(z, y)− j̃1(z, x̃))

+ lim
n→∞

{‖Ax(zn)‖X‖y − x̃‖X}.

Thus, for all y ∈ U , we have

lim
n→∞

(Ax(zn), x(zn)− x̃)X ≤ (f̃z, x̃− y)X + (j̃1(z, y)− j̃1(z, x̃))

+ lim
n→∞

{‖Ax(zn)‖X‖y − x̃‖X}.

Since (‖Ax(zn)‖X) is bounded, if we take y = x̃, the last inequality becomes

(4.36) lim
n→∞

(Ax(zn), x(zn)− x̃)X ≤ 0.

We combine (4.25), (4.34) and (4.36) with the pseudo-monotonicity of A:

(Ax̃, x̃− y)X ≤ lim
n→∞

(Ax(zn), x(zn)− y)X , ∀y ∈ U,

to deduce

(4.37)

{
x̃ ∈ U,

(Ax̃, y − x̃)X + j̃1(z, y)− j̃1(z, x̃) ≥ (f̃z, y − x̃)X , ∀y ∈ U.

Thus, we find that x̃ is a solution of the problem (PV Iuϕ) and from the
uniqueness of the solution for this variational inequality, we can deduce that
x̃ = x(z). Moreover, since x(z) is the unique weak limit of any subsequence
of (x(zn)), we obtain that the whole sequence (x(zn)) is weakly convergent in
X to x(z). Consequently, the mapping z → x(z) is weakly continuous.

Lemma 4.6. For a specified values of k1, k2 and k3, the operator Λ has

at least one fixed point.

Proof. Let us consider z = (z1, z2, z3) an element of K1 × K2 × K3, we
have ‖z1‖L2(Γ3) ≤ k1, ‖z2‖L2(Γ3) ≤ k2 and ‖z3‖L2(Γ3) ≤ k3. Therefore

‖z‖L2(Γ3)3 ≤ k1 + k2 + k3.

On another hand, since ψ(un(z)) ≤ Mψ and φL(ϕ(z) − ϕF ) ≤ L, it follows
from z2 = ψ(un(z))φL(ϕ(z)− ϕF ) that

(4.38) ‖z2‖L2(Γ3)
≤Mψ Lmeas(Γ3)

1

2 .

Since kc(un(z)) ≤Mkc and φL(θ(z)− θF ) ≤ L, it follows from the expression
z3 = kc(un(z))φL(θ(z)− θF ) that

(4.39) ‖z3‖L2(Γ3)
≤Mkc Lmeas(Γ3)

1

2 .



A SIGNORINI PROBLEM WITH FRICTION IN THERMO-PIEZOELECTRICITY 407

Moreover, since µ(‖uτ (z)‖) ≤ Mµ and R is linear continuous function, it
follows from z1 = µ(‖uτ (z)‖) |Rσn(u(z))| and (3.4) that

‖z1‖ = ‖µ(‖uτ(z)‖) |Rσn(u(z))| ‖ ≤ Mµc0 cR ‖x(z)‖X .
Combining (4.19) and (4.27), (4.28), we deduce that

(4.40)
‖x(z)‖X ≤ c {‖f‖V + ‖q‖W + c4‖qth‖Q}

+ c {c2‖z2‖L2(Γ3)
+ c1c4‖z3‖L2(Γ3)

}.
Keeping in mind (4.40) and (4.38), (4.39), then

‖z1‖ ≤ c c0 cRMµ {‖f‖V + ‖q‖W + c4 ‖qth‖Q}

+ c c0 c2 cRMµMψ Lmeas(Γ3)
1

2

+ c c0 c1 c4 cRMµMkc Lmeas(Γ3)
1

2 .

From the definition of the operator Λ, we have

‖Λz‖ ≤ ‖µ(‖uτ‖)|Rσn(u)|‖+ ‖ψ(un)φL(ϕ− ϕF )‖+ ‖kc(un)φL(θ − θf )‖.
Hence, if we choose

k1 = c c0 cRMµ {‖f‖V + ‖q‖W + c4 ‖qth‖Q) + c2Mψ Lmeas(Γ3)
1

2

+ c1 c4Mkc Lmeas(Γ3)
1

2 }
and

k2 =MψLmeas(Γ3)
1

2 , k3 =MkcLmeas(Γ3)
1

2 ,

we will obtain from (4.41) and (4.38), (4.39) that

‖Λz‖ ≤ k1 + k2 + k3.

Thus, Λ is an operator from the nonempty, convex and closed subset
K1 × K2 × K3 of L2(Γ3)

3 into itself. Since the space L2(Γ3)
3 is reflexive,

K1×K2×K3 is weakly compact. The assumptions (h5), (h6) and the continuity
of the operators R, φL, and kc, combined with the lemma (4.5) lead to the
weak continuity of Λ. Hence, by the Schauder’s fixed point theorem the
operator Λ has at least one fixed point.

Now, we have all the ingredients to provide the proof of Theorem 3.1.
Existence : Let z∗ be the fixed point of the operator Λ and let denote by

x̃∗ = (u∗, ϕ∗, θ∗) the solution of the variational problem (PV I) for z = z∗.
The definition of Λ and (PV I) prove that x∗ is a solution of (PV ) and that
leads to the existence part of theorem 3.1.

Uniqueness : We consider the product space X = X × Q = V ×W × Q
endowed with the following inner product and the associated norm ‖ ·‖X̃ such
that

(4.41) (x̃, ỹ)X = (x, y)X + (θ, η)Q = (u, v)V + (ϕ, ξ)W + (θ, η)Q,

for all x̃ = (x, θ) = (u, ϕ, θ) and ỹ = (y, η) = (v, ξ, η) elements of X .
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We consider also the two operators Ã : X → X and B̃ : X → X defined by

(Ãx̃, ỹ)X = (Ax, y)X + (K∇θ,∇η)L2(Ω)d ,(4.42)

(Bx̃, ỹ)X = −(Mθ, ε(v))L2(Ω)d − (Pθ,∇ξ)L2(Ω)d ,(4.43)

where A is given by (4.16) and the functionals J, ℓ̃, χ̃ are defined by

(4.44) J(x̃, ỹ) = j(u, v), ℓ̃(x̃, ỹ) = ℓ(u, ϕ, ξ), χ̃(x̃, ỹ) = χ(u, θ, η)

and the element f̃ is given by

(4.45) f̃ = (f, q, qth) ∈ X .

Lemma 4.7. The operator Ã is strongly monotone on X i.e.,

∃mÃ > 0 such that mÃ ‖x̃1 − x̃2‖2X ≤ (Ãx̃1 − Ãx̃2, x̃1 − x̃2)X .

Proof. Let x̃1 = (u1, ϕ1, θ1) and x̃2 = (u2, ϕ2, θ2) be two elements of X .

It follows from the definition of the operator Ã that

(Ãx̃1−Ãx̃2, x̃1−x̃2)X = (Ax1−Ax2, x1−x2)X+(K∇(θ1−θ2),∇(θ1−θ2))L2(Ω)d .

Using the strong monotony of A and the assumption (h4), we obtain

(Ãx̃1 − Ãx̃2, x̃1 − x̃2)X ≥ m‖x1 − x2‖2X +mK‖θ1 − θ2‖2Q.
Keeping in mind (4.41), there exists mÃ > 0 such that

(4.46) (Ãx̃1 − Ãx̃2, x̃1 − x̃2)X ≥ mÃ‖x̃1 − x̃2‖2X .

Lemma 4.8. The problem (PV ) is equivalent to the problem

(Ãx̃, ỹ −X )X + (B̃x̃, ỹ − x̃)X + J(x̃, ỹ)− J(x̃, x̃)

+ℓ̃(x̃, ỹ − x̃) + χ̃(x̃, ỹ − x̃) ≥ (f̃ , ỹ − x̃)X .

Proof. We use the same arguments as for (4.18).

Let x̃1 = (u1, ϕ1, θ1) and x̃2 = (u2, ϕ2, θ2) be solutions of (PV ), then

(Ãx̃1, ỹ − x̃1)X + (B̃x̃1, ỹ − x̃1)X + J(x̃1, ỹ)− J(x̃1, x̃1)

+ℓ̃(x̃1, ỹ − x̃1) + χ̃(x̃1, ỹ − x̃1) ≥ (f̃ , ỹ − x̃1)X ,

(Ãx̃2, ỹ − x̃2)X + (B̃x̃2, ỹ − x̃2)X + J(x̃2, ỹ)− J(x̃2, x̃2)

+ℓ̃(x̃2, ỹ − x̃2) + χ̃(x̃2, ỹ − x̃2) ≥ (f̃ , ỹ − x̃2)X .

If we take ỹ = x̃2 in the first inequality, ỹ = x̃1 in the second one and we add
the two resulting inequalities, we get

(4.47) (Ãx̃1 − Ãx̃2, x̃1 − x̃2)X ≤ G1 +G2 +G3 − (B̃x̃1 − B̃x̃2, x̃1 − x̃2)X ,
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such that

G1 = J(x̃1, x̃2)− J(x̃1, x̃1) + J(x̃2, x̃1)− J(x̃2, x̃2),

G2 = ℓ̃(x̃1, x̃2 − x̃1)− ℓ̃(x̃2, x̃1 − x̃2),

G3 = χ̃(x̃1, x̃2 − x̃1)− χ̃(x̃2, x̃1 − x̃2).

We have

G1 =

∫

Γ3

µ(‖u1τ‖)(|Rσn(u1)| − |Rσn(u2)|)(‖u1τ‖ − ‖u2τ‖) da

+

∫

Γ3

|Rσn(u2)|(µ(‖u1τ‖)− µ(‖u2τ‖))(‖u1τ‖ − ‖u2τ‖) da.

Using the property of µ, the continuity of R and (3.4), we deduce

(4.48) G1 ≤ (MµcRc
2
0 + ‖R‖L∞(Γ3)Lµc

2
0)‖x̃1 − x̃2‖2X .

We have also

G2 =

∫

Γ3

ψ(u2τ )(φL(ϕ2 − ϕF )− φL(ϕ1 − ϕF ))(ϕ1 − ϕ2) da

+

∫

Γ3

φL(ϕ2 − ϕF )(ψ(u2τ )− ψ(u1τ ))(ϕ1 − ϕ2) da

and

G3 =

∫

Γ3

kc(u2υ − g)(φL(θ2 − θF )− φL(θ1 − θF ))(θ1 − θ2) da

+

∫

Γ3

φL(θ2 − θF )(kc(u2υ − g)− kc(u1υ − g))(θ1 − θ2) da.

Using the properties of φL, ψ, kc we deduce

(4.49)
G2 ≤ (Mψc

2
1 + LLψc0c1)‖x̃1 − x̃2‖2X ,

G3 ≤ (Mkcc
2
2 + LLkcc0c2)‖x̃1 − x̃2‖2X .

On the other hand, it follows from (4.43) and the assumption (h2) that

|(Bx̃1 − Bx̃2, x̃1 − x̃2)X |
≤ MM‖θ1 − θ2‖L2(Ω)‖ε(u1)− ε(u1)‖L2(Ω)d

+MP‖θ1 − θ2‖L2(Ω)‖∇ϕ1 −∇ϕ2‖L2(Ω)d

≤ max(MM,MP)‖θ1 − θ2‖H1(Ω)

(
‖u1 − u2‖V + ‖ϕ1 − ϕ2‖W

)

≤ max(MM,MP)‖θ1 − θ2‖H1(Ω)

∥∥x1 − x2‖X .
Since the two norms ‖ · ‖Q and ‖ · ‖H1(Ω) are equivalents and since

‖ · ‖2X = ‖ · ‖2X + ‖ · ‖2Q ≥ 2‖ · ‖X ‖ · ‖Q,
there exists a positive constant c∗ such that

(4.50) |(Bx̃1 −Bx̃2, x̃1 − x̃2)X | ≤ c∗ max(MM,MP)‖x̃1 − x̃2‖2X .
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Finally, we combine (4.46) and (4.47)-(4.50) to deduce that there exists a
positive constant c∗ such that

‖x̃1 − x̃2‖2X ≤ c∗(Lµ +Mµ +Mψ +Mkc + LLψ + LLkc

+max(MM,MP))‖x̃1 − x̃2‖2X .

Let L∗ = 1
c∗ , then if we have

Lµ +Mµ +Mψ +Mkc + LLψ + LLkc +max(MM,MP) < L∗,

we obtain x̃1 = x̃2 and it implies the uniqueness of the solution.
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[5] Z. Denkowski, S. Migórski and A. Ochal, A class of optimal control problems for

piezoelectric frictional contact models, Nonlinear Anal. Real World Appl. 12 (2011),
1883–1895.

[6] El H. Essoufi, El H. Benkhira and R. Fakhar, Analysis and numerical approximation

of an electro–elastic frictional contact problem, Adv. Appl. Math. Mech. 2 (2010),
355–378.

[7] T. Ikeda, Fundamentals of piezoelectricity, Oxford University Press, Oxford, 1990.
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