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Abstract. Let X be a continuum. For any positive integer n we
consider the hyperspace Fn(X) and if n is greater than or equal to two,
we consider the quotient space SFn(X) defined in [3]. For a given map
f : X → X, we consider the induced maps Fn(f) : Fn(X) → Fn(X)
and SFn(f) : SFn(X) → SFn(X) defined in [4]. Let M be one of the
following classes of maps: exact, mixing, weakly mixing, transitive, to-
tally transitive, strongly transitive, chaotic, minimal, irreducible, feebly
open and turbulent. In this paper we study the relationships between the
following statements: f ∈ M, Fn(f) ∈ M and SFn(f) ∈ M.

1. Introduction

A continuum is a nonempty compact connected metric space. Given a
continuum X and a positive integer n, we consider the hyperspaces 2X , Cn(X)
and Fn(X) of X , topologized with the Hausdorff metric. We recall that 2X

consists of all nonempty and closed subsets ofX , Cn(X) consists of all elements
of 2X with at most n components and Fn(X) consists of all elements of 2X

with at most n points. If n is an integer greater than or equal to two, by
SFn(X) we mean the quotient space Fn(X)/F1(X). The space SFn(X) is
called the n-fold symmetric product suspension of the continuum X . Some
topological properties of SFn(X) are studied in [3] and [5].

A map f : X → X , where X is a continuum, induces a map on the
hyperspace 2X denoted by 2f : 2X → 2X and defined by 2f(A) = f(A),
for each A ∈ 2X . The induced map to the other hyperspaces mentioned are
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simply the restriction of 2f to each of such hyperspaces, denoted by Cn(f) and
Fn(f), respectively, for each positive integer n. If n is an integer greater than
or equal to two, we consider the induced map SFn(f) : SFn(X) → SFn(X),
which is called induced map of f on the n-fold symmetric product suspension
of X . Some topological properties of SFn(f) are studied in [4] and [6].

A dynamical system is a pair (X, f), where X is a continuum and
f : X → X is a map. The dynamical system (X, f) induce the dynami-
cal systems (2X , 2f ), (Cn(X), Cn(f)) and (Fn(X),Fn(f)). Because dynamics
is obtained by iterating the map, it is important to study the dynamical prop-
erties of the map. Hence, in recent times, a natural problem has been to study
connections between dynamical properties of f (individual dynamics) and dy-
namical properties of induced maps (collective dynamics). Some dynamical
properties of the induced maps 2f , Cn(f) and Fn(f), and others set-valued
maps are studied, for instance in [1, 2, 7, 8, 10–12,16, 20, 21, 23].

In this paper, we introduce the dynamical system (SFn(X),SFn(f))
and we investigate connections between dynamical properties of f and the
dynamical properties of the induced maps Fn(f) and SFn(f). Specifically,
if M is one of the following classes of maps: exact, mixing, weakly mixing,
transitive, totally transitive, strongly transitive, chaotic, minimal, irreducible,
feebly open and turbulent, we study the relationships between the following
statements:

(1) f ∈ M;
(2) Fn(f) ∈ M;
(3) SFn(f) ∈ M.

This paper is organized as follows: In Section 2, we recall basic definitions
and introduce some notation. In Section 3, we present some preliminary
results needed for the rest of the paper. In particular, we prove results respect
to quotient spaces. Section 4 is devoted to study the problem posed if M is
one of the following classes of maps: exact, mixing, weakly mixing, transitive,
totally transitive, strongly transitive, chaotic and minimal. Finally, in Section
5, we investigate our problem when M is one of the following classes of maps:
irreducible, feebly open and turbulent.

2. Definitions and notations

A continuum is a nonempty compact connected metric space. A contin-
uum is said to be nondegenerate if it has more than one point. A subcontin-
uum is a continuum contained in a topological space. Given a continuum X ,
a point a ∈ X and ǫ > 0, Vǫ(a) denotes the open ball with center a and radius
ǫ. A map is a continuous function. We denote by IdX the identity map on a
continuum X . A dynamical system is a pair (X, f), where X is a continuum
and f : X → X is a map.
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The symbol N denote the set of positive integers. Given a dynamical
system (X, f), define f0 = IdX and for each k ∈ N, let fk = f ◦fk−1. A point
p ∈ X is a periodic point in (X, f) provided that there exists k ∈ N such that
fk(p) = p. The set of periodic points of (X, f) is denoted by per(f). Given
x ∈ X , the orbit of x under f is the set orb(x, f) = {fk(x) | k ∈ N ∪ {0}}.
A subset K of X is said to be invariant under f if f(K) ⊆ K and strongly
invariant under f if f(K) = K.

Let X be a continuum with metric d and let f : X → X be a map. We
say that f is:

• exact if for each nonempty open subset U of X , there exists k ∈ N

such that fk(U) = X ;
• mixing if for every pair of nonempty open subsets U and V of X , there
exists N ∈ N such that fk(U) ∩ V 6= ∅, for every k ≥ N ;

• weakly mixing if for all nonempty open subsets U1, U2, V1 and V2 of X ,
there exists k ∈ N such that fk(Ui) ∩ Vi 6= ∅, for each i ∈ {1, 2};

• transitive if for every pair of nonempty open subsets U and V of X ,
there exists k ∈ N such that fk(U) ∩ V 6= ∅;

• totally transitive if f s is transitive, for all s ∈ N;
• strongly transitive if for each nonempty open subset U of X , there
exists s ∈ N such that X =

⋃s

k=0 f
k(U);

• chaotic if it is transitive and per(f) is dense in X ;
• minimal if there is no proper subset M ⊆ X which is nonempty, closed
and M is invariant under f ; equivalently, if the orbit of every point of
X is dense in X ;

• irreducible if the only closed subset A ⊆ X for which f(A) = X is
A = X ;

• feebly open if for every nonempty open subset U of X , there is a
nonempty open subset V of X such that V ⊆ f(U);

• turbulent if there are compact nondegenerate subsets C and K of X
such that C ∩K has at most a point and K ∪C ⊆ f(K) ∩ f(C);

• isometry if d(x, y) = d(f(x), f(y)), for each x, y ∈ X .

Diagram 1 shows inclusions between some classes of maps, which are
considered here, an arrow means inclusion; i.e., the class of maps above is
contained in the class of maps below. For some of this inclusions see, for
instance, [14] and [15].

Given a continuum X and a positive integer n, we consider the following
hyperspaces of X :

2X = {A ⊆ X | A is closed and nonempty};

Cn(X) = {A ∈ 2X | A has at most n components};

Fn(X) = {A ∈ 2X | A has at most n points}.
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We topologize these sets with the Hausdorff metric ([18, (0.1)]). The hyper-
space Cn(X) is the n-fold hyperspace of X and the hyperspace Fn(X) is the
n-fold symmetric product of X .

Exact

Mixing Minimal

Totally transitive Weakly mixing Strongly transitive Irreducible

Chaotic Transitive Feebly open

Surjective

Diagram 1

Given a finite collection U1, U2, . . . , Um of nonempty subsets of X , we
denote by 〈U1, U2, . . . , Um〉 the following subset of 2X :

{

A ∈ 2X | A ⊆
m
⋃

i=1

Ui and A ∩ Ui 6= ∅, for each i ∈ {1, 2, . . . ,m}

}

.

The family:

{〈U1, U2, . . . , Ul〉 | l ∈ N and U1, U2, . . . , Ul are open subsets of X}

forms a base for a topology on 2X called the Vietoris topology ([18, (0.11)]).
It is well known that the Vietoris topology and the topology induced by
the Hausdorff metric coincide ([18, (0.13)]). For those who are interested in
learning more about this topics can see [13, 17] and [19].

Notation 2.1. Let X be a continuum, let n be a positive integer, and let
U1, U2, . . . , Um be a finite family of open subsets of X. Then 〈U1, U2, . . . , Um〉n
denotes the set 〈U1, U2, . . . , Um〉 ∩ Fn(X).

Let n be an integer greater than or equal to two. Then the n-fold sym-
metric product suspension ([3]) of a continuum X , denoted by SFn(X), is the
quotient space Fn(X)/F1(X), with the quotient topology. Here, we denote
the quotient map by q : Fn(X) → SFn(X) and q(F1(X)) by FX . Thus,

SFn(X) = {{A} | A ∈ Fn(X) \ F1(X)} ∪ {FX}.

Remark 2.2. The space SFn(X) \ {FX} is homeomorphic to Fn(X) \
F1(X), using the appropriate restriction of q.
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Let n be a positive integer and let X be a continuum. If f : X → X
is a map, we consider the function Fn(f) : Fn(X) → Fn(X) defined by
Fn(f)(A) = f(A), for all A ∈ Fn(X); it is called the induced map of f
on the n-fold symmetric product of X . Note that Fn(f) is continuous ([17,
1.8.23]). Also, if n is greater than or equal to two, we consider the function
SFn(f) : SFn(X) → SFn(X) given by

SFn(f)(χ) =

{

q(Fn(f)(q
−1(χ))), if χ 6= FX ;

FX , if χ = FX .

Note that, by [9, 4.3, p. 126], SFn(f) is continuous, it is called induced map
of f on n-fold symmetric product suspension (see [4] and [6]). In addition,
the diagram:

✲Fn(X) Fn(X)
Fn(f)

❄

SFn(X)

q

❄

SFn(X)

q

✲

SFn(f)

(∗)

is commutative, that is q ◦ Fn(f) = SFn(f) ◦ q.
As a consequence of Diagram 1 and [4, Theorem 3.2], we obtain:

Lemma 2.3. Let X be a continuum, let n be an integer greater than or
equal to two, and let f : X → X be a map. Let M be one of the following
classes of maps: exact, mixing, weakly mixing, transitive, totally transitive,
strongly transitive, chaotic, minimal and irreducible. If f ∈ M, then f,Fn(f)
and SFn(f) are surjective.

3. Preliminary results

Let X be a continuum, let f : X → X be a surjective map, and let K be
a subcontinuum of X such that K is strongly invariant under f . Consider the
quotient space X/K and let qX : X → X/K be the quotient map. We denote
qX(K) by KX . Note that f induces a function f⋆ : X/K → X/K ([9, 7.7, p.
17]) given by

f⋆(χ) =

{

qX(f((qX)−1(χ))), if χ 6= KX ;

KX , if χ = KX .

The continuity of f⋆ follows from [9, 4.3, p. 126]. Observe that the diagram
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✲X X
f

❄

X/K

qX

❄

X/K

qX

✲

f⋆

(∗∗)

is commutative, that is qX ◦ f = f⋆ ◦ qX .

Remark 3.1. Let X be a continuum, let f : X → X be a surjective map,
and let K be a subcontinuum of X such that K is strongly invariant under
f . It follows that the dynamical system (X, f) induces the dynamical system
(X/K, f⋆).

As an easy consequence from the definition of fk and from commutativity
of (∗∗), we have the following:

Proposition 3.2. Let X be a continuum, let f : X → X be a surjective
map, let K be a subcontinuum of X such that K is strongly invariant under
f , and let k, s ∈ N. Then the following holds:

(a) qX ◦ fk = (f⋆)
k ◦ qX ,

(b) qX ◦ fk = (fk)⋆ ◦ qX ,
(c) fk ◦ f s = fk+s,
(d) (f s)k = f sk,
(e) qX ◦ (f s)k = ((f⋆)

s)k ◦ qX ,
(f) qX ◦ (f s)k = ((f s)⋆)

k ◦ qX .

Lemma 3.3. Let X be a continuum, let f : X → X be a surjective map,
and let K be a subcontinuum of X such that K is strongly invariant under f .
If per(f) is dense in X, then per(f⋆) is dense in X/K.

Proof. Let U be a nonempty open subset of X/K. Since qX is contin-
uous, q−1

X (U) is a nonempty open subset of X . Since per(f) is dense in X ,

we have that q−1
X (U) ∩ per(f) 6= ∅. Hence, there exists a ∈ q−1

X (U) and there
exists k ∈ N such that fk(a) = a. Thus,

qX(a) ∈ U and qX(fk(a)) = qX(a).

By Proposition 3.2 (a), it follows that

qX(a) ∈ U and (f⋆)
k(qX(a)) = qX(a).

This implies that U ∩per(f⋆) 6= ∅. Thus, we conclude that per(f⋆) is dense in
X/K.
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Theorem 3.4. Let X be a continuum, let f : X → X be a map, and let K
be a subcontinuum of X such that K is strongly invariant under f . Let M be
one of the following classes of maps: exact, mixing, weakly mixing, transitive,
totally transitive, strongly transitive, chaotic and minimal. If f ∈ M, then
f⋆ ∈ M.

Proof. Suppose that f is exact, we see that f⋆ is exact. For this, let
U be a nonempty open subset of X/K. Since qX is continuous, we have
that q−1

X (U) is a nonempty open subset of X . Since f is exact, there exists

k ∈ N such that fk(q−1
X (U)) = X . Thus, since qX is surjective, we have

that qX(fk(q−1
X (U))) = X/K. Hence, by Proposition 3.2 (a), we obtain that

(f⋆)
k(qX((q−1

X (U))) = X/K. This implies that (f⋆)
k(U) = X/K. Therefore,

f⋆ is exact.
Assume that f is mixing, we prove that f⋆ is mixing. Let U and V be

nonempty open subsets ofX/K. Since qX is continuous, it follows that q−1
X (U)

and q−1
X (V) are nonempty open subsets of X . Since f is mixing, there exists

N ∈ N such that

fk(q−1
X (U)) ∩ q−1

X (V) 6= ∅, for each k ≥ N.

Let k ≥ N . We have that there exists a ∈ q−1
X (U) such that fk(a) ∈ q−1

X (V).
This implies that qX(a) ∈ U and qX(fk(a)) ∈ V . Hence, by Proposition
3.2 (a), we obtain that qX(a) ∈ U and (f⋆)

k(qX(a)) ∈ V . In consequence,
(f⋆)

k(qX(a)) ∈ (f⋆)
k(U) and (f⋆)

k(qX(a)) ∈ V . Thus, (f⋆)
k(U) ∩ V 6= ∅.

Therefore, f⋆ is mixing.
To verify that if f is weakly mixing, then f⋆ is weakly mixing, we use a

similar argument to the proof given in the previous paragraph.
Suppose that f is transitive, we prove that f⋆ is transitive. Let U and

V be nonempty open subsets of X/K. Since qX is continuous, q−1
X (U) and

q−1
X (V) are nonempty open subsets in X . Since f is transitive, there exists

k ∈ N such that fk(q−1
X (U)) ∩ q−1

X (V) 6= ∅. Hence, there exists a ∈ q−1
X (U)

such that fk(a) ∈ q−1
X (V). It follows that, qX(a) ∈ U and qX(fk(a)) ∈ V .

By Proposition 3.2 (a), we have that qX(a) ∈ U and (f⋆)
k(qX(a)) ∈ V . In

consequence, (f⋆)
k(qX(a)) ∈ (f⋆)

k(U) and (f⋆)
k(qX(a)) ∈ V . Thus, (f⋆)k(U)∩

V 6= ∅. Therefore, f⋆ is transitive.
Assume that f is totally transitive, we prove that f⋆ is totally transitive.

For this, let s ∈ N and let U and V be nonempty open subsets in X/K. Since
qX is continuous, we have that q−1

X (U) and q−1
X (V) are nonempty open subsets

inX . Since f is totally transitive, f s is transitive. In consequence, there exists
k ∈ N such that (f s)k(q−1

X (U)) ∩ q−1
X (V) 6= ∅. Thus, there exists a ∈ q−1

X (U)
such that (f s)k(a) ∈ q−1

X (V). It follows that qX(a) ∈ U and qX((f s)k(a)) ∈ V .
Hence, by Proposition 3.2 (e), qX(a) ∈ U and ((f⋆)

s)k(qX(a)) ∈ V . This
implies that:

((f⋆)
s)k(qX(a)) ∈ ((f⋆)

s)k(U) and ((f⋆)
s)k(qX(a))) ∈ V .
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Thus, ((f⋆)
s)k(U) ∩V 6= ∅. This proves that (f⋆)s is transitive. Therefore, f⋆

is totally transitive.
Next, suppose that f is strongly transitive, we see that f⋆ is strongly

transitive. Let U be a nonempty open subset of X/K. By continuity of qX ,
we have that q−1

X (U) is a nonempty open subset of X . Since f is strongly

transitive, there exists s ∈ N such that X =
⋃s

k=0 f
k(q−1

X (U)). Hence, since
qX is surjective, we have that:

X/K =

s
⋃

k=0

qX(fk(q−1
X (U))).

So, by Proposition 3.2 (a) and since qX is surjective, we have that:

X/K =

s
⋃

k=0

(f⋆)
k(U).

Therefore, f⋆ is strongly transitive.
Now, assume that f is chaotic. From the previous paragraph, we have

that f⋆ is transitive. Furthermore, by Lemma 3.3, we have that per(f⋆) is
dense in X/K. This proves that f⋆ is chaotic.

Finally, suppose that f is minimal, we prove that f⋆ is minimal. Let
χ ∈ X/K and let U be a nonempty open subset of X/K. Let x ∈ X such
that qX(x) = χ. Since f is minimal, q−1

X (U) ∩ orb(x, f) 6= ∅. Hence, there

exist w ∈ q−1
X (U) and k ∈ N ∪ {0} such that w = fk(x). Thus, qX(w) ∈ U

and qX(w) = qX(fk(x)). By Proposition 3.2 (a), qX(w) ∈ U and qX(w) =
(f⋆)

k(qX(x)). Hence, qX(w) ∈ U and qX(w) ∈ orb(qX(x), f⋆). It follows that,
U ∩ orb(χ, f⋆) 6= ∅. Therefore, f⋆ is minimal.

4. Dynamical properties related to transitivity

Let X be a continuum, let n be an integer greater than or equal to two,
and let f : X → X be a map. Observe that F1(X) is a subcontinuum of
Fn(X) such that F1(X) is strongly invariant under Fn(f). By Remark 3.1,
we can consider the dynamical system (SFn(X),SFn(f)).

Proposition 4.1. Let X be a continuum, let n be an integer greater than
or equal to two, and let f : X → X be a map. Then, for each k, s ∈ N, the
following holds:

(a) (Fn(f))
k(A) = fk(A), for every A ∈ Fn(X),

(b) q ◦ (Fn(f))
k = (SFn(f))

k ◦ q,
(c) ((Fn(f))

s)k = (Fn(f))
sk,

(d) q ◦ ((Fn(f))
s)k = ((SFn(f))

s)k ◦ q.

Proof. Part (a) follows directly from the definition of Fn(f), and parts
(b), (c) and (d) follow from Proposition 3.2.
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Remark 4.2. Let (X, d) be a continuum, let f : X → X be a map, and
let k ∈ N. If f is an isometry, then for any x, y ∈ X , d(x, y) = d(fk(x), fk(y)).

Theorem 4.3. Let (X, d) be a nondegenerate continuum, let n be an
integer greater than or equal to two, and let f : X → X be a map. If f is an
isometry, then SFn(f) is not transitive.

Proof. Suppose that f is an isometry and that SFn(f) is transitive.
Let x, y ∈ X such that x 6= y. Let r = d(x, y) > 0. We define U1 =
V r

4
(x) and U2 = V r

4
(y). We consider V1 and V2 nonempty open subsets of

X such that V1 ∪ V2 ⊆ U1 and V1 ∩ V2 = ∅. It follows that 〈U1, U2〉n and
〈V1, V2〉n are nonempty open subsets of Fn(X) such that 〈U1, U2〉n∩F1(X) =
∅ and 〈V1, V2〉n ∩ F1(X) = ∅. By Remark 2.2, we have that q(〈U1, U2〉n)
and q(〈V1, V2〉n) are nonempty open subsets of SFn(X). Since SFn(f) is
transitive, there exists k ∈ N such that:

(SFn(f))
k(q(〈U1, U2〉n)) ∩ q(〈V1, V2〉n) 6= ∅.

By Proposition 4.1 (b), we obtain that:

q((Fn(f))
k(〈U1, U2〉n)) ∩ q(〈V1, V2〉n) 6= ∅.

Let B ∈ (Fn(f))
k(〈U1, U2〉n) such that q(B) ∈ q(〈V1, V2〉n). We consider

A ∈ 〈V1, V2〉n such that q(A) = q(B). By Remark 2.2, we have that A = B.
Let C ∈ 〈U1, U2〉n such that (Fn(f))

k(C) = B. Thus, (Fn(f))
k(C) = A. By

Proposition 4.1 (a), fk(C) = A. Let c1 ∈ C ∩ U1 and c2 ∈ C ∩ U2. Hence,
d(x, y) ≤ d(x, c1) + d(c1, c2) + d(c2, y) <

r
2 + d(c1, c2). This implies that r

2 <

d(c1, c2). On the other hand, fk(c1), f
k(c2) ∈ fk(C) ⊆ V1 ∪ V2 ⊆ U1. Thus,

d(fk(c1), f
k(c2)) ≤

r
2 . In consequence, d(fk(c1), f

k(c2)) < d(c1, c2), which is
a contradiction (see Remark 4.2). Therefore, we conclude that SFn(f) is not
transitive.

By Theorem 4.3 and Diagram 1, we obtain:

Theorem 4.4. Let X be a nondegenerate continuum, let n be an integer
greater than or equal to two, and let f : X → X be a map. Let M be one of
the following classes of maps: exact, mixing, weakly mixing, transitive, totally
transitive, strongly transitive, chaotic and minimal. If f is an isometry, then
SFn(f) 6∈ M.

Our next result follows from Theorem 3.4 and Theorem 4.4.

Theorem 4.5. Let X be a nondegenerate continuum, let n be an integer
greater than or equal to two, and let f : X → X be a map. Let M be one of
the following classes of maps: exact, mixing, weakly mixing, transitive, totally
transitive, strongly transitive, chaotic and minimal. If f is an isometry, then
Fn(f) 6∈ M.
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Let Q, R and C denote the set of rational numbers, real numbers and com-
plex numbers, respectively. We denote by S1 the set

{

e2πiθ ∈ C | θ ∈ [0, 1]
}

.

Example 4.6. Let f : S1 → S1 be the map defined by f(e2πiθ) =
e2πi(θ+α), where α ∈ R\Q. Let M be one of the following classes of maps: ex-
act, mixing, weakly mixing, transitive, totally transitive, strongly transitive,
chaotic and minimal. It is know that f is an isometry. Thus, by Theorem
4.4, we have that SFn(f) 6∈ M. Moreover, by Theorem 4.5, we obtain that
Fn(f) 6∈ M. However, we have that f is transitive, totally transitive, strongly
transitive and minimal (see [22, p. 261]).

The following result includes [10, Theorem 13] with an alternative proof.

Theorem 4.7. Let X be a nondegenerate continuum, let n be an integer
greater than or equal to two, and let f : X → X be a map. Then the following
are equivalent:

(1) f is exact;
(2) Fn(f) is exact;
(3) SFn(f) is exact.

Proof. Suppose that f is exact, we prove that Fn(f) is exact. Let U be
a nonempty open subset of Fn(X). We see that (Fn(f))

k(U) = Fn(X), for
some k ∈ N. By [11, Lemma 4.2], there exist nonempty open subsets U1, U2,
. . . , Un of X such that 〈U1, U2, . . . , Un〉n ⊆ U . Thus, it is enough verify that
there exists k ∈ N such that

(Fn(f))
k(〈U1, U2, . . . , Un〉n) = Fn(X).

Since f is exact, for each i ∈ {1, 2, . . . , n} there exists ki ∈ N such that
fki(Ui) = X . We define k = max{k1, k2, . . . , kn}. Note that, for each i ∈
{1, 2, . . . , n}, fk(Ui) = X .

Let B ∈ Fn(X). We put B = {b1, b2, . . . , br} with r ≤ n. Define
C = {b1, b2, . . . , br, br+1, . . . , bn}, where br = br+1 = · · · = bn. In consequence,
for each i ∈ {1, 2, . . . , n}, bi ∈ fk(Ui). Hence, for each i ∈ {1, 2, . . . , n},
let ai ∈ Ui such that fk(ai) = bi. Define A = {a1, a2, . . . , an}. It fol-
lows that A ∈ 〈U1, U2, . . . , Un〉n and (Fn(f))

k(A) = C = B. Thus, we
obtain that B ∈ (Fn(f))

k(〈U1, U2, . . . , Un〉n). This implies that Fn(X) ⊆
(Fn(f))

k(〈U1, U2, . . . , Un〉n). Thus, (Fn(f))
k(〈U1, U2, . . . , Un〉n) = Fn(X).

Therefore, Fn(f) is exact.
It follows from Theorem 3.4 that if Fn(f) is exact, then SFn(f) is exact.
Finally, assume that SFn(f) is exact, we see that f is exact. For this

end, let U be a nonempty open subset of X . We consider two open subsets
U1 and U2 of X such that U1 ∪ U2 ⊆ U and U1 ∩ U2 = ∅. It follows that
〈U1, U2〉n is a nonempty open subset of Fn(X) such that 〈U1, U2〉n∩F1(X) =
∅. Thus, by Remark 2.2, we have that q(〈U1, U2〉n) is a nonempty open
subset of SFn(X). Since SFn(f) is exact, there exists k ∈ N such that
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(SFn(f))
k(q(〈U1, U2〉n)) = SFn(X). By Proposition 4.1 (b), we obtain that

q((Fn(f))
k(〈U1, U2〉n)) = SFn(X).

Now, let x ∈ X . We consider a point y ∈ X such that x 6= y and
define A = {x, y}. Note that A ∈ Fn(X) \ F1(X). Thus, q(A) 6= FX . Since
q(A) ∈ SFn(X), there exists B ∈ (Fn(f))

k(〈U1, U2〉n) such that q(B) = q(A).
Hence, by Remark 2.2, we obtain that B = A. Let C ∈ 〈U1, U2〉n such that
(Fn(f))

k(C) = B. By Proposition 4.1 (a), we deduce that fk(C) = B. Since
A = B and C ⊆ U , it follows that x ∈ fk(U). Thus, X ⊆ fk(U). In
consequence, fk(U) = X . Therefore, f is exact.

Our next result follows from Theorem 4.7 and Diagram 1 (compare with
[7, Proposition 3.3]).

Corollary 4.8. Let X be a nondegenerate continuum, let n be an integer
greater than or equal to two, and let f : X → X be a map. Then the following
statements hold.

(1) If f is exact, then Fn(f) is transitive.
(2) If f is exact, then SFn(f) is transitive.

Theorem 4.9. Let X be a continuum, let n be an integer greater than or
equal to two, and let f : X → X be a map. Then the following are equivalent:

(1) f is mixing;
(2) Fn(f) is mixing;
(3) SFn(f) is mixing.

Proof. As a consequence from [11, Theorem 4.3], we have that (1) im-
plies (2); and by Theorem 3.4, it follows that (2) implies (3).

Finally, suppose that SFn(f) is mixing, we see that f is mixing. Let
U and V be nonempty open subsets of X . We consider nonempty open
subsets U1, U2, V1 and V2 of X such that U1 ∪ U2 ⊆ U , V1 ∪ V2 ⊆ V ,
U1 ∩ U2 = ∅ and V1 ∩ V2 = ∅. Hence, 〈U1, U2〉n and 〈V1, V2〉n are nonempty
open subsets of Fn(X) such that 〈U1, U2〉n ∩ F1(X) = ∅ and 〈V1, V2〉n ∩
F1(X) = ∅. By Remark 2.2, q(〈U1, U2〉n) and q(〈V1, V2〉n) are nonempty
open subsets of SFn(X) such that FX /∈ q(〈U1, U2〉n) and FX /∈ q(〈V1, V2〉n).
Since SFn(f) is mixing, there exists N ∈ N such that for each k ≥ N ,
(SF(f))k(q(〈U1, U2〉n))∩q(〈V1, V2〉n) 6= ∅. Fix k ≥ N and let χ ∈ q(〈U1, U2〉n)
such that (SFn(f))

k(χ) ∈ q(〈V1, V2〉n). Let A ∈ 〈U1, U2〉n such that q(A) =
χ and let B ∈ 〈V1, V2〉n such that (SFn(f))

k(χ) = q(B). It follows that
(SFn(f))

k(q(A)) = q(B). In consequence, by Proposition 4.1 (b), we have
that q((Fn(f))

k(A)) = q(B). Hence, by Remark 2.2, (Fn(f))
k(A) = B. Now,

by Proposition 4.1 (a), we have that fk(A) = B. Let a ∈ A ∩ U1. Thus,
fk(a) ∈ fk(A). Since A ⊆ U and B ⊆ V , we have that a ∈ U and fk(a) ∈ V .
Hence, fk(U) ∩ V 6= ∅. Therefore, f is mixing.



464 F. BARRAGÁN, A. SANTIAGO-SANTOS AND J. F. TENORIO

Theorem 4.10. Let X be a nondegenerate continuum, let n be an integer
greater than or equal to two, and let f : X → X be a map. Consider the
following statements:

(1) f is transitive;
(2) Fn(f) is transitive;
(3) SFn(f) is transitive.

Then (2) and (3) are equivalent, (2) implies (1), (3) implies (1), (1) does not
imply (2) and (1) does not imply (3).

Proof. As a consequence from Theorem 3.4, we have that (2) implies
(3).

Suppose that SFn(f) is transitive, we prove that Fn(f) is transitive. To
this end, let U and V be nonempty open subsets of Fn(X). By [11, Lemma
4.2], there exist nonempty open subsets U1, U2, . . . , Un and V1, V2, . . . , Vn of
X such that

〈U1, U2, . . . , Un〉n ⊆ U and 〈V1, V2, . . . , Vn〉n ⊆ V .

For each i ∈ {1, 2, . . . , n}, let Wi be a nonempty open subset of X such
that Wi ⊆ Ui and for each i, j ∈ {1, 2, . . . , n}, Wi ∩ Wj = ∅, if i 6= j.
Similarly, for each i ∈ {1, 2, . . . , n}, let Oi be a nonempty open subset of
X such that Oi ⊆ Vi and for each i, j ∈ {1, 2, . . . , n}, Oi ∩ Oj = ∅, if
i 6= j. Note that 〈U1, U2, . . . , Un〉n and 〈V1, V2, . . . , Vn〉n are nonempty open
subsets of Fn(X) such that 〈W1,W2, . . . ,Wn〉n ⊆ 〈U1, U2, . . . , Un〉n ⊆ U ,
〈O1, O2, . . . , On〉n ⊆ 〈V1, V2, . . . , Vn〉n ⊆ V , 〈W1,W2, . . . ,Wn〉n ∩ F1(X) = ∅
and 〈O1, O2, . . . , On〉n ∩ F1(X) = ∅. By Remark 2.2, q(〈W1,W2, . . . ,Wn〉n)
and q(〈O1, O2, . . . , On〉n) are nonempty open subsets of SFn(X) such that
FX /∈ q(〈W1,W2, . . . ,Wn〉n) and FX /∈ q(〈O1, O2, . . . , On〉n). Since SFn(f)
is transitive, there exists k ∈ N such that:

((SFn(f))
k(q(〈W1,W2, . . . ,Wn〉n)) ∩ q(〈O1, O2, . . . , On〉n) 6= ∅.

By Proposition 4.1 (b), it follows that:

q((Fn(f))
k(〈W1,W2, . . . ,Wn〉n)) ∩ q(〈O1, O2, . . . , On〉n) 6= ∅.

From Remark 2.2, we obtain that:

(Fn(f))
k(〈W1,W2, . . . ,Wn〉n) ∩ 〈O1, O2, . . . , On〉n 6= ∅.

This implies that (Fn(f))
k(U) ∩ V 6= ∅. Therefore, Fn(f) is transitive.

On the other hand, by [11, Theorem 4.5] and Diagram 1, it follows that
(2) implies (1). Moreover, since (2) and (3) are equivalent, we obtain that (3)
implies (1).

Finally, by Example 4.6, we deduce that (1) does not imply (2) and that
(1) does not imply (3).



DYNAMIC PROPERTIES FOR THE INDUCED MAPS 465

Theorem 4.11. Let X be a nondegenerate continuum, let n be an integer
greater than or equal to two, and let f : X → X be a map. Then the following
are equivalent:

(1) f is weakly mixing;
(2) Fn(f) is weakly mixing;
(3) Fn(f) is transitive;
(4) SFn(f) is weakly mixing;
(5) SFn(f) is transitive.

Proof. By [11, Theorem 4.5], we have that (1), (2) and (3) are equivalent
and by Theorem 4.10, it follows that (3) and (5) are equivalent. By Diagram
1, we obtain that (4) implies (5). Moreover, by Theorem 3.4, we conclude that
(2) implies (4). Therefore, for complete the proof of the theorem it suffices to
prove that (5) implies (1).

Suppose that SFn(f) is transitive, we prove that f is weakly mixing. For
this, let U , V1 and V2 be nonempty open subsets of X . By [11, Theorem
4.4], it suffices to show that there exists k ∈ N such that fk(U) ∩ V1 6= ∅
and fk(U) ∩ V2 6= ∅. For this end, let U1 and U2 be nonempty open subsets
of X such that U1 ∩ U2 = ∅ and U1 ∪ U2 ⊆ U . On the other hand, let
W1 and W2 be nonempty open subsets of X such that W1 ⊆ V1, W2 ⊆
V2 and W1 ∩ W2 = ∅. Note that 〈U1, U2〉n and 〈W1,W2〉n are nonempty
open subsets of Fn(X) such that 〈U1, U2〉n ∩ F1(X) = ∅ and 〈W1,W2〉n ∩
F1(X) = ∅. By Remark 2.2, it follows that q(〈U1, U2〉n) and q(〈W1,W2〉n)
are nonempty open subsets of SFn(X) such that FX /∈ q(〈U1, U2〉n) and
FX /∈ q(〈W1,W2〉n). Since SFn(f) is transitive, there exists k ∈ N such
that (SF(f))k(q(〈U1, U2〉n)) ∩ q(〈W1,W2〉n) 6= ∅. Let χ ∈ q(〈U1, U2〉n) such
that (SFn(f))

k(χ) ∈ q(〈W1,W2〉n). Let A ∈ 〈U1, U2〉n such that q(A) = χ
and let B ∈ 〈W1,W2〉n such that q(B) = (SFn(f))

k(χ). This implies that
q(B) = (SFn(f))

k(q(A)). By Proposition 4.1 (b), q(B) = q((Fn(f))
k(A)).

Since q(B) 6= FX , we have that (Fn(f))
k(A) ∈ Fn(X) \ F1(X). Moreover,

A ∈ Fn(X) \ F1(X). In consequence, by Remark 2.2, it follows that B =
(Fn(f))

k(A). Hence, by Proposition 4.1 (a), we obtain that fk(A) = B.
Now, since B ∈ 〈W1,W2〉n, we have that B ∩W1 6= ∅. Let b ∈ B ∩W1.

Thus, b ∈ V1 and b ∈ fk(A). In consequence, there exists a ∈ A such that
fk(a) = b. Furthermore, since a ∈ U , we have that b ∈ fk(U) ∩ V1. Thus,
fk(U) ∩ V1 6= ∅. With a similar argument, we obtain that fk(U) ∩ V2 6= ∅.
Hence, by [11, Theorem 4.4], we conclude that f is weakly mixing.

Theorem 4.12. Let X be a continuum, let n be an integer greater than or
equal to two, and let f : X → X be a map. Consider the following statements:

(1) f is totally transitive;
(2) Fn(f) is totally transitive;
(3) SFn(f) is totally transitive.
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Then (2) and (3) are equivalents, (3) implies (1), (2) implies (1), (1) does
not imply (2) and (1) does not imply (3).

Proof. By Theorem 3.4, we have that (2) implies (3).
Suppose that SFn(f) is totally transitive, we prove that Fn(f) is totally

transitive. For this end, let s ∈ N. We see that (Fn(f))
s is transitive. Let

U and V be nonempty open subsets of Fn(X). By [11, Lemma 4.2], there
exist nonempty open subsets U1, U2, . . . , Un and V1, V2, . . . , Vn of X such that
〈U1, U2, . . . , Un〉n ⊆ U and 〈V1, V2, . . . , Vn〉n ⊆ V . For each i ∈ {1, 2, . . . , n},
let Wi be a nonempty open subset of X such that Wi ⊆ Ui and for each
i, j ∈ {1, 2, . . . , n}, Wi ∩ Wj = ∅, if i 6= j. Also, for each i ∈ {1, 2, . . . , n},
let Oi be a nonempty open subset of X such that Oi ⊆ Vi and for each
i, j ∈ {1, 2, . . . , n}, Oi ∩ Oj = ∅, if i 6= j. Note that 〈U1, U2, . . . , Un〉n and
〈V1, V2, . . . , Vn〉n are nonempty open subsets of Fn(X) such that:

〈W1,W2, . . . ,Wn〉n ⊆ 〈U1, U2, . . . , Un〉n ⊆ U

and
〈O1, O2, . . . , On〉n ⊆ 〈V1, V2, . . . , Vn〉n ⊆ V .

Note that 〈W1,W2, . . . ,Wn〉n∩F1(X) = ∅ and 〈O1, O2, . . . , On〉n∩F1(X) = ∅.
Hence, by Remark 2.2, we have that:

q(〈W1,W2, . . . ,Wn〉n) and q(〈O1, O2, . . . , On〉n)

are open subsets of SFn(X) such that FX /∈ q(〈W1,W2, . . . ,Wn〉n) and
FX /∈ q(〈O1, O2, . . . , On〉n). Since SFn(f) is totally transitive, (SFn(f))

s

is transitive. Thus, there exists k ∈ N such that:

((SFn(f))
s)k(q(〈W1,W2, . . . ,Wn〉n)) ∩ q(〈O1, O2, . . . , On〉n) 6= ∅.

By Proposition 4.1 (d), it follows that:

q(((Fn(f))
s)k(〈W1,W2, . . . ,Wn〉n)) ∩ q(〈O1, O2, . . . , On〉n) 6= ∅.

We take B ∈ ((Fn(f))
s)k(〈W1,W2, . . . ,Wn〉n) with the following property:

q(B) ∈ q(〈O1, O2, . . . , On〉n). Hence, we consider A ∈ 〈O1, O2, . . . , On〉n such
that q(A) = q(B). By Remark 2.2, we obtain that A = B. Thus, it follows
that:

(Fn(f))
s)k(〈W1,W2, . . . ,Wn〉n) ∩ 〈O1, O2, . . . , On〉n 6= ∅.

This implies that ((Fn(f))
s)k(U) ∩ V 6= ∅. In consequence, (Fn(f))

s is tran-
sitive. Therefore, Fn(f) is totally transitive.

Now, suppose that SFn(f) is totally transitive, we see that f is totally
transitive. Fix s ∈ N. We prove that f s is transitive. For this, let U and V be
nonempty open subsets of X . We consider U1, U2, V1 and V2 nonempty open
subsets of X such that U1∪U2 ⊆ U , U1∩U2 = ∅, V1∪V2 ⊆ V and V1∩V2 = ∅.
Hence, 〈U1, U2〉n and 〈V1, V2〉n are nonempty open subsets of Fn(X) such that
〈U1, U2〉n ∩F1(X) = ∅ and 〈V1, V2〉n ∩F1(X) = ∅. By Remark 2.2, we obtain
that q(〈U1, U2〉n) and q(〈V1, V2〉n) are nonempty open subsets of SFn(X)
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such that FX /∈ q(〈U1, U2〉n) and FX /∈ q(〈V1, V2〉n). Since SFn(f) is totally
transitive, (SFn(f))

s is transitive, in consequence, there exists k ∈ N such
that:

((SFn(f))
s)k(q(〈U1, U2〉n)) ∩ q(〈V1, V2〉n) 6= ∅.

By Proposition 4.1 (d), it follows that:

q(((Fn(f))
s)k(〈U1, U2〉n)) ∩ q(〈V1, V2〉n) 6= ∅.

Let B ∈ ((Fn(f))
s)k(〈U1, U2〉n) such that q(B) ∈ q(〈V1, V2〉n). We consider

an element A ∈ 〈V1, V2〉n such that q(B) = q(A). By Remark 2.2, we obtain
that A = B. This implies that:

((Fn(f))
s)k(〈U1, U2〉n) ∩ 〈V1, V2〉n 6= ∅.

Let C ∈ 〈U1, U2〉n such that ((Fn(f))
s)k(C) ∈ 〈V1, V2〉n. We consider D ∈

〈V1, V2〉n such that ((Fn(f))
s)k(C) = D. By Proposition 4.1 (c), we have

that (Fn(f))
sk(C) = D. Thus, by Proposition 4.1 (a), f sk(C) = D. Now, we

consider an element a ∈ C ∩ U1. It follows that f sk(a) ∈ D. Since C ⊆ U
and D ⊆ V , we have that f sk(a) ∈ f sk(U) ∩ V . By Proposition 3.2 (d),
(f s)k(a) ∈ (f s)k(U) ∩ V . Hence, (f s)k(U) ∩ V 6= ∅. In consequence, f s is
transitive. Therefore, f is totally transitive.

On the other hand, since (2) implies (3) and (3) implies (1), we obtain
that (2) implies (1).

Finally, by Example 4.6, we see that (1) does not imply (2) and (1) does
not imply (3).

Theorem 4.13. Let X be a nondegenerate continuum, let n be an integer
greater than or equal to two, and let f : X → X be a map. Consider the
following statements:

(1) f is strongly transitive;
(2) Fn(f) is strongly transitive;
(3) SFn(f) is strongly transitive.

Then (2) implies (3), (3) implies (1), (2) implies (1), (1) does not imply (2)
and (1) does not imply (3).

Proof. By Theorem 3.4, we have that (2) implies (3).
Now, suppose that SFn(f) is strongly transitive, we see that f is strongly

transitive. Let U be a nonempty open subset of X . We consider U1 and U2

nonempty open subsets of X such that U1∪U2 ⊆ U and U1∩U2 = ∅. It follows
that 〈U1, U2〉n is a nonempty open subset of Fn(X) such that 〈U1, U2〉n ∩
F1(X) = ∅. By Remark 2.2, we have that q(〈U1, U2〉n) is a nonempty open
subset of SFn(X) such that FX /∈ q(〈U1, U2〉n). Since SFn(f) is strongly
transitive, there exists s ∈ N such that:

SFn(X) =

s
⋃

k=0

(SFn(f))
k(q(〈U1, U2〉n)).
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By Proposition 4.1 (b), we obtain that:

SFn(X) =

s
⋃

k=0

q((Fn(f))
k(〈U1, U2〉n)).

We prove that X =
⋃s

k=0 f
k(U). For this end, let x ∈ X . We fix

y ∈ X \ {x} and we consider A = {x, y}. Thus, A ∈ Fn(X) \ F1(X). In
consequence, q(A) ∈ SFn(X) \ {FX}. This implies that there exists j ∈
{0, 1, . . . , s} such that q(A) ∈ q((Fn(f))

j(〈U1, U2〉n)). Hence, there exists B ∈
(Fn(f))

j(〈U1, U2〉n) such that q(B) = q(A). Note that, by Remark 2.2, A =
B. On the other hand, there exists C ∈ 〈U1, U2〉n such that (Fn(f))

j(C) = B.
By Proposition 4.1 (a), f j(C) = B. Moreover, since C ⊆ U , it follows that
A ⊆ f j(U). In consequence, x ∈ f j(U). Thus, X ⊆

⋃s

k=0 f
k(U). Hence,

X =
⋃s

k=0 f
k(U). Therefore, f is strongly transitive.

Since (2) implies (3) and (3) implies (1), we obtain that (2) implies (1).
Finally, in Example 4.6, we have that (1) does not implies (2) and that

(1) does not implies (3).

As a consequence of Diagram 1 and Theorem 4.10, we have the follows:

Corollary 4.14. Let X be a nondegenerate continuum, let n be an in-
teger greater than or equal to two, and let f : X → X be a map. If SFn(f)
is strongly transitive, then Fn(f) is transitive.

Moreover, by Corollary 4.14 and Theorem 4.11, we obtain:

Corollary 4.15. Let X be a nondegenerate continuum, let n be an in-
teger greater than or equal to two, and let f : X → X be a map. If SFn(f)
is strongly transitive, then f , Fn(f) and SFn(f) are weakly mixing.

Question 4.1. Let X be a continuum, let n be an integer greater than or
equal to two, and let f : X → X be a map. If SFn(f) is strongly transitive,
then is Fn(f) strongly transitive?

The following lemma is used in the proof of Theorem 4.17.

Lemma 4.16. Let X be a continuum, let n be an integer greater than or
equal to two, and let f : X → X be a surjective map. Then the following are
equivalent:

(1) per(f) is dense in X;
(2) per(Fn(f)) is dense in Fn(X);
(3) per(SFn(f)) is dense in SFn(X).

Proof. By [11, Theorem 4.7], we obtain that (1) and (2) are equivalent
and, by Lemma 3.3, we have that (2) implies (3).

Suppose that per(SFn(f)) is dense in SFn(X), we see that per(Fn(f))
is dense in Fn(X). Let U be a nonempty open subset of Fn(X). We prove
that U ∩ per(Fn(f)) 6= ∅. In other words, we see that there exist A ∈ U
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and k ∈ N such that (Fn(f))
k(A) = A. By [11, Lemma 4.2], there exist

nonempty open subsets U1, U2, . . . , Un of X such that 〈U1, U2, . . . , Un〉n ⊆ U .
For each i ∈ {1, 2, . . . , n}, let Wi be a nonempty open subset of X such that
Wi ⊆ Ui and for each i, j ∈ {1, 2, . . . , n}, Wi ∩ Wj 6= ∅, if i 6= j. It follows
that 〈W1,W2, . . . ,Wn〉n is a nonempty open subset of Fn(X) such that:

〈W1,W2, . . . ,Wn〉n ⊆ 〈U1, U2, . . . , Un〉n ⊆ U

and

〈W1,W2, . . . ,Wn〉n ∩ F1(X) = ∅.

By Remark 2.2, we have that q(〈W1,W2, . . . ,Wn〉n) is a nonempty open subset
of SFn(X) such that FX /∈ q(〈W1,W2, . . . ,Wn〉n). Since per(SFn(f)) is
dense in SFn(X), there exist A ∈ 〈W1,W2, . . . ,Wn〉n and k ∈ N such that
(SFn(f))

k(q(A)) = q(A). By Proposition 4.1 (b), q((Fn(f))
k(A)) = q(A).

Furthermore, by Remark 2.2, (Fn(f))
k(A) = A. Hence, U ∩ per(Fn(f)) 6= ∅.

Therefore, per(Fn(f)) is dense in Fn(X).

Theorem 4.17. Let X be a continuum, let n be an integer greater than or
equal to two, and let f : X → X be a map. Then the following are equivalent:

(1) f is chaotic and weakly mixing;
(2) Fn(f) is chaotic;
(3) SFn(f) is chaotic.

Proof. By [11, Theorem 4.9], we have that (1) and (2) are equivalent.
On the other hand, by Theorem 4.10 and by Lemma 4.16, we conclude that
(2) and (3) are equivalent.

Theorem 4.18. Let X be a nondegenerate continuum, let n be an integer
greater than or equal to two, and let f : X → X be a map. Consider the
following statements:

(1) f is minimal;
(2) Fn(f) is minimal;
(3) SFn(f) is minimal.

Then (2) implies (3), (3) implies (1), (2) implies (1), (1) does not imply (2)
and (1) does not imply (3).

Proof. By Theorem 3.4, we have that (2) implies (3).
Suppose that SFn(f) is minimal, we see that f is minimal. For this end,

let x ∈ X and let U be a nonempty open subset of X . We consider nonempty
open subsets V1 and V2 of X such that V1 ∪ V2 ⊆ U and V1 ∩ V2 = ∅. Hence,
〈V1, V2〉n is a nonempty open subset of Fn(X) such that 〈V1, V2〉n∩F1(X) = ∅.
By Remark 2.2, q(〈V1, V2〉n) is a nonempty open subset of SFn(X). Note
that FX /∈ q(〈V1, V2〉n). Let y ∈ X \ {x} and we consider A = {x, y}. Clearly
A ∈ Fn(X) \ F1(X). Since SFn(f) is minimal, orb(q(A),SFn(f)) is dense
in SFn(X). Thus, q(〈V1, V2〉n) ∩ orb(q(A),SFn(f)) 6= ∅. Let C ∈ 〈V1, V2〉n
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and let k ∈ N ∪ {0} such that (SFn(f))
k(q(A)) = q(C). By Proposition 4.1

(b), q((Fn(f))
k(A)) = q(C). Hence, by Remark 2.2, (Fn(f))

k(A) = C. Thus,
by Proposition 4.1 (a), fk(A) = C. Since x ∈ A and C ⊆ U , it follows that
fk(x) ∈ U . In consequence, U ∩orb(x, f) 6= ∅. This implies that f is minimal.

Since (2) implies (3) and (3) implies (1), we have that (2) implies (1).
Finally, in Example 4.6, we obtain that (1) does not implies (2) and that

(1) does not implies (3).

Note that as a consequence of Diagram 1 and Theorem 4.10, we obtain
that.

Corollary 4.19. Let X be a nondegenerate continuum, let n be an in-
teger greater than or equal to two, and let f : X → X be a map. If SFn(f)
is minimal, then Fn(f) is transitive.

Moreover, by Corollary 4.19 and Theorem 4.11, we obtain:

Corollary 4.20. Let X be a nondegenerate continuum, let n be an in-
teger greater than or equal to two, and let f : X → X be a map. If SFn(f)
is minimal, then f , Fn(f) and SFn(f) are weakly mixing.

Question 4.2. Let X be a continuum, let n be an integer greater than
or equal to two, and let f : X → X be a map. If SFn(f) is minimal, then is
Fn(f) minimal?

Recall that f : X → X is an open map if for each open subset A in X ,
f(A) is an open subset in X .

Corollary 4.21. Let X be a nondegenerate continuum, let n be an in-
teger greater than or equal to two, and let f : X → X be a map. If Fn(f) is
minimal and open, then f is a homeomorphism.

Proof. The result follows from Theorem 4.18, [4, Theorem 5.3] and [14,
Theorem 2.4 (2)].

5. Other dynamical properties

We begin this section with the following result.

Theorem 5.1. Let X be a nondegenerate continuum, let n be an integer
greater than or equal to two, and let f : X → X be a map. Consider the
following statements:

(1) f is irreducible;
(2) Fn(f) is irreducible;
(3) SFn(f) is irreducible.

Then (2) implies (1) and (3) implies (1).



DYNAMIC PROPERTIES FOR THE INDUCED MAPS 471

Proof. Suppose that Fn(f) is irreducible, we prove that f is irreducible.
Let A be a nonempty closed subset of X such that f(A) = X . It follows that
〈A〉n is a nonempty closed subset of Fn(X) such that Fn(f)(〈A〉n) = Fn(X).
Since Fn(f) is irreducible, we have that 〈A〉n = Fn(X). Thus, F1(X) ⊆ 〈A〉n.
This implies that X = A. Hence, f is irreducible.

Now, suppose that SFn(f) is irreducible, we prove that f is irreducible.
Let A be a nonempty closed subset of X such that f(A) = X . It follows that
〈A〉n is a nonempty closed subset of Fn(X) such that Fn(f)(〈A〉n) = Fn(X).
Hence, q(Fn(f)(〈A〉n)) = SFn(X). In consequence, by Proposition 4.1 (b),
SFn(f)(q(〈A〉n)) = SFn(X). Since q(〈A〉n) is a nonempty closed subset of
SFn(X) and SFn(f) is irreducible, we have that q(〈A〉n) = SFn(X). Now,
let x ∈ X and let y ∈ X \ {x}. Let B = {x, y}. Since q(B) ∈ SFn(X), there
exists C ∈ 〈A〉n such that q(C) = q(B). By Remark 2.2, C = B. Hence,
x ∈ A. In consequence, X = A. Therefore, f is irreducible.

Corollary 5.2. Let X be a nondegenerate continuum, let n be an integer
greater than or equal to two, and let f : X → X be a map. Then Fn(f) is
irreducible and open if and only if f is a homeomorphism.

Proof. The corollary follows easily from Theorem 5.1, [4, Theorem 5.3]
and [14, Lemma 2.2].

Note that feebly open maps are also know semi-open maps in the litera-
ture. The following result is [6, Theorem 10.1].

Theorem 5.3. Let X be a continuum, let n be an integer greater than or
equal to two, and let f : X → X be a surjective map. Then the following are
equivalent:

(1) f is feebly open;
(2) Fn(f) is feebly open;
(3) SFn(f) is feebly open.

Using the Diagram 1 and Theorem 5.3, we obtain the following result.

Corollary 5.4. Let X be a continuum, let n be an integer greater than
or equal to two, and let f : X → X be a map. Then the following statements
hold.

(1) If f is irreducible, then Fn(f) is feebly open.
(2) If f is irreducible, then SFn(f) is feebly open.
(3) If Fn(f) is irreducible, then SFn(f) is feebly open.
(4) If SFn(f) is irreducible, then Fn(f) is feebly open.

Questions 5.5. Let X be a continuum, let n be an integer greater than
or equal to two, and let f : X → X be a map.

(1) If f is irreducible, then is Fn(f) irreducible?
(2) If f is irreducible, then is SFn(f) irreducible?
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(3) If Fn(f) is irreducible, then is SFn(f) irreducible?
(4) If SFn(f) is irreducible, then is Fn(f) irreducible?

Theorem 5.6. Let X be a nondegenerate continuum, let n be an integer
greater than or equal to two, and let f : X → X be a surjective map. Consider
the following statements:

(1) f is turbulent;
(2) Fn(f) is turbulent;
(3) SFn(f) is turbulent.

Then (1) implies (2) and (3).

Proof. Suppose that f is turbulent, we prove that SFn(f) is turbulent.
Let K and C be nondegenerate compact subsets of X such that K ∩ C has
at most one point and K ∪C ⊆ f(K)∩ f(C). It is easy to see that 〈K〉n and
〈C〉n are nondegenerate compact subsets of Fn(X). Let Λ = q(〈K〉n) and
Γ = q(〈C〉n). It follows that Λ and Γ are nondegenerate compact subsets of
SFn(X).

We show that Λ∩Γ has at most one point. For this, note that ifK∩C = ∅,
then 〈K〉n ∩ 〈C〉n = ∅. Since F1(K) ⊆ 〈K〉n and F1(C) ⊆ 〈C〉n, it follows
that FX ∈ Λ ∩ Γ.

On the other hand, if K ∩ C = {a}, we obtain that 〈K〉n ∩ 〈C〉n =
{{a}}. Thus, FX ∈ Λ ∩ Γ. Now, if χ ∈ (Λ ∩ Γ) \ {FX}, then there exist
A ∈ 〈K〉n \ F1(X) and B ∈ 〈C〉n \ F1(X) such that q(A) = χ = q(B). By
Remark 2.2, A = B. This proves that A ⊆ K ∩ C. Thus, K ∩ C has at least
two elements, which is a contradiction. Therefore, Λ ∩ Γ has at most one
point.

Now, we see that Λ ∪ Γ ⊆ SFn(f)(Λ) ∩ SFn(f)(Γ). Let χ ∈ Λ ∪ Γ.
Hence, there exits A ∈ 〈K〉n ∪ 〈C〉n such that q(A) = χ. Since A ⊆
K ∪ C and K ∪ C ⊆ f(K) ∩ f(C), we have that A ⊆ f(K) ∩ f(C).
This implies that A ∈ 〈f(K) ∩ f(C)〉n. Thus, A ∈ 〈f(K)〉n ∩ 〈f(C)〉n.
In consequence, q(A) ∈ q(〈f(K)〉n) ∩ q(〈f(C)〉n). Since q(A) = χ, we
have that χ ∈ q(Fn(f)(〈K〉n)) ∩ q(Fn(f)(〈C〉n)). By Proposition 4.1 (b),
χ ∈ SFn(f)(q(〈K〉n)) ∩ SFn(f)(q(〈C〉n)). It follows that χ ∈ SFn(f)(Λ) ∩
SFn(f)(Γ). In consequence, Λ ∪ Γ ⊆ SFn(f)(Λ) ∩ SFn(f)(Γ). Therefore,
SFn(f) is turbulent.

The proof (1) implies (2) is similar to the proof (1) implies (3).

We end this paper with following questions.

Questions 5.7. Let X be a continuum, let n be an integer greater than
or equal to two, and let f : X → X be a map.

(i) If Fn(f) is turbulent, then is f turbulent?
(ii) If Fn(f) is turbulent, then is SFn(f) turbulent?
(iii) If SFn(f) is turbulent, then is f turbulent?
(iv) If SFn(f) is turbulent, then is Fn(f) turbulent?
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