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ABSTRACT. For a continuum X the hyperspace of nonempty closed
subsets of X with at most n components is called the n-fold hyperspace
Cn(X) and if m < n then Cpy(X) C Cpn(X) so it is possible to form a
quotient space Cp(X)/Cwm(X) identifying the set Cp,(X) to a point in
Cn(X). If f is a mapping from a continuum X onto a continuum Y there
will be a induced mappings between Cr(X) and Cr,(X) and between the
quotient spaces Cp(X)/Cm (X) and Cn(Y)/Cm (Y). Now if a list of func-
tion properties that are of interest to continua theorists is considered, there
will be natural questions about when these properties are passed on from
the functions between the continua to the induced mappings between the
hyperspaces or the induced mappings between the quotients of the hy-
perspaces. Many of these questions have been considered extensively for
the hyperspaces so the main thing that is new here is the questions and
answers about the quotient spaces and their induced mappings. Here we
consider the following families of mappings: atomic, atriodic, confluent,
hereditarily weakly confluent, joining, light, local homeomorphism, locally
confluent, locally weakly confluent, monotone, open, OM, semi-confluent
and weakly confluent.

1. INTRODUCTION

A continuum is a nonempty, compact, connected metric space. A sub-
continuum is a continuum which is a subset of a metric space. A mapping
is a continuous function. The notation N denotes the set of all positive in-
tegers. Given a continuum X and n € N, C,,(X) denotes the hyperspace of
all nonempty closed subsets of X having at most n components. The hyper-
space Cy,(X) is considered with the Hausdorff metric, H, (see [27, p. 1]). Let
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n,m € N be such that n > m. The notation SC”, (X) denotes the quotient
space C,(X)/Cp,(X) obtained of Cy,(X) identifying the set C,,, (X) to a point.
And the function p¢™ : C,,(X) — SCI(X) denotes the quotient mapping.
Given a mapping f : X — Y between continua, the mapping C,(f) :
Cn(X) = Cn(Y) given by C,,(f)(A) = f(A) is a mapping induced by f . Let
SCn(f): SC(X) — SC(Y) be a function defined such a way that

SCL) (X (A) = py™ (f(A4)).
By [15, Theorem 4.3], SCI (f) is a continuous function. Moreover the follow-
ing diagram is commutative.

(1.1) Cu(X) —D oy
o o
scm (x) 2D gem vy

Let M be a class of mappings between continua. A general problem
in Continuum Theory is to determine all possible relationships among the
following statements:

(1) feM;
(2) Culf) € M;
(3) SCn.(f) e M.

Readers especially interested in this topic are referred to [1]-[14], [16]-[21].

In this paper we study the interrelations among the statements (1)-(3),
where M is the family of: atomic, atriodic, confluent, hereditarily weakly con-
fluent, joining, light, local homeomorphism, locally confluent, locally weakly
confluent, monotone, open, OM, semi-confluent or weakly confluent mappings.

2. PRELIMINARIES

Let X be a continuum with metric d. Let € > 0 and A C X, we define
VA(A) = {z € X : there exists y € A such that d(z,y) < ¢}, and we use the
symbol CI(A) to denote the closure of A in X. An order arc in C,(X) is an
arc « : [0,1] = Cp(X) such that if 0 < s < ¢ < 1, then a(s) C «a(t) and a(s) #
a(t). Given a finite collection Kj,..., K, of subsets of X, (Ky,...,K,), is
used to denote the following subset of C),(X),

{AcCn(X): AcC|JKi,ANK; # 0 for each i € {1,...,7}}.
i=1
It is well known that the family of all subsets of C,(X) of the form
(Ki,...,K,), where each K, is an open subset of X, forms a base for a topol-
ogy for C,(X) (see [27, Theorem 0.11]) called the Vietoris topology, which
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coincide with the topology induced on C,,(X) by the Hausdorff metric (see
[27, Theorem 0.13]).
Given two positive integers s > k, we define C;(X) = Cs(X) \ Cr(X).
Notice that p}kki(;{) L CH(X) = SC(X)\ p3F(Cr(X)) is a homeomorphism.
A surjective mapping f: X — Y between continua is:

atriodic if, for each subcontinuum @) of Y, there are two components
C1 and Oy of f~1(Q) such that f(C1) U f(C1) = Q and for each
component C' of f~1(Q), we have either f(C) = Q or f(C) C f(C1)
or f(C) C f(C2);

atomic if, for each subcontinuum K of X such that f(K) is nondege-
nerate, ! (f(K)) = K;

confluent if, for every subcontinuum K of Y and for each component
M of f~1(K), f(M) = K;

joining if, for every subcontinuum B of Y and every pair of components
C and D of f=Y(B), f(C) N f(D) # 0;

light if f=1(y) is totally disconnected for each y € Y;

a local homeomorphism if, for each point x € X, there exists an open
neighbourhood U of z in X such that f(U) is a open neighbourhood
of f(z) in Y and the partial mapping f|y : U — f(U) is a homeomor-
phism;

monotone if f~1(y) is connected for each y € Y;

open if f(U) is open in Y for each open subset U of X;

an OM-mapping if there exist a continuum Z and mappings g: X — Z
and h: Z — Y such that f = ho g, g is monotone and h is open;
semi-confluent if, for every subcontinuum B of Y and every pair of
components C' and D of f~(B), either f(C) C f(D) or f(D) C f(C);
weakly confluent if, for each subcontinuum K of Y, there exists a
subcontinuum M of X such that f(M) = K;

locally confluent(locally weakly confluent) provided for each point y €
Y, there exists a closed neighbourhood F of  in Y such that the partial
mapping f|-1(r) is a confluent mapping(a weakly confluent mapping)
of f~Y(F) onto Fj;

hereditarily weakly confluent if, for each nondegenerate subcontinuum
M of X, fl|,, is weakly confluent.

As a consequence of the fact that C,(X) is arcwise connected [23, Theorem
3.1] and [28, Theorem 3.10] we have the following proposition.

PROPOSITION 2.1. Let X be a continuum and n > 2. Then SCT (X) is
an arcwise connected continuum.

The next theorem is proved in [23, Theorem 3.3].

PROPOSITION 2.2. Let X be a continuum, if n > 2 then C}_,(X) is dense

on Cp(X

).
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LEMMA 2.3. Let X be a continuum and n > 2. If U C Cn(X) such that
UNCr(X) # 0 and p™(U) is an open subset of SCo(X), then Cp(X) C
ClU).

PROOF. Let A € Cp,(X) such that A ¢ Cl(Uf). Then there is an € > 0
such that V?(A) NU = 0. Thus, since (p'y™) " L(p%™ U)) = U U Cp(X) is
an open subset of C,,(X), there exists 0 < § < € such that VI*(A) C C,,,(X).
This contradicts Proposition 2.2. O

PROPOSITION 2.4. Let f: X — Y be a surjective mapping between con-
tinua and 1 < r <n. Let Ky,...,K, be nonempty disjoint closed subsets of
Y. For each i € {1,...,r}, let M; be a component of f~*(K;). Then

(1) (Ma,...,M,) is a component of Cp,(f) 1 ((K1,..., K,)).

(2) If M is a component of f~1(K;) such that M # M; and r < n, then
(My,...,M,, M) is a component of Cp(f) 1((K1,...,K,)).

(3) If r > m, then p\"" ({(M, ..., M,)) is a component of

SCL(N T Y (K. . Ky))).

Proor. We will prove (1). By [2, Proposition 2.3 ], (My,...,M,) is
connected. Note that (Mi,...,M,) C Cn(f) '((Ky,...,K,)). Consider C,
the component of C,,(f)~'((K1,..., K,)) containing (M, ..., M,). Clearly

O M;c|Jcc U !
i=1 i=1

Now, let P be a component of |JC. By [20, Lemma 3.1], P N M; # ( for
some j € {1,...,r}. Thus, P = M;. Hence, using [20, Lemma 3.1], C =
<M1a s )MT>'

The proof of (2) is similar to the proof of (1).

To prove (3), consider D the component of SC7, (f) " (py" (K1, ..., K.)))
containing p" ((Mi,...,M,)). Clearly, (M,..., Mn> C (p¥™)UD).
We need to prove that (p%™) (D) C C.(f) '((Ki,...,K,)). Notice
that SCz(f)(p}m(A)) = py"(Cn(f)(A)) for each A € Cfn(X). Since

pgm(cm(y)) ¢ p ((K1,-.-,Kr)), px" (Cn(X)) ¢ D and Cpn(X) N
(Px™) 1 (D) = 0. Theﬂ Py (Cu(£)((PX™) D)) € py™ (K1, .., Ko)).
Thus C (f)(( )Y D )) C (Ki,...,K,;). Now, since py" is monotone,

3. HOMEOMORPHISMS AND OPEN MAPPINGS

THEOREM 3.1. Let f : X = Y be a mapping between continua and n > 2.
Then the following conditions are equivalent.

(1) f is a homeomorphism.

(2) Cn(f) is a homeomorphism.

(3) SC.(f) is a homeomorphism.
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PROOF. (1) = (2). It follows from [12, Theorem 46].

It is easy to see (2) = (3).

In order to prove that (3) = (1), let y € Y and let y1,...,ym € Y \ {y}
such that y; # y; if i # j. Let B = {y1,...,ym,y} € C},(Y). Since SC},(f)
is a homeomorphism, there is A € CJ(X) such that SCT,(f)(p¥"(A)) =
py"(B). So, Cu(f)(A) = B = f(A). Thus, f is surjective. Now, let
x,y € X such that x # y and let z1,...,2;, € X \ {z,y} such that
A={z,....z2m,x},B={z1,...,2m,y} € C(X). Since SC},(f) is a home-
omorphism, py" (f(A)) # py"(f(B)). So f(z) # f(y). Therefore f is a
homeomorphism. O

THEOREM 3.2. Let f : X = Y be a mapping between continua and n > 2.
Then the following conditions are equivalent.

(1) f is homeomorphism.
(2) Cn(f) is open.
(3) SC.(f) is open for every 1 < m < n.

PRrROOF. By [1, Corollary 3.3], (1) and (2) are equivalent.

(1) = (3) Follows from Theorem 3.1. To prove (3) = (1), let 21,22 € X
such that z1 # x3 and f(z1) = f(22). Consider A € CT1(X) such that {z;}
and {z2} are components of A. Choose § > 0 such that V}*(A) (N Cp,(X) = 0.
Let 0 < € < 6. Then, p'y"(V(A)) is an open subset of SC7,(X). Since

€

SCLN (X ™ VE(A))) = py™ (Cu(f)(VIHA))), py™ (Cu(£)(VIH(A))) is open
in SC7,(Y). By Lemma 2.3, Cp,(Y) C (oo CUC,(f)(VI(A))). Thus,
Cn(Y) = {Cn(f)(A)}, a contradiction. Therefore f is a homeomorphism.

o

Concerning the last theorem, we can see in the following example that
there exists an open mapping between continua such that SC},, (f) is not open,
in other words, the condition that f is homeomorphism is essential to prove
that SC7,. (f) is an open mapping.

ExAMPLE 3.3. There exist continua X and Y, and an open mapping
f: X = Y such that SC}, (f) is not open for n > 2.

Consider the mapping f : [—1,1] — [0, 1] defined by f(z) = |z|. Clearly,
f is open. By Theorem 3.2, C,,(f) and SC. (f) are not open for n > 2.

4. MONOTONE MAPPINGS

THEOREM 4.1. Let f : X — Y be a mapping between continua and n > 2.
Then the following conditions are equivalent.

(1) f is monotone.

(2) Cn(f) is monotone.

(3) SCv.(f) is monotone for every 1 < m < n.
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PROOF. By [12, Theorem 4], (1) and (2) are equivalent.
To prove that (2) = (3), let B € C,(Y). Since C,(f) and py™ are
monotone mappings and

AR (Cal ™ (2™ (A (B)) ) = SC(H ™ (3™ (B))

SCn(f)~t (py™(B)) is connected. Hence, SC™ (f) is monotone.

Now, we show that (3) = (1). Suppose that there exists y € Y
such that f_l(y) is not connected. Let K; and Ky be different compo-
nents of f~1(y). Consider {z1,...,2,-1} € Y \ {y} such that z; # z;
if i # j. Let M; be a component of f~!(z;), for each i € {1,...,n —
1}. By Proposition 2.4, p'¢"((Mi,...,M,_1,K;)) is a component of
SCr (f) M py™({z1, -y 2n-1,y})), for each i € {1,2}. Since SC},(f) is a
monotone mapping, SCh,(f)~1(py™" ({#1,- .., 2n—1,y})) is connected. Thus,
p}’m“Ml, ceey Mnfl, K1>) = p?(’m«Ml, e ,Mnfl, K2>) Then, K1 = KQ. A
contradiction. O

5. CONFLUENT MAPPINGS

PROPOSITION 5.1. Let f: X — Y be a mapping between continua.

(1) If SCI.(f) is confluent, then for each subcontinuum B C CL(Y) and
each component A of Cy,(f)~1(B), Cn(f)(A) = B.

(2) IfSCI(f) is weakly confluent, then for each subcontinuum B C Cl* (Y'),
there exists A be a subcontinuum of Cyp(X) such that C,(f)(A) = B.

PROOF. Tt follows of the facts that p'¢™|cn (x) and py™|cn (v) are home-
omorphisms and
—1

en vy o SCL(f) o p™

Cr(Dlenip-ren vy = (py™) en (X)-

O

THEOREM 5.2. Let f : X — Y be a mapping between continua and let
n > 2. We consider the following conditions:

(1) f is confluent;

(2) Cn(f) is confluent;

(3) SCI.(f) is confluent for all m < n.
Then condition (2) implies (3) and each of the conditions (2) and (3) implies
(1).

PROOF. (2) = (3). Since C,(f) is confluent, py’™ is monotone and
py " oCh(f) = SCL(f)op™, by 5.4 of [24, p. 29], SCZ (f)op'y™ is confluent.
Hence by 5.16 of [24, p. 32], SC".(f) is confluent.

We will prove that (3) = (1). Let B be a proper subcontinuum of ¥ and
K be a component of f~1(B). Let {z1,...,2,} CY \ B such that z; # z; if
i # j. Let M; be a component of f~!(z;), for each i € {1,...,m}. By Propo-
sition 2.4, (My, ..., M,,, K) is a component of C,,(f)~* (({z1},-..,{2m}, B)).
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Notice that ({z1},...,{zm},B) C C*(Y). Then, by the Proposition 5.1,
Co(f) (M1,...,. M, K)) = {z1},...,{zm}, B). Therefore f(K) = B.
Clearly (2) = (1). O

THEOREM 5.3. Let f : X — Y be a mapping between continua and let
n > 4. Then the following conditions are equivalent.

1. f is a monotone mapping.
2. SC2.(f) is a confluent mapping for 2 <m <n — 2.

PRrROOF. (1) = (2). It follows from Theorem 4.1 and (3.2) of [24, p. 13].

To prove that f is a monotone mapping, suppose to the contrary, that is,
there exists y € Y such that f~1(y) is not connected. Let My and M; be differ-
ent components of f~!(y). By [28, Corollary 5.5], there exists a subcontinuum
K of Y such that y ¢ K. Take {22,...,2n} C Y\ (K U{y}) such that 2 # z;
if i # j. Let M; be a component of f~1(2;), for each i € {2,...,m} and let
M, 11 be a component of f~1(K). Notice that ({y},{z2},...,{zm}, K) C
Cr(Y) and C*_(Y) N {{y},{22},...,{zm}, K) # 0. By Proposition 2.4,
(Mo, ..., Mpy11) is a component of Cp,(f)~ ({{y}, {22}, -, {zm}, K)). By
Proposition 5.1, Cp(f)({(Mo, ..., Mm+1)) = {y}, {z2},...,{zm}, K). Thus
{y}, {#2},.. .. {zm}, K) C Crmq1(Y). A contradiction. O

The next example shows that (1) does not imply (3) in Theorem 5.2.

EXAMPLE 5.4. There exist continua X and Y, and a confluent mapping
f: X — Y such that SC}, (f) is not confluent for n > 4.

Consider the mapping f : [—1,1] — [0, 1] defined by f(z) = |z|. Clearly,
f is confluent but not monotone. By Theorem 5.3, SC7 (f) is not confluent
forn>4and 2 <m<n-—2.

THEOREM 5.5. Let f : X — Y be a mapping between continua and let
n > 2. Consider the following conditions:

(1) f is weakly confluent;

(2) Cn(f) is weakly confluent;

(3) SCI.(f) is weakly confluent.
Then condition (2) implies (3) and each of the conditions (2) and (3) implies
(1).

PROOF. We will prove that (2) = (3). Since C,(f) is weakly confluent,
py" is monotone and py" o Cy (f) = SC2(f) o p'y™, by (5.4) of [24, p. 29],
SCI(f)op'y™ is weakly confluent. By 5.16 of [24, p. 32], SCP,(f) is weakly
confluent.

Now, we will show that (3) = (1). Let B be a proper subcontinuum
of Y. Consider {z1,...,2,—1} C Y \ B such that z; # z; if i # j. Note
that ({z1},...,{zn-1},B) C C_1(Y). Then, by Proposition 5.1, there ex-
ists a component K of Cy,(f)~ (({z1},--.,{zn-1}, B)) such that C,,(f)(K) =
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({z1},...,{zn-1}, B). Since K C C_,(X), we can find subset My,..., M, of
X, such that M; is a component of f~1(z;), for each i € {1,...,n — 1}, M,
is a component of f~Y(B) and (Mj,..., M,) NK # (). Now, by Proposition
2.4, (My,...,M,) is a component of Cy,(f)~({{z1},...,{2n-1}, B)). Thus
K =(M,...,M,). Hence f(M,) = B.

Clearly (2) = (1). O

THEOREM 5.6. Let f : X — Y be a mapping between continua and let
n > 2. Consider the following conditions:

(1) f is hereditarily weakly confluent;
(2) Cn(f) is hereditarily weakly confluent;
(3) SCI.(f) is hereditarily weakly confluent.

Then condition (2) implies (3) and each of the conditions (2) and (3) implies
(1).

PROOF. (2) = (3). By [12, Theorem 44], f is a homeomorphism. Then,
by Theorem 3.1, SC}, (f) is a homeomorphism. Thus SC7, (f) is hereditarily
weakly confluent.

Now we will prove (3) = (1). Let D be a subcontinuum of X, consider two
cases, f(D) =Y or f(Y) # X. Suppose f(D) =Y. Since SC},(f)|scn (p)
is weakly confluent, by Theorem 5.5, f|p is weakly confluent. Now, suppose
that f(D) is a subcontinuum proper of Y. Let B be a subcontinuum of
f(D). Consider {z1,...,2n—1} C Y \ B such that z; # z; if ¢ # j. Let M;
be a component of f~1(z;), for each i € {1,...,n—1}. Notice that D =
o™ ((My,...,M,_1,D)) is a subcontinuum of SC}., (X). Since SC, (f)|p
is weakly confluent and py™ (({z1},...,{zn-1}, B)) is a subcontinnum of
SCI (f)(D), there exists a subcontinuum W of D such that SCy (f)(W) =
oy (({=1}, .- {zn-1}, B)). Moreover, (p™)~1(W) is a subcontinuum of
(My,.. M, 1, D) sueh that Co(£)((0™) " OV)) = ({21}, {21}, B).
By [20, Lemma 3.1 |, K = J(p%™) (W) N D is a nonempty connected set.
Thus f(K) = B. O

THEOREM 5.7. Let f : X = Y be a mapping between continua and n > 2.
Consider the following conditions:

(1) f is semi-confluent;

(2) Cu(f) is semi-confluent;

(3) SCI.(f) is semi-confluent.
Then (2) implies (3) and each of the conditions (2) and (3) implies (1).

PROOF. (2) = (3). Since py™ is monotone, by Statement 1.1 of [10,
p. 41], py'"™ o C(f) is semi-confluent. Thus SC7 (f) o p'y™ is semi-confluent.
By 5.16 of [24, p. 32], SC7(f) is semi-confluent.

We will prove that (3) = (1). Let B be a proper subcontinuum of Y.
Let Cy and Cy are components of f~(B). Consider {z1,...,2m} C Y \ B
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such that z; # z; if i # j. Let M; be a component of f~1(z;), for each
i € {1,...,m}. By Proposition 2.4, p"" ((Mi,..., M, C;)) is a compo-
nent of SCT(f)~ (py™ (({z1}, ..., {zm}, B))), for each i € {1,2}. Without
of lost generality we can suppose that SCT, (f) (p%™ ((M,..., My,C1))) C
SCH(f) (pX™ ((M,..., My, Cs))). Thus

Co(f) ((Mn,..., My, C1)) C Co(f) (M, ..., My, C2)).

Hence f(C1) C f(Cy).
(2) = (1) is obvious. O

6. OM MAPPINGS

In this part we use the following definition to limit superior of a sequence
of subsets

DEFINITION 6.1. Let X be a continuum. Given a sequence {Am},, oy
of subsets of X we define limsup,,, .., Am as the set of points x € X such
that there exists a sequence of positive numbers miy < mo < --- and points
T, € Am,, such that limx,,, = .

The following characterization of OM mappings was showed in [12,
p. 788].

LEMMA 6.2. A mapping f: X =Y between continua is an OM -mapping
if and only if, for each point y € Y and each sequence of points y,, € Y
tending to y the set limsup,, ,.. f~(ym) meets each component of f=1(y).

THEOREM 6.3. Let f : X — Y be a mapping between continua and let
n > 2. Consider the following conditions:

(1) f is an OM-mapping;

(2) Cn(f) is an OM-mapping;

(3) SC2.(f) is an OM-mapping.
Then condition (2) implies (3) and each of the conditions (2) and (3) implies
(1).

PROOF. (2) = (3). Since Cy(f) is an OM-mapping, py’"" is monotone
and py™" o Cy(f) = SCL(f) o p'¥™, by 5.4 of [24, p. 28], SCI(f) 0 p'y™ is an
OM -mapping. Hence by 5.6 of [24, p. 33], SCI (f) is an OM-mapping.

To prove (3) = (1), let {y,},cy be a sequence of points in Y converging to
apoint y € Y. Consider {z1,..., 2,1} C Y \({y}U{yr},cn) such that z; # z;
if i # j. Let M; be a component of f~1(z;), for each i € {1,...,n — 1} and
let M,, be a component of f~!(y). By Proposition 2.4, p¥™ ((M1, ..., M,))
is a component of SCT, (f)~! (p3™ ({z1,.-.,2n—1,y})). Clearly the sequence

{p’r)l/ym ({Zla <y Zn—1, yr})}reN converges to p;z/’m({zla <y Zn—1, y})
Since SCT (f) is an OM-mapping, by Lemma 6.2,

px™ (M, ..., My)) mhfisip SCr () (py™ ({2155 2nm1,ys})) # 0.
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Let A € (My,...,M,) such that
P (A) € limsup SCT.(F) 7 (0¥ ({21, -, 201,04 })

§—00

Then, there exists a subsequence {py"(As, )}, oy such that for each positive
integer k, p¥"(As,) € SCm(f) (py™ ({21,- -+, 2n—1,Ys, })) and

™ (Asy) = p™ (A).

Let a € AN M,. Since limg o As, = Ap, there exists a sequence {as, } o>
with as, € As, , such that converges to a € A. Thus exists a positive integer
lo such that f(as,) = ys, for each k > ly. Hence
a € AN M, Nlimsup f~*(ys).
S§—00

Therefore, by Lemma 6.2, f is OM mapping.
Clearly (2) = (1). O

COROLLARY 6.4. Let f : X — Y be a mapping between continua. Then
the following conditions are equivalent.

(1) f is an OM-mapping.

(2) Ca(f) is an OM-mapping.

(3) SC2(f) is an OM-mapping.

ProOF. It follows from [12, Theorem 14] and Theorem 6.3. O

THEOREM 6.5. Let f : X — Y be a mapping between continua and let
n > 3. Then the following conditions are equivalent.

(1) f is monotone.

(2) Cu(f ) is monotone.

(3) Cn(f) is OM-mapping.

(4) SC2.(f) is an OM-mapping, 2 < m <n — 2.

PROOF. By Theorem 4.1, (1) and (2) are equivalent. (1) = (3) follows
from Theorem 4.1. By Theorem 6.3, (3) = (4). We will prove that (4) = (1).
Since SC7, (f) is an OM-mapping, by (4.9) of [24, p. 16], SCI (f) is confluent.
Thus, by Theorem 5.3, f is monotone. O

The next example shows that (1) does not imply (3) in Theorem 6.3.

EXAMPLE 6.6. There exist continua X and Y and an OM-mapping f :
X — Y such that SC7, (f) is not an OM-mapping.

Consider the mapping f : [-1,1] — [0, 1] defined by f(z) = |z|. Clearly,
f is an OM-mapping but not monotone. By Theorem 6.5, SC (f) is not an
OM-mapping forn >4 and 2 <m <n — 2.
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7. JOINING MAPPINGS

THEOREM 7.1. Let f : X — Y be a mapping between continua and let
n > 2. Consider the following conditions:

(1) f is joining;

(2) Culf) is joining;

(3) SCI.(f) is joining.
Then condition (2) implies (3) and each of the conditions (2) and (3) implies

(1).

PROOF. (2) = (3). Since py’"™" is monotone and Cy(f) is a joining map-
ping, py"™ o Cp(f) is a joining mapping. Thus SCT (f) o p'y™ is a joining
mapping. By (5.21) of [24, p. 33], SC(f) is a joining mapping.

We will prove that (3) = (1). Let B be a proper subcontinuum of Y.
Let C; and Cy components of f~1(B). Consider {z1,...,2,m} C Y \ B such
that z; # z; if ¢ # j. For each i € {1,...,m}, let M; be a component
of f~%(z;). By Proposition 2.4 p'v™ ((Mi,..., M,,,C;)) is be a component
of SCh(f) " (py™ (({z1}, ..., {zm}, B))) for i € {1,2}. Since SCp (f) is a

joining mapping,
SCL() (™ (M, ..., M, C1))) N SCL(f) (pX™ (M1, ..., My, Ca))) # 0.

So Cu(f) (M, ..., My, C1)) N Co(F) (M, . .., My, Co)) # 0. Thus £(Cy) N

f(Cs) # 0.
Clearly (2) = (1). O

8. LIGHT MAPPINGS

THEOREM 8.1. Let f : X — Y be a mapping between continua and let
n > 2. Consider the following conditions:

(1) f is light;

(2) Culf) is light;

(3) SC.(f) is light.
Then each of the conditions (2) and (3) implies (1).

PROOF. (2) = (1). It follows from C(f) = Cn(f)|c(x) and [6, Theorem
3.10].

(3) = (1). To prove that f is a light mapping, suppose that exists y € Y
such that f~1(y) is not totally disconnected. Let M be a nondegenerate
component of f~!(y). Consider {y1,...,yn—1} C Y \ {y} such that y; # y,
if i # j. Let M; be a component of f~!(y;), for each i € {1,...,n —1}. By
Proposition 2.4 p'y" ((Mu,..., M,_1,M)) is a subcontinuum nondegenerate
of SC, () (py " ({y1s- -+ Yn—1,y})), a contradiction. a

The next example shows that (1) does not imply (3) in Theorem 8.1.
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EXAMPLE 8.2. There exist continua X and Y and a light mapping f :
X — Y such that SC}, (f): SC.(X) — SC (Y) is not light.

Let C be the complex plane and S' C C the unit circle centered at the
origin. Fix n and m. Define f : S* — S* by f(z) = z". Clearly f is a light
mapping. Consider

A= {p}vm ({ei",e“z%”), .. .,ei<@+e>}) €8C™(X):0<6< 2%} :

Notice that A € SCT,(f) " (py™ (Cr(S1))). Tt is easy to show that A is an
arc in SC, (X). Therefore SC7, (f) is not a light mapping.

9. ATOMIC MAPPINGS

THEOREM 9.1. Let f : X = Y be a mapping between continua and n > 2.
The conditions are equivalent.

(1) f is homeomorphism.
(2) Cn(f) is atomic.
(3) SC.(f) is atomic.

PROOF. By Theorem 3.1, (1) implies (2) and (3).

(2) = (1) is proved in [12, Theorem 43].

(3) = (1) follows from Proposition 2.1 and (6.3) of [24, p. 51]. O

10. ATRIODIC MAPPINGS

THEOREM 10.1. Let f : X — Y be a mapping between continua and
n > 2. If SC7 (f) is atriodic, then f is atriodic.

PROOF. Let D be a proper subcontinuum of Y. Consider {z1,...,2,-1} C
Y \ D such that z; # z; if ¢ # j. Then there exist two components D; and
Dy of SC, () (py™ (({z1}, -, {zn=1}, D))) such that

1 SCM(£)(Dy) U SCH(1)(D2) = o™ ({1}, {n 1}, D)),
2. for each component K of SCI, ()" (py™ (({z1}, ..., {zn-1}, D))), we
have either SCT,(F)(K) = pl ({21}~ {znr} D)) o1 SCI(F)(K)
C SCL(F)(Dr) or SCL(f)(K) C SCL(f) (D).
Notice that for each j € {1,2}, (p™)~1(D;) C C"_;(X). So, we can find sub-
sets M, ..., M of X such that for eachi € {1,...,n—1}, M/ is be a compo-
nent of f~1(z;), M} is a component of f~!(D) and since D; is a component of
SCR(H (Y™ ({erh s {znm1}, DY) then Dy NPk (M., M3 )) # 0.
It follows from Proposition 2.4 that D; = p}m(<Mf, e M,JI>) Thus, by 1.,
FMI U F(AM2) = D.

Now, let K be a component of f~!(D). Since p'y" ((M{,...,M}_,,K))
is a component of SC7, (f)~ (oyv™ ({y1},---s{yn-1},D))) by 2., f(K) =D
or f(K) C f(My) or f(K) C f(M). O
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11. LOCALLY MAPPINGS

THEOREM 11.1. Let f : X — Y be a mapping between continua and let
n > 3. If SC7 (f) is a local homeomorphism then, f is a homeomorphism.

PRrROOF. It follows from (4.26) of [24, p. 20] and Theorem 3.2. O

S. Nadler Jr. in [26, Lemma 2.3], defines a metric for a quotient space
obtained identifying a subcontinuum to a point. In a similar way we are going
to define a metric on the SC (X). Let

Lo = {Cr(X) U {A} - A € Co(X)).
Define Gy, : SC (X) = Ty by
Grm(px™(A)) = Con(X) U (™) (pX™ (A)).

Then G, is @ homeomorphism. Next, define
Onm 2 SC (X)) x SCT (X)) — [0,00)
by
Tnm (P (A), pX™(B)) = HA (G (™ (A), G (0% ™ (B)),
where H? is the Hausdorff metric induced by the Hausdorff metric H on

Cpn(X). Thus o, ., is a metric.

LEMMA 11.2. Let X be a continuum, € > 0 andn > 2. Let A, B € Cp(X)
such that H(A, B) < e, then oy, (p%" (4), p™(B)) < €.

PROOF. Let A, B € C,,(X) such that H(A, B) < ¢, then {B} € V*({A})
and {A} € V*({B}). Notice that G, m(py" (A)) C VI(Gn.m(py™ (B))) and
Gn,m(p?(’m(B)) c VEH(Gn,m(PT)L(’m(A)))- Thus

H? (G (P (A)), Grm (P ™ (B))) < €.
O

LEMMA 11.3. Let X be a continuum, € > 0 and n > 2. Take A € C(X)
such that diam(A) < e and let {z1,...,2m} C X\ A such that z; # z; if i # j.
Then diam(p'y™ (({z1},. .., {zm}, A)) <e.

ProOOF. Let B,D € ({z1},...,{zm},A). Consider D; = DN A and

By = BN A. Notice that d(x,c) < diam(A) for each ¢ € D; and for each z €
By. Then B € V4(D) and D € V4(B). Thus H(B,C) < . By Lemma 11.2,
onm(p" (B), p™ (D)) < e. Therefore diam(py™ (({z1},...,{zm}, 4))) <e.
0

THEOREM 11.4. Let f : X — Y be a mapping between continua and
n > 2. If SC7 (f) is locally confluent then, f is locally confluent.
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PRrROOF. By [24, Theorem 4.38], there exists ¢ > 0 such that for each
subcontinuum A of SC}, (V) of diameter less than £ and each component D
of SO (f)~1(A) is mapped by SCJ.(f) onto A. Let B be a subcontinuum
of Y of diameter less that ¢ and D be a component of f~!(B). Consider
{#1,...,2m} C Y \ B such that z; # z; if i # j. Let M; be a component of
7 (z), for each i € {1,...,m}. By Lemma 11.3, py""" ({{z1}, ..., {zm}. B))
has diameter less that e. By Proposition 2.4, p'v"" ((Mi,..., M, D)) is a
component of SCI ()7 (py" (({z1}, .-, {zm}, B))). Thus

SCL(NPX™ (My,..., Mm, D)) = (py"™ ({z1}, ... {zm}, B)).

We conclude that f(D) = B. By [24, Theorem 4.38], f is locally confluent.
O

THEOREM 11.5. Let f: X — Y be a mapping between continua and n >
2. If SCT (f) is locally weakly confluent then, f is locally weakly confluent.

PrOOF. By 4.37 of [24, p. 23], there exists ¢ > 0 such that for each
subcontinuum A of SC7,(Y) of diameter less than e, there exists a compo-
nent D of SO (f)~1(A) such that SC? (f)(D) = A. Let B be a subcon-
tinuum of Y of diameter less than . Consider {z1,...,2,—1} C Y \ B such
that z; # z; if i # j. By Lemma 11.3, py/"({({z1},...,{zn-1}, B)) has di-
ameter less than . Since SC7.,(f) is a locally weakly confluent mapping,
there exists a component B of SCo (f)" (pyv™ (({z1},...,{zn-1}, B))) such
that SC (f)(B) = py™(({z1},...,{zn-1}, B)). Notice that (py-"")"1(B) C

" _(X). Thus, we can find subset Mj,..., M, of X, such that for each
i € {1,...,n — 1}, M; is a component of f~1(z;), M, is a component of
f7Y(B) and p'y™ ((My, ..., M,))NC # 0. It follows from Proposition 2.4 that
o ((My, ..., M,)) is a component of

SCL(N) " py™ (a1}, {21}, B))).

Hence B = py"™((Mi,...,M,)). Therefore f(M,) = B. By [24, Theorem
4.37], f is locally weakly confluent. O

12. PROBLEMS

(1) Is there weakly confluent mapping f : X — Y such that either C,(f)
is not weakly confluent or SC7, (f) is not weakly confluent?

(2) Is there hereditarily weakly confluent mapping f : X — Y such that
either C,,(f) is not hereditarily weakly confluent or SC, (f) is not
hereditarily weakly confluent?

(3) Is there semi-confluent mapping f : X — Y such that either C,(f) is
not semi-confluent or SC7, (f) is not semi-confluent?

(4) Is there OM —mapping f : X — Y such that either C,,(f) is not OM
or SC.(f) is not OM for n > 27
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(5) Is there joining mapping f : X — Y such that either C,,(f) is not
joining or SC, (f) is not joining?
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