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Abstract. For a continuum X the hyperspace of nonempty closed
subsets of X with at most n components is called the n-fold hyperspace
Cn(X) and if m < n then Cm(X) ⊂ Cn(X) so it is possible to form a
quotient space Cn(X)/Cm(X) identifying the set Cm(X) to a point in
Cn(X). If f is a mapping from a continuum X onto a continuum Y there
will be a induced mappings between Cn(X) and Cm(X) and between the
quotient spaces Cn(X)/Cm(X) and Cn(Y )/Cm(Y ). Now if a list of func-
tion properties that are of interest to continua theorists is considered, there
will be natural questions about when these properties are passed on from
the functions between the continua to the induced mappings between the
hyperspaces or the induced mappings between the quotients of the hy-
perspaces. Many of these questions have been considered extensively for
the hyperspaces so the main thing that is new here is the questions and
answers about the quotient spaces and their induced mappings. Here we
consider the following families of mappings: atomic, atriodic, confluent,
hereditarily weakly confluent, joining, light, local homeomorphism, locally
confluent, locally weakly confluent, monotone, open, OM, semi-confluent

and weakly confluent.

1. Introduction

A continuum is a nonempty, compact, connected metric space. A sub-
continuum is a continuum which is a subset of a metric space. A mapping
is a continuous function. The notation N denotes the set of all positive in-
tegers. Given a continuum X and n ∈ N, Cn(X) denotes the hyperspace of
all nonempty closed subsets of X having at most n components. The hyper-
space Cn(X) is considered with the Hausdorff metric, H, (see [27, p. 1]). Let
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n,m ∈ N be such that n > m. The notation SCn
m(X) denotes the quotient

space Cn(X)/Cm(X) obtained of Cn(X) identifying the set Cm(X) to a point.
And the function ρn,mX : Cn(X) → SCn

m(X) denotes the quotient mapping.
Given a mapping f : X → Y between continua, the mapping Cn(f) :

Cn(X) → Cn(Y ) given by Cn(f)(A) = f(A) is a mapping induced by f . Let
SCn

m(f) : SCn
m(X) → SCn

m(Y ) be a function defined such a way that

SCn
m(f) (ρn,mX (A)) = ρn,mY (f(A)).

By [15, Theorem 4.3], SCn
m(f) is a continuous function. Moreover the follow-

ing diagram is commutative.

(1.1) Cn(X)
Cn(f)

ρ
n,m

X

Cn(Y )

ρ
n,m

Y

SCn
m(X)

SCn
m(f)

SCn
m(Y )

Let M be a class of mappings between continua. A general problem
in Continuum Theory is to determine all possible relationships among the
following statements:

(1) f ∈ M;
(2) Cn(f) ∈ M;
(3) SCn

m(f) ∈ M.

Readers especially interested in this topic are referred to [1]-[14], [16]-[21].
In this paper we study the interrelations among the statements (1)-(3),

where M is the family of: atomic, atriodic, confluent, hereditarily weakly con-
fluent, joining, light, local homeomorphism, locally confluent, locally weakly
confluent, monotone, open, OM, semi-confluent or weakly confluent mappings.

2. Preliminaries

Let X be a continuum with metric d. Let ǫ > 0 and A ⊂ X , we define
Vd
ǫ (A) = {x ∈ X : there exists y ∈ A such that d(x, y) < ǫ}, and we use the

symbol Cl(A) to denote the closure of A in X . An order arc in Cn(X) is an
arc α : [0, 1] → Cn(X) such that if 0 ≤ s < t ≤ 1, then α(s) ⊂ α(t) and α(s) 6=
α(t). Given a finite collection K1, . . . ,Kr of subsets of X , 〈K1, . . . ,Kr〉, is
used to denote the following subset of Cn(X),

{A ∈ Cn(X) : A ⊂
r
⋃

i=1

Ki, A ∩Ki 6= ∅ for each i ∈ {1, . . . , r}}.

It is well known that the family of all subsets of Cn(X) of the form
〈K1, . . . ,Kr〉, where each Ki is an open subset of X , forms a base for a topol-
ogy for Cn(X) (see [27, Theorem 0.11]) called the Vietoris topology, which



INDUCED MAPPINGS BETWEEN QUOTIENT SPACES 477

coincide with the topology induced on Cn(X) by the Hausdorff metric (see
[27, Theorem 0.13]).

Given two positive integers s > k, we define Cs
k(X) = Cs(X) \ Ck(X).

Notice that ρs,kX |Cs
k
(X) : C

s
k(X) → SCs

k(X)\ρs,kX (Ck(X)) is a homeomorphism.
A surjective mapping f : X → Y between continua is:

– atriodic if, for each subcontinuum Q of Y , there are two components
C1 and C2 of f−1(Q) such that f(C1) ∪ f(C1) = Q and for each
component C of f−1(Q), we have either f(C) = Q or f(C) ⊂ f(C1)
or f(C) ⊂ f(C2);

– atomic if, for each subcontinuum K of X such that f(K) is nondege-
nerate, f−1 (f(K)) = K;

– confluent if, for every subcontinuum K of Y and for each component
M of f−1(K), f(M) = K;

– joining if, for every subcontinuum B of Y and every pair of components
C and D of f−1(B), f(C) ∩ f(D) 6= ∅;

– light if f−1(y) is totally disconnected for each y ∈ Y ;
– a local homeomorphism if, for each point x ∈ X , there exists an open
neighbourhood U of x in X such that f(U) is a open neighbourhood
of f(x) in Y and the partial mapping f |U : U → f(U) is a homeomor-
phism;

– monotone if f−1(y) is connected for each y ∈ Y ;
– open if f(U) is open in Y for each open subset U of X ;
– an OM-mapping if there exist a continuum Z and mappings g : X → Z
and h : Z → Y such that f = h ◦ g, g is monotone and h is open;

– semi-confluent if, for every subcontinuum B of Y and every pair of
components C and D of f−1(B), either f(C) ⊂ f(D) or f(D) ⊂ f(C);

– weakly confluent if, for each subcontinuum K of Y , there exists a
subcontinuum M of X such that f(M) = K;

– locally confluent(locally weakly confluent) provided for each point y ∈
Y , there exists a closed neighbourhood F of y in Y such that the partial
mapping f |f−1(F ) is a confluent mapping(a weakly confluent mapping)

of f−1(F ) onto F ;
– hereditarily weakly confluent if, for each nondegenerate subcontinuum
M of X , f |M is weakly confluent.

As a consequence of the fact that Cn(X) is arcwise connected [23, Theorem
3.1] and [28, Theorem 3.10] we have the following proposition.

Proposition 2.1. Let X be a continuum and n ≥ 2. Then SC n
m(X) is

an arcwise connected continuum.

The next theorem is proved in [23, Theorem 3.3].

Proposition 2.2. Let X be a continuum, if n ≥ 2 then Cn
n−1(X) is dense

on Cn(X).
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Lemma 2.3. Let X be a continuum and n ≥ 2. If U ⊂ Cn(X) such that
U ∩ Cm(X) 6= ∅ and ρn,mX (U) is an open subset of SCn

m(X), then Cm(X) ⊂
Cl(U).

Proof. Let A ∈ Cm(X) such that A /∈ Cl(U). Then there is an ǫ > 0
such that VH

ǫ (A) ∩ U = ∅. Thus, since (ρn,mX )−1(ρn,mX (U)) = U ∪ Cm(X) is
an open subset of Cn(X), there exists 0 < δ ≤ ǫ such that VH

δ (A) ⊂ Cm(X).
This contradicts Proposition 2.2.

Proposition 2.4. Let f : X → Y be a surjective mapping between con-
tinua and 1 ≤ r ≤ n. Let K1, . . . ,Kr be nonempty disjoint closed subsets of
Y . For each i ∈ {1, . . . , r}, let Mi be a component of f−1(Ki). Then

(1) 〈M1, . . . ,Mr〉 is a component of Cn(f)
−1(〈K1, . . . ,Kr〉).

(2) If M is a component of f−1(Ki) such that M 6= Mi and r < n, then
〈M1, . . . ,Mr,M〉 is a component of Cn(f)

−1(〈K1, . . . ,Kr〉).
(3) If r > m, then ρn,mX (〈M1, . . . ,Mr〉) is a component of

SCn
m(f)−1(ρn,mY (〈K1, . . . ,Kr〉)).

Proof. We will prove (1). By [2, Proposition 2.3 ], 〈M1, . . . ,Mr〉 is
connected. Note that 〈M1, . . . ,Mr〉 ⊂ Cn(f)

−1(〈K1, . . . ,Kr〉). Consider C,
the component of Cn(f)

−1(〈K1, . . . ,Kr〉) containing 〈M1, . . . ,Mr〉. Clearly
r
⋃

i=1

Mi ⊂
⋃

C ⊂
r
⋃

i=1

f−1(Ki).

Now, let P be a component of
⋃

C. By [20, Lemma 3.1], P ∩ Mj 6= ∅ for
some j ∈ {1, . . . , r}. Thus, P = Mj . Hence, using [20, Lemma 3.1], C =
〈M1, . . . ,Mr〉.

The proof of (2) is similar to the proof of (1).
To prove (3), considerD the component of SCn

m(f)−1(ρn,mY (〈K1, . . . ,Kr〉))
containing ρn,mX (〈M1, . . . ,Mn〉). Clearly, 〈M1, . . . ,Mn〉 ⊂ (ρn,mX )−1(D).
We need to prove that (ρn,mX )−1(D) ⊂ Cn(f)

−1(〈K1, . . . ,Kr〉). Notice
that SCn

m(f)(ρn,mX (A)) = ρn,mY (Cn(f)(A)) for each A ∈ Cn
m(X). Since

ρn,mY (Cm(Y )) /∈ ρn,mY (〈K1, . . . ,Kr〉), ρn,mX (Cm(X)) /∈ D and Cm(X) ∩
(ρn,mX )−1(D) = ∅. Then, ρn,mY (Cn(f)((ρ

n,m
X )−1(D))) ⊂ ρn,mY (〈K1, . . . ,Kr〉).

Thus Cn(f)((ρ
n,m
X )−1(D)) ⊂ 〈K1, . . . ,Kr〉. Now, since ρn,mX is monotone,

(ρn,mX )−1(D) ⊂ 〈M1, . . . ,Mn〉, D = ρn,mX (〈M1, . . . ,Mn〉).

3. Homeomorphisms and Open mappings

Theorem 3.1. Let f : X → Y be a mapping between continua and n ≥ 2.
Then the following conditions are equivalent.

(1) f is a homeomorphism.
(2) Cn(f) is a homeomorphism.
(3) SCn

m(f) is a homeomorphism.
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Proof. (1) ⇒ (2). It follows from [12, Theorem 46].
It is easy to see (2) ⇒ (3).
In order to prove that (3) ⇒ (1), let y ∈ Y and let y1, . . . , ym ∈ Y \ {y}

such that yi 6= yj if i 6= j. Let B = {y1, . . . , ym, y} ∈ Cn
m(Y ). Since SCn

m(f)
is a homeomorphism, there is A ∈ Cn

m(X) such that SCn
m(f)(ρn,mX (A)) =

ρn,mY (B). So, Cn(f)(A) = B = f(A). Thus, f is surjective. Now, let
x, y ∈ X such that x 6= y and let z1, . . . , zm ∈ X \ {x, y} such that
A = {z1, . . . , zm, x}, B = {z1, . . . , zm, y} ∈ Cn

m(X). Since SCn
m(f) is a home-

omorphism, ρn,mY (f(A)) 6= ρn,mY (f(B)). So f(x) 6= f(y). Therefore f is a
homeomorphism.

Theorem 3.2. Let f : X → Y be a mapping between continua and n ≥ 2.
Then the following conditions are equivalent.

(1) f is homeomorphism.
(2) Cn(f) is open.
(3) SCn

m(f) is open for every 1 ≤ m < n.

Proof. By [1, Corollary 3.3], (1) and (2) are equivalent.
(1) ⇒ (3) Follows from Theorem 3.1. To prove (3) ⇒ (1), let x1, x2 ∈ X

such that x1 6= x2 and f(x1) = f(x2). Consider A ∈ Cm+1
m (X) such that {x1}

and {x2} are components of A. Choose δ > 0 such that VH
δ (A)

⋂

Cm(X) = ∅.
Let 0 < ǫ < δ. Then, ρn,mX (VH

ǫ (A)) is an open subset of SCn
m(X). Since

SCn
m(f)(ρn,mX (VH

ǫ (A))) = ρn,mY (Cn(f)(VH
ǫ (A))), ρn,mY (Cn(f)(VH

ǫ (A))) is open
in SCn

m(Y ). By Lemma 2.3, Cm(Y ) ⊂
⋂

ǫ>0 Cl(Cn(f)(V
H
ǫ (A))). Thus,

Cm(Y ) = {Cn(f)(A)}, a contradiction. Therefore f is a homeomorphism.

Concerning the last theorem, we can see in the following example that
there exists an open mapping between continua such that SCn

m(f) is not open,
in other words, the condition that f is homeomorphism is essential to prove
that SCn

m(f) is an open mapping.

Example 3.3. There exist continua X and Y , and an open mapping
f : X → Y such that SCn

m(f) is not open for n ≥ 2.

Consider the mapping f : [−1, 1] → [0, 1] defined by f(x) = |x|. Clearly,
f is open. By Theorem 3.2, Cn(f) and SCn

m(f) are not open for n ≥ 2.

4. Monotone mappings

Theorem 4.1. Let f : X → Y be a mapping between continua and n ≥ 2.
Then the following conditions are equivalent.

(1) f is monotone.
(2) Cn(f) is monotone.
(3) SCn

m(f) is monotone for every 1 ≤ m < n.
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Proof. By [12, Theorem 4], (1) and (2) are equivalent.
To prove that (2) ⇒ (3), let B ∈ Cn(Y ). Since Cn(f) and ρn,mX are

monotone mappings and

ρn,mX

(

Cn(f)
−1

(

(ρn,mY )
−1

(ρn,mY (B))
))

= SCn
m(f)−1 (ρn,mY (B)) ,

SCn
m(f)−1 (ρn,mY (B)) is connected. Hence, SCn

m(f) is monotone.
Now, we show that (3) ⇒ (1). Suppose that there exists y ∈ Y

such that f−1(y) is not connected. Let K1 and K2 be different compo-
nents of f−1(y). Consider {z1, . . . , zn−1} ∈ Y \ {y} such that zi 6= zj
if i 6= j. Let Mi be a component of f−1(zi), for each i ∈ {1, . . . , n −
1}. By Proposition 2.4, ρn,mX (〈M1, . . . ,Mn−1,Ki〉) is a component of
SCn

m(f)−1(ρn,mY ({z1, . . . , zn−1, y})), for each i ∈ {1, 2}. Since SCn
m(f) is a

monotone mapping, SCn
m(f)−1(ρn,mY ({z1, . . . , zn−1, y})) is connected. Thus,

ρn,mX (〈M1, . . . ,Mn−1,K1〉) = ρn,mX (〈M1, . . . ,Mn−1,K2〉). Then, K1 = K2. A
contradiction.

5. Confluent mappings

Proposition 5.1. Let f : X → Y be a mapping between continua.

(1) If SCn
m(f) is confluent, then for each subcontinuum B ⊂ Cn

m(Y ) and
each component A of Cn(f)

−1(B), Cn(f)(A) = B.
(2) If SCn

m(f) is weakly confluent, then for each subcontinuum B ⊂ Cn
m(Y ),

there exists A be a subcontinuum of Cn(X) such that Cn(f)(A) = B.

Proof. It follows of the facts that ρn,mX |Cn
m(X) and ρn,mY |Cn

m(Y ) are home-
omorphisms and

Cn(f)|Cn(f)−1(Cn
m(Y )) = (ρn,mY )−1|Cn

m(Y ) ◦ SC
n
m(f) ◦ ρn,mX |Cn

m(X).

Theorem 5.2. Let f : X → Y be a mapping between continua and let
n ≥ 2. We consider the following conditions:

(1) f is confluent;
(2) Cn(f) is confluent;
(3) SCn

m(f) is confluent for all m < n.

Then condition (2) implies (3) and each of the conditions (2) and (3) implies
(1).

Proof. (2) ⇒ (3). Since Cn(f) is confluent, ρn,mY is monotone and
ρn,mY ◦Cn(f) = SCn

m(f)◦ρn,mX , by 5.4 of [24, p. 29], SCn
m(f)◦ρn,mX is confluent.

Hence by 5.16 of [24, p. 32], SCn
m(f) is confluent.

We will prove that (3) ⇒ (1). Let B be a proper subcontinuum of Y and
K be a component of f−1(B). Let {z1, . . . , zm} ⊂ Y \B such that zi 6= zj if
i 6= j. Let Mi be a component of f−1(zi), for each i ∈ {1, . . . ,m}. By Propo-
sition 2.4, 〈M1, . . . ,Mm,K〉 is a component of Cn(f)

−1 (〈{z1}, . . . , {zm}, B〉).
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Notice that 〈{z1}, . . . , {zm}, B〉 ⊂ Cn
m(Y ). Then, by the Proposition 5.1,

Cn(f) (〈M1, . . . ,Mm,K〉) = 〈{z1}, . . . , {zm}, B〉. Therefore f(K) = B.
Clearly (2) ⇒ (1).

Theorem 5.3. Let f : X → Y be a mapping between continua and let
n ≥ 4. Then the following conditions are equivalent.

1. f is a monotone mapping.
2. SCn

m(f) is a confluent mapping for 2 ≤ m ≤ n− 2.

Proof. (1) ⇒ (2). It follows from Theorem 4.1 and (3.2) of [24, p. 13].
To prove that f is a monotone mapping, suppose to the contrary, that is,

there exists y ∈ Y such that f−1(y) is not connected. LetM0 andM1 be differ-
ent components of f−1(y). By [28, Corollary 5.5], there exists a subcontinuum
K of Y such that y /∈ K. Take {z2, . . . , zm} ⊂ Y \ (K ∪{y}) such that zi 6= zj
if i 6= j. Let Mi be a component of f−1(zi), for each i ∈ {2, . . . ,m} and let
Mm+1 be a component of f−1(K). Notice that 〈{y}, {z2}, . . . , {zm},K〉 ⊂
Cn
m(Y ) and Cn

n−1(Y ) ∩ 〈{y}, {z2}, . . . , {zm},K〉 6= ∅. By Proposition 2.4,

〈M0, . . . ,Mm+1〉 is a component of Cn(f)
−1(〈{y}, {z2}, . . . , {zm},K〉). By

Proposition 5.1, Cn(f)(〈M0, . . . ,Mm+1〉) = 〈{y}, {z2}, . . . , {zm},K〉. Thus
〈{y}, {z2}, . . . , {zm},K〉 ⊂ Cn−1(Y ). A contradiction.

The next example shows that (1) does not imply (3) in Theorem 5.2.

Example 5.4. There exist continua X and Y , and a confluent mapping
f : X → Y such that SCn

m(f) is not confluent for n ≥ 4.

Consider the mapping f : [−1, 1] → [0, 1] defined by f(x) = |x|. Clearly,
f is confluent but not monotone. By Theorem 5.3, SCn

m(f) is not confluent
for n ≥ 4 and 2 ≤ m ≤ n− 2.

Theorem 5.5. Let f : X → Y be a mapping between continua and let
n ≥ 2. Consider the following conditions:

(1) f is weakly confluent;
(2) Cn(f) is weakly confluent;
(3) SCn

m(f) is weakly confluent.

Then condition (2) implies (3) and each of the conditions (2) and (3) implies
(1).

Proof. We will prove that (2) ⇒ (3). Since Cn(f) is weakly confluent,
ρn,mY is monotone and ρn,mY ◦ Cn(f) = SCn

m(f) ◦ ρn,mX , by (5.4) of [24, p. 29],
SCn

m(f) ◦ ρn,mX is weakly confluent. By 5.16 of [24, p. 32], SCn
m(f) is weakly

confluent.
Now, we will show that (3) ⇒ (1). Let B be a proper subcontinuum

of Y . Consider {z1, . . . , zn−1} ⊂ Y \ B such that zi 6= zj if i 6= j. Note
that 〈{z1}, . . . , {zn−1}, B〉 ⊂ Cn

n−1(Y ). Then, by Proposition 5.1, there ex-
ists a component K of Cn(f)

−1 (〈{z1}, . . . , {zn−1}, B〉) such that Cn(f)(K) =
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〈{z1}, . . . , {zn−1}, B〉. Since K ⊂ Cn
n−1(X), we can find subset M1, . . . ,Mn of

X , such that Mi is a component of f−1(zi), for each i ∈ {1, . . . , n − 1}, Mn

is a component of f−1(B) and 〈M1, . . . ,Mn〉 ∩ K 6= ∅. Now, by Proposition
2.4, 〈M1, . . . ,Mn〉 is a component of Cn(f)

−1 (〈{z1}, . . . , {zn−1}, B〉). Thus
K = 〈M1, . . . ,Mn〉. Hence f(Mn) = B.

Clearly (2) ⇒ (1).

Theorem 5.6. Let f : X → Y be a mapping between continua and let
n ≥ 2. Consider the following conditions:

(1) f is hereditarily weakly confluent;
(2) Cn(f) is hereditarily weakly confluent;
(3) SCn

m(f) is hereditarily weakly confluent.

Then condition (2) implies (3) and each of the conditions (2) and (3) implies
(1).

Proof. (2) ⇒ (3). By [12, Theorem 44], f is a homeomorphism. Then,
by Theorem 3.1, SC n

m(f) is a homeomorphism. Thus SCn
m(f) is hereditarily

weakly confluent.
Now we will prove (3) ⇒ (1). LetD be a subcontinuum ofX , consider two

cases, f(D) = Y or f(Y ) 6= X . Suppose f(D) = Y . Since SCn
m(f)|SCn

m(D)

is weakly confluent, by Theorem 5.5, f |D is weakly confluent. Now, suppose
that f(D) is a subcontinuum proper of Y . Let B be a subcontinuum of
f(D). Consider {z1, . . . , zn−1} ⊂ Y \ B such that zi 6= zj if i 6= j. Let Mi

be a component of f−1(zi), for each i ∈ {1, . . . , n− 1}. Notice that D =
ρn,mX (〈M1, . . . ,Mn−1, D〉) is a subcontinuum of SCn

m(X). Since SCn
m(f)|D

is weakly confluent and ρn,mY (〈{z1} , . . . , {zn−1}, B〉) is a subcontinnum of
SCn

m(f)(D), there exists a subcontinuum W of D such that SCn
m(f)(W) =

ρn,mY (〈{z1} , . . . , {zn−1}, B〉). Moreover, (ρn,mX )−1(W) is a subcontinuum of
〈M1, . . . ,Mn−1, D〉 such that Cn(f)((ρ

n,m
X )−1(W)) = 〈{z1} , . . . , {zn−1}, B〉.

By [20, Lemma 3.1 ], K =
⋃

(ρn,mX )−1(W) ∩D is a nonempty connected set.
Thus f(K) = B.

Theorem 5.7. Let f : X → Y be a mapping between continua and n ≥ 2.
Consider the following conditions:

(1) f is semi-confluent;
(2) Cn(f) is semi-confluent;
(3) SCn

m(f) is semi-confluent.

Then (2) implies (3) and each of the conditions (2) and (3) implies (1).

Proof. (2) ⇒ (3). Since ρn,mY is monotone, by Statement 1.1 of [10,
p. 41], ρn,mY ◦Cn(f) is semi-confluent. Thus SCn

m(f) ◦ ρn,mX is semi-confluent.
By 5.16 of [24, p. 32], SCn

m(f) is semi-confluent.
We will prove that (3) ⇒ (1). Let B be a proper subcontinuum of Y .

Let C1 and C2 are components of f−1(B). Consider {z1, . . . , zm} ⊂ Y \ B
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such that zi 6= zj if i 6= j. Let Mi be a component of f−1(zi), for each
i ∈ {1, . . . ,m}. By Proposition 2.4, ρn,mX (〈M1, . . . ,Mm, Ci〉) is a compo-
nent of SCn

m(f)−1 (ρn,mY (〈{z1}, . . . , {zm}, B〉)), for each i ∈ {1, 2}. Without
of lost generality we can suppose that SCn

m(f) (ρn,mX (〈M1, . . . ,Mm, C1〉)) ⊂
SCn

m(f) (ρn,mX (〈M1, . . . ,Mm, C2〉)). Thus

Cn(f) (〈M1, . . . ,Mm, C1〉) ⊂ Cn(f) (〈M1, . . . ,Mm, C2〉) .

Hence f(C1) ⊂ f(C2).
(2) ⇒ (1) is obvious.

6. OM mappings

In this part we use the following definition to limit superior of a sequence
of subsets

Definition 6.1. Let X be a continuum. Given a sequence {Am}m∈N

of subsets of X we define lim supm→∞ Am as the set of points x ∈ X such
that there exists a sequence of positive numbers m1 < m2 < · · · and points
xmk

∈ Amk
such that limxmk

= x.

The following characterization of OM mappings was showed in [12,
p. 788].

Lemma 6.2. A mapping f : X → Y between continua is an OM -mapping
if and only if, for each point y ∈ Y and each sequence of points ym ∈ Y
tending to y the set lim supm→∞ f−1(ym) meets each component of f−1(y).

Theorem 6.3. Let f : X → Y be a mapping between continua and let
n ≥ 2. Consider the following conditions:

(1) f is an OM-mapping;
(2) Cn(f) is an OM-mapping;
(3) SCn

m(f) is an OM-mapping.

Then condition (2) implies (3) and each of the conditions (2) and (3) implies
(1).

Proof. (2) ⇒ (3). Since Cn(f) is an OM -mapping, ρn,mY is monotone
and ρn,mY ◦Cn(f) = SCn

m(f) ◦ ρn,mX , by 5.4 of [24, p. 28], SCn
m(f) ◦ ρn,mX is an

OM -mapping. Hence by 5.6 of [24, p. 33], SCn
m(f) is an OM -mapping.

To prove (3) ⇒ (1), let {yr}r∈N
be a sequence of points in Y converging to

a point y ∈ Y . Consider {z1, . . . , zn−1} ⊂ Y \({y}∪{yr}r∈N
) such that zi 6= zj

if i 6= j. Let Mi be a component of f−1(zi), for each i ∈ {1, . . . , n − 1} and
let Mn be a component of f−1(y). By Proposition 2.4, ρn,mX (〈M1, . . . ,Mn〉)
is a component of SCn

m(f)−1 (ρn,mY ({z1, . . . , zn−1, y})). Clearly the sequence
{ρn,mY ({z1, . . . , zn−1, yr})}r∈N

converges to ρn,mY ({z1, . . . , zn−1, y}).
Since SCn

m(f) is an OM -mapping, by Lemma 6.2,

ρn,mX (〈M1, . . . ,Mn〉) ∩ lim sup
s→∞

SC n
m(f)−1 (ρn,mY ({z1, . . . , zn−1, ys})) 6= ∅.



484 J. G. ANAYA, F. CAPULÍN, M.A. LARA AND F. OROZCO-ZITLI

Let A ∈ 〈M1, . . . ,Mn〉 such that

ρn,mX (A) ∈ lim sup
s→∞

SCn
m(f)−1 (ρn,mY ({z1, . . . , zn−1, ys})) .

Then, there exists a subsequence {ρn,mX (Ask)}k∈N
such that for each positive

integer k, ρn,mX (Ask) ∈ SCn
m(f)−1 (ρn,mY ({z1, . . . , zn−1, ysk})) and

lim
k→∞

ρn,mX (Ask) = ρn,mX (A).

Let a ∈ A ∩Mn. Since limk→∞ Ask = An, there exists a sequence {ask}k∈N
,

with ask ∈ Ask , such that converges to a ∈ A. Thus exists a positive integer
l0 such that f(ask) = ysk for each k ≥ l0. Hence

a ∈ A ∩Mn ∩ lim sup
s→∞

f−1(ys).

Therefore, by Lemma 6.2, f is OM mapping.
Clearly (2) ⇒ (1).

Corollary 6.4. Let f : X → Y be a mapping between continua. Then
the following conditions are equivalent.

(1) f is an OM-mapping.
(2) C2(f) is an OM-mapping.
(3) SC2

1 (f) is an OM-mapping.

Proof. It follows from [12, Theorem 14] and Theorem 6.3.

Theorem 6.5. Let f : X → Y be a mapping between continua and let
n ≥ 3. Then the following conditions are equivalent.

(1) f is monotone.
(2) Cn(f) is monotone.
(3) Cn(f) is OM-mapping.
(4) SCn

m(f) is an OM-mapping, 2 ≤ m ≤ n− 2.

Proof. By Theorem 4.1, (1) and (2) are equivalent. (1) ⇒ (3) follows
from Theorem 4.1. By Theorem 6.3, (3) ⇒ (4). We will prove that (4) ⇒ (1).
Since SCn

m(f) is an OM -mapping, by (4.9) of [24, p. 16], SCn
m(f) is confluent.

Thus, by Theorem 5.3, f is monotone.

The next example shows that (1) does not imply (3) in Theorem 6.3.

Example 6.6. There exist continua X and Y and an OM -mapping f :
X → Y such that SCn

m(f) is not an OM -mapping.

Consider the mapping f : [−1, 1] → [0, 1] defined by f(x) = |x|. Clearly,
f is an OM -mapping but not monotone. By Theorem 6.5, SC n

m(f) is not an
OM -mapping for n ≥ 4 and 2 ≤ m ≤ n− 2.
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7. Joining mappings

Theorem 7.1. Let f : X → Y be a mapping between continua and let
n ≥ 2. Consider the following conditions:

(1) f is joining;
(2) Cn(f) is joining;
(3) SCn

m(f) is joining.

Then condition (2) implies (3) and each of the conditions (2) and (3) implies
(1).

Proof. (2) ⇒ (3). Since ρn,mY is monotone and Cn(f) is a joining map-
ping, ρn,mY ◦ Cn(f) is a joining mapping. Thus SCn

m(f) ◦ ρn,mX is a joining
mapping. By (5.21) of [24, p. 33], SCn

m(f) is a joining mapping.
We will prove that (3) ⇒ (1). Let B be a proper subcontinuum of Y .

Let C1 and C2 components of f−1(B). Consider {z1, . . . , zm} ⊂ Y \ B such
that zi 6= zj if i 6= j. For each i ∈ {1, . . . ,m}, let Mi be a component
of f−1(zi). By Proposition 2.4 ρn,mX (〈M1, . . . ,Mm, Ci〉) is be a component
of SCn

m(f)−1 (ρn,mY (〈{z1}, . . . , {zm}, B〉)) for i ∈ {1, 2}. Since SCn
m(f) is a

joining mapping,

SCn
m(f) (ρn,mX (〈M1, . . . ,Mm, C1〉))∩ SCn

m(f) (ρn,mX (〈M1, . . . ,Mm, C2〉)) 6= ∅.

So Cn(f) (〈M1, . . . ,Mm, C1〉)∩Cn(f) (〈M1, . . . ,Mm, C2〉) 6= ∅. Thus f(C1)∩
f(C2) 6= ∅.

Clearly (2) ⇒ (1).

8. Light mappings

Theorem 8.1. Let f : X → Y be a mapping between continua and let
n ≥ 2. Consider the following conditions:

(1) f is light;
(2) Cn(f) is light;
(3) SCn

m(f) is light.

Then each of the conditions (2) and (3) implies (1).

Proof. (2) ⇒ (1). It follows from C(f) = Cn(f)|C(X) and [6, Theorem
3.10].

(3) ⇒ (1). To prove that f is a light mapping, suppose that exists y ∈ Y
such that f−1(y) is not totally disconnected. Let M be a nondegenerate
component of f−1(y). Consider {y1, . . . , yn−1} ⊂ Y \ {y} such that yi 6= yj
if i 6= j. Let Mi be a component of f−1(yi), for each i ∈ {1, . . . , n − 1}. By
Proposition 2.4 ρn,mX (〈M1, . . . ,Mn−1,M〉) is a subcontinuum nondegenerate
of SCn

m(f)−1(ρn,mY ({y1, . . . , yn−1, y})), a contradiction.

The next example shows that (1) does not imply (3) in Theorem 8.1.
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Example 8.2. There exist continua X and Y and a light mapping f :
X → Y such that SCn

m(f) : SC n
m(X) → SCn

m(Y ) is not light.

Let C be the complex plane and S1 ⊂ C the unit circle centered at the
origin. Fix n and m. Define f : S1 → S1 by f(z) = zn. Clearly f is a light
mapping. Consider

A =

{

ρn,mX

({

eiθ, ei(
2π
n

+θ), . . . , ei(
2(n−1)π

n
+θ)

})

∈ SCn
m(X) : 0 ≤ θ ≤

2π

n

}

.

Notice that A ⊂ SCn
m(f)−1(ρn,mY (Cm(S1))). It is easy to show that A is an

arc in SC n
m(X). Therefore SCn

m(f) is not a light mapping.

9. Atomic mappings

Theorem 9.1. Let f : X → Y be a mapping between continua and n ≥ 2.
The conditions are equivalent.

(1) f is homeomorphism.
(2) Cn(f) is atomic.
(3) SCn

m(f) is atomic.

Proof. By Theorem 3.1, (1) implies (2) and (3).
(2) ⇒ (1) is proved in [12, Theorem 43].
(3) ⇒ (1) follows from Proposition 2.1 and (6.3) of [24, p. 51].

10. Atriodic mappings

Theorem 10.1. Let f : X → Y be a mapping between continua and
n ≥ 2. If SCn

m(f) is atriodic, then f is atriodic.

Proof. LetD be a proper subcontinuum of Y . Consider {z1, . . . , zn−1} ⊂
Y \D such that zi 6= zj if i 6= j. Then there exist two components D1 and
D2 of SCn

m(f)−1 (ρn,mY (〈{z1}, . . . , {zn−1}, D〉)) such that

1. SCn
m(f)(D1) ∪ SCn

m(f)(D2) = ρn,mY (〈{z1}, . . . , {zn−1}, D〉),
2. for each component K of SCn

m(f)−1(ρn,mY (〈{z1}, . . . , {zn−1}, D〉)), we
have either SCn

m(f)(K) = ρn,mY (〈{z1}, . . . , {zn−1}, D〉) or SCn
m(f)(K)

⊂ SCn
m(f)(D1) or SC

n
m(f)(K) ⊂ SCn

m(f)(D2).

Notice that for each j ∈ {1, 2}, (ρn,mX )−1(Dj) ⊂ Cn
n−1(X). So, we can find sub-

sets M j
1 , . . . ,M

j
n of X such that for each i ∈ {1, . . . , n−1}, M j

i is be a compo-
nent of f−1(zi), M

j
n is a component of f−1(D) and since Dj is a component of

SCn
m(f)−1 (ρn,mY (〈{z1}, . . . , {zn−1}, D〉)) then Dj ∩ρn,mX (

〈

M j
1 , . . . ,M

j
n

〉

) 6= ∅.

It follows from Proposition 2.4 that Dj = ρn,mX (
〈

M j
1 , . . . ,M

j
n

〉

). Thus, by 1.,

f(M1
n) ∪ f(M2

n) = D.
Now, let K be a component of f−1(D). Since ρn,mX (

〈

M1
1 , . . . ,M

1
n−1,K

〉

)

is a component of SCn
m(f)−1(ρn,mY (〈{y1} , . . . , {yn−1} , D〉)) by 2., f(K) = D

or f(K) ⊂ f(M1
n) or f(K) ⊂ f(M2

n).
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11. Locally mappings

Theorem 11.1. Let f : X → Y be a mapping between continua and let
n ≥ 3. If SCn

m(f) is a local homeomorphism then, f is a homeomorphism.

Proof. It follows from (4.26) of [24, p. 20] and Theorem 3.2.

S. Nadler Jr. in [26, Lemma 2.3], defines a metric for a quotient space
obtained identifying a subcontinuum to a point. In a similar way we are going
to define a metric on the SCn

m(X). Let

Γn,m = {Cm(X) ∪ {A} : A ∈ Cn(X)}.

Define Gn,m : SC n
m(X) → Γn,m by

Gn,m(ρn,mX (A)) = Cm(X) ∪ (ρn,mX )−1(ρn,mX (A)).

Then Gn,m is a homeomorphism. Next, define

σn,m : SCn
m(X)× SCn

m(X) → [0,∞)

by

σn,m(ρn,mX (A), ρn,mX (B)) = H2(Gn,m(ρn,mX (A), Gn,m(ρn,mX (B)),

where H2 is the Hausdorff metric induced by the Hausdorff metric H on
Cn(X). Thus σn,m is a metric.

Lemma 11.2. Let X be a continuum, ε > 0 and n ≥ 2. Let A,B ∈ Cn(X)
such that H(A,B) < ε, then σn,m(ρn,mX (A), ρn,mX (B)) < ε.

Proof. Let A,B ∈ Cn(X) such that H(A,B) < ε, then {B} ∈ VH
ε ({A})

and {A} ∈ VH
ε ({B}). Notice that Gn,m(ρn,mX (A)) ⊂ VH

ε (Gn,m(ρn,mX (B))) and
Gn,m(ρn,mX (B)) ⊂ VH

ε (Gn,m(ρn,mX (A))). Thus

H2(Gn,m(ρn,mX (A)), Gn,m(ρn,mX (B))) < ε.

Lemma 11.3. Let X be a continuum, ε > 0 and n ≥ 2. Take A ∈ C(X)
such that diam(A) < ε and let {z1, . . . , zm} ⊂ X \A such that zi 6= zj if i 6= j.
Then diam(ρn,mX (〈{z1}, . . . , {zm}, A〉) < ε.

Proof. Let B,D ∈ 〈{z1}, . . . , {zm}, A〉. Consider D1 = D ∩ A and
B1 = B ∩A. Notice that d(x, c) < diam(A) for each c ∈ D1 and for each x ∈
B1. Then B ⊂ Vd

ε (D) and D ⊂ Vd
ε (B). Thus H(B,C) < ε. By Lemma 11.2,

σn,m(ρn,mX (B), ρn,mX (D)) < ε. Therefore diam(ρn,mX (〈{z1}, . . . , {zm}, A〉)) < ε.

Theorem 11.4. Let f : X → Y be a mapping between continua and
n ≥ 2. If SCn

m(f) is locally confluent then, f is locally confluent.
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Proof. By [24, Theorem 4.38], there exists ε > 0 such that for each
subcontinuum A of SCn

m(Y ) of diameter less than ε and each component D
of SCn

m(f)−1(A) is mapped by SCn
m(f) onto A. Let B be a subcontinuum

of Y of diameter less that ε and D be a component of f−1(B). Consider
{z1, . . . , zm} ⊂ Y \ B such that zi 6= zj if i 6= j. Let Mi be a component of
f−1(zi), for each i ∈ {1, . . . ,m}. By Lemma 11.3, ρn,mY (〈{z1}, . . . , {zm}, B〉)
has diameter less that ε. By Proposition 2.4, ρn,mX (〈M1, . . . ,Mm, D〉) is a
component of SCn

m(f)−1 (ρn,mY (〈{z1}, . . . , {zm}, B〉)). Thus

SCn
m(f)(ρn,mX (〈M1, . . . ,Mm, D〉) = (ρn,mY 〈{z1}, . . . , {zm}, B〉) .

We conclude that f(D) = B. By [24, Theorem 4.38], f is locally confluent.

Theorem 11.5. Let f : X → Y be a mapping between continua and n ≥
2. If SCn

m(f) is locally weakly confluent then, f is locally weakly confluent.

Proof. By 4.37 of [24, p. 23], there exists ε > 0 such that for each
subcontinuum A of SCn

m(Y ) of diameter less than ε, there exists a compo-
nent D of SCn

m(f)−1(A) such that SCn
m(f)(D) = A. Let B be a subcon-

tinuum of Y of diameter less than ε. Consider {z1, . . . , zn−1} ⊂ Y \ B such
that zi 6= zj if i 6= j. By Lemma 11.3, ρn,mY (〈{z1}, . . . , {zn−1}, B〉) has di-
ameter less than ε. Since SCn

m(f) is a locally weakly confluent mapping,
there exists a component B of SCn

m(f)−1(ρn,mY (〈{z1}, . . . , {zn−1}, B〉)) such
that SCn

m(f)(B) = ρn,mY (〈{z1}, . . . , {zn−1}, B〉). Notice that (ρn,mY )−1(B) ⊂
Cn
n−1(X). Thus, we can find subset M1, . . . ,Mn of X , such that for each

i ∈ {1, . . . , n − 1}, Mi is a component of f−1(zi), Mn is a component of
f−1(B) and ρn,mX (〈M1, . . . ,Mn〉)∩C 6= ∅. It follows from Proposition 2.4 that
ρn,mX (〈M1, . . . ,Mn〉) is a component of

SCn
m(f)−1(ρn,mY (〈{z1}, . . . , {zn−1}, B〉)).

Hence B = ρn,mX (〈M1, . . . ,Mn〉). Therefore f(Mn) = B. By [24, Theorem
4.37], f is locally weakly confluent.

12. Problems

(1) Is there weakly confluent mapping f : X → Y such that either Cn(f)
is not weakly confluent or SCn

m(f) is not weakly confluent?
(2) Is there hereditarily weakly confluent mapping f : X → Y such that

either Cn(f) is not hereditarily weakly confluent or SCn
m(f) is not

hereditarily weakly confluent?
(3) Is there semi-confluent mapping f : X → Y such that either Cn(f) is

not semi-confluent or SCn
m(f) is not semi-confluent?

(4) Is there OM−mapping f : X → Y such that either Cn(f) is not OM
or SCn

m(f) is not OM for n > 2?
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(5) Is there joining mapping f : X → Y such that either Cn(f) is not
joining or SCn

m(f) is not joining?
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490 J. G. ANAYA, F. CAPULÍN, M.A. LARA AND F. OROZCO-ZITLI

[21] H. Hosokawa, Induced mappings on hyperspaces. II, Tsukuba J. Math. 21 (1997),
773–783.

[22] A. Illanes and S. B. Nadler, Jr., Hyperspaces. Fundamentals and recent advances,
Marcel Dekker, New York, 1999.
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