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Vol. 51(71)(2016), 491 – 501

INVERSE LIMITS WITH COUNTABLY MARKOV

INTERVAL FUNCTIONS
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Abstract. We introduce countably Markov interval functions and
show that two inverse limits with countably Markov interval bonding func-
tions are homeomorphic if the functions follow the same pattern. This
result presents a generalization of results of S. Holte, and I. Banič and T.
Lunder.

1. Introduction

S. Holte proved that two inverse limits with Markov interval bonding func-
tions (with respect to a finite set A, usually referred to as a Markov partition)
are homeomorphic, if the Markov interval bonding functions are surjective and
follow the same pattern, see [3]. A generalization of Markov interval maps
was introduced in [1], where the authors defined so-called generalized Markov
interval functions (with respect to a finite set A which generalizes the notion
of Markov partition). They are a non-trivial generalization of single-valued
mappings from an interval I to I to set-valued functions from I to 2I . In
[1], the authors proved that also in this more general case, two inverse limits
with generalized Markov interval bonding functions are homeomorphic, if the
bonding functions are surjective and follow the same pattern.

In this paper we extend the notion of generalized Markov interval func-
tions (as well as Markov interval functions) by introducing so-called countably
Markov interval functions with respect to an infinite countable set A. As the
main result of the paper we show that two inverse limits with countably
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Markov interval bonding functions are homeomorphic, if the bonding func-
tions follow the same pattern. This improves the above mentioned results
since the surjectivity of bonding functions is not required.

We point out that there already exist many examples of functions that
have already been studied intensively in various areas for different reasons,
and can now be interpreted as such countably Markov interval functions:

1. (skew) tent functions can be interpreted as countably Markov interval
functions;

2. Bennet’s function, see [6, p. 17] (a more detailed description of this
function is given in Example 3.10);

3. a subfamily of Kelly’s irreducible functions, see [7].

2. Definitions and notation

Our definitions and notation mostly follow [1, 4, 10].
A set is countable if it is finite or of the cardinality ℵ0.
For a given set A the number of elements of A is denoted by |A|.
The Cantor - Bendixson derivative of a subset A of a topological space X

is the set of all limit points of the set A. We denote the derivate set of the
set A by A′.

A map is a continuous function. In the case where f : R → R is a map
and a ∈ R, we use limx↓a f(x) to denote the right-hand limit and limx↑a f(x)
to denote the left-hand limit of the function f at the point a (for more details
see [11, p. 83–95]). In Section 3 we define a generalization of this notion to
limits of set-valued functions.

We use π1, π2 : X×X → X to denote the standard projections π1(x, y) =
x and π2(x, y) = y.

For a metric space (X, d), for r > 0 and for a ∈ X , Br(a) = {x ∈
X | d(x, a) < r} denotes an open ball in X .

For a compact metric space X , we denote by 2X the set of all nonempty
closed subsets of X .

If f : X → 2Y is a function, then the graph of f , Γ(f), is defined as
Γ(f) = {(x, y) ∈ X × Y | y ∈ f(x)}.

A function f : X → 2Y has a surjective graph, if for each y ∈ Y there is
an x ∈ X , such that y ∈ f(x).

Let f : X → 2Y be a function. If for each open set V ⊆ Y , the set
{x ∈ X | f(x) ⊆ V } is open in X , then f is an upper semicontinuous function
(abbreviated u.s.c.) from X to 2Y .

The following theorem is a well-known characterization of u.s.c. functions
between compact metrics spaces (for example, see [4, p. 120, Theorem 2.1]).

Theorem 2.1. Let X and Y be compact metric spaces and f : X → 2Y

a function. Then f is u.s.c. if and only if its graph Γ(f) is closed in X × Y .
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If F : X → 2Y is a u.s.c. function, where for each x ∈ X , the image F (x)
is a singleton in Y ; then we can interpret it as a single-valued continuous
function. Obviously, for any continuous function f : X → Y , the function
F : X → 2Y , defined by F (x) = {f(x)}, is an u.s.c. function. In this special
case, we say that F is injective if f is injective.

Let f : X → 2Y be a function. Then we say that f is single-valued at
some point x ∈ X if f(x) consists of a single point. We also say that f is
single-valued on some subspace Z ⊆ X if the above holds for each x ∈ Z.

Let A be a subset of X and let f : X → 2Y be a function. The restriction
of f on the set A, f |A, is the function from A to 2Y such that f |A(x) = f(x)
for every x ∈ A.

A sequence {Xk, fk}∞k=1 of compact metric spaces Xk and u.s.c. functions
fk : Xk+1 → 2Xk , is an inverse sequence with u.s.c. bonding functions .

The inverse limit of an inverse sequence {Xk, fk}∞k=1 with u.s.c. bonding
functions is defined as the subspace of

∏∞

k=1 Xk of all points (x1, x2, . . .),
such that xk ∈ fk(xk+1) for each k. The inverse limit of an inverse sequence
{Xk, fk}∞k=1 is denoted by lim

←−
{Xk, fk}∞k=1.

In this paper we deal only with the case when for each k, Xk is a closed
interval I = [x, y] and fk : I → 2I . So, we denote the inverse limit simply by
lim
←−
{I, fk}∞k=1.
The concept of inverse limits of inverse sequences with u.s.c. bonding func-

tions (also known as generalized inverse limits) was introduced by Mahavier
in [8] and later by Ingram and Mahavier in [4]. Since then, inverse limits have
appeared in many papers (more references can be found in [5, 6]).

3. Countably Markov interval functions

In this section we introduce countably Markov interval functions and show
some of their properties.

There are many results about limits of sequences of sets in metric spaces,
for examples see [10, p. 56] or [9, p. 17], where other references can be found.
In the beginning of this section, we use a generalization of the above results
about limits of sequences of sets, by dealing with limits of set-valued functions
f , i.e. the left-hand limit Limt↑af(t) and the right-hand limit Limt↓af(t).They
are defined in such a way that in the cases where f can be interpreted as a
single-valued function, the above limits behave as standard limits for single-
valued functions (if they exist).

Definition 3.1. Let f : I = [x, y] → 2I be a set-valued function. We
define the left-hand limit and the right-hand limit of f at a point a ∈ I as
follows:

Limt↑af(t) ={s ∈ I | for each ε > 0 there exists a z ∈ (a− ε, a)

such that ({z} × f(z)) ∩Bε(a, s) 6= ∅}.
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Limt↓af(t) ={s ∈ I | for each ε > 0 there exists a z ∈ (a, a+ ε)

such that ({z} × f(z)) ∩Bε(a, s) 6= ∅}.

Remark 3.2. If f : I = [x, y] → 2I is a set-valued function, then the
limits Limt↑xf(t) and Limt↓yf(t) are empty sets.

Example 3.3. Let the set-valued function f : [0, 1]→ 2[0,1] be defined by
its graph, which is the union of the following sets:

1. the straight line segment with endpoints (12 −
1
2n ,

1
3 ) and (12 −

1
2n+1 ,

2
3 )

for each positive integer n,
2. the straight line segment with endpoints (12 , 0) to (12 , 1),

3. the straight line segment with endpoints (12 ,
4
5 ) to (1, 1),

see Figure 1.
The left-hand limit of f at the point 1

2 is Limt↑ 1
2
f(t) =

[

1
3 ,

2
3

]

and the

right-hand limit is Limt↓ 1
2
f(t) = { 45}.
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1

1
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2
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Figure 1. The graph of f from Example 3.3.

Example 3.4. Let g : I = [0, 1] → 2I be defined by its graph, Γ(g) =
([0, 1

2 ) × [0, 1]) ∪ ([ 12 , 1]× {
1
2}), as seen in Figure 2. The left-hand limit of g

at the point 1
2 is Limt↑ 1

2
g(t) = [0, 1]. The right-hand limit of g at the point 1

2

is Limt↓ 1
2
g(t) = { 12}.

The following auxiliary results mostly follow directly from Definition 3.1
and are easy to prove. For the completeness of the paper, we give the proofs
anyway.

Lemma 3.5. Let x, y ∈ R, x < y. Let f : I = [x, y] → 2I be a u.s.c.
function and a ∈ I. The following two statements hold true.

1. Limt↑af(t) ⊆ f(a) and Limt↑af(t) is closed in f(a); if a 6= x then
Limt↑af(t) 6= ∅.
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Figure 2. The graph of g from Example 3.4.

2. Limt↓af(t) ⊆ f(a) and Limt↓af(t) is closed in f(a); if a 6= y then
Limt↓af(t) 6= ∅.

Proof. 1. If a = x then Limt↑af(t) = ∅ and therefore the claim holds
true.

If a 6= x, then Limt↑af(t) 6= ∅ – this is easily seen since [x, y] is a
compact metric space. Now suppose that Limt↑af(t) 6⊆ f(a). This means
that there exists a point (a, s) ∈ {a} × (Limt↑af(t) \ f(a)). From the
definition of Limt↑af(t) it follows that there exists a convergent sequence
{(xi, si)}∞i=1 ∈ Γ(f) ⊆ [x, y]× [x, y] with the limit (a, s). Since si ∈ f(xi) for
each i and s /∈ f(a), it follows that the graph of f is not closed in [x, y]× [x, y]
- a contradiction.

Now we prove that Limt↑af(t) is closed in f(a).
Let {(a, xi)}∞i=1 be a convergent sequence of elements in Limt↑af(t), with

the limit (a, x′) ∈ {a} × f(a). We prove that (a, x′) ∈ {a} × Limt↑af(t).
Let ε > 0. Since (a, x′) is the limit of {(a, xi)}∞i=1, there exists an i0 such

that (a, xi0 ) ∈ B ε

2
((a, x′)) ⊂ [x, y] × [x, y]. Since (a, xi0 ) ∈ {a} × Limt↑af(t),

there exists a z ∈ (a− ε
2 , a) such that ({z}×f(z))∩B ε

2
((a, xi0 )) 6= ∅. Therefore

we can choose a point (z, z′) from ({z} × f(z)) ∩B ε

2
((a, xi0 )). Then

d((z, z′), (a, x′)) ≤ d((z, z′), (a, xi0 )) + d((a, xi0 ), (a, x
′)) ≤

ε

2
+

ε

2
= ε.

We have found a z ∈ (a− ε
2 , a) ⊆ (a−ε, a), such that ({z}×f(z))∩Bε((a, x

′)) 6=
∅.

2. A similar arguing gives that Limt↓af(t) is a closed subset of f(a) and
if a 6= y then Limt↓af(t) 6= ∅.

Lemma 3.6. Let x, y ∈ R, x < y. Let f : I = [x, y] → 2I be a u.s.c.
function. If f(a) is connected for each a ∈ I, then the following statements
hold true for each a ∈ I.
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1. If a 6= x, then Limt↑af(t) is nonempty and connected.
2. If a 6= y, then Limt↓af(t) is nonempty and connected.

Proof. Note that Γ(f) is a continuum by [5, p. 17, Theorem 2.5.].
1. Choose any a ∈ (x, y] and prove that Limt↑af(t) is connected (it is

nonempty by Lemma 3.5).
Assume that Limt↑af(t) is not connected. Then there exist nonempty

open sets U, V in Limt↑af(t) such that U ∩ V = ∅, U ∪ V = Limt↑af(t).
Choose v ∈ V and u ∈ U . Without loss of generality suppose that u < v. If
[u, v] ⊆ Limt↑af(t), then U ∩ [u, v] and V ∩ [u, v] are nonempty, open in [u, v]
and U∩V ∩[u, v] = ∅ - this means that [u, v] is not connected - a contradiction.
Therefore there exists a s ∈ (u, v)\(U ∪V ) such that (a, s) ∈ {a}×f(a) (since
f(a) is connected by assumption).

Note that it follows from Lemma 3.5 that Limt↑af(t) is closed in f(a).
Since (a, u) and (a, v) are points in Limt↑af(t), there exist sequences

{(x1
i , y

1
i )}

∞
i=1 ∈ Γ(f)

with the limit (a, u) and

{(x2
i , y

2
i )}

∞
i=1 ∈ Γ(f)

with the limit (a, v), and x1
i < x2

i < x1
i+1 for each positive integer i. Since

lim
i→∞

y1i = u, lim
i→∞

y2i = v, and u < s < v, there exists a positive integer i0

such that for each i ≥ i0, y
1
i < s < y2i . Recall that the graph of f on each

[x1
i , x

2
i ] is a continuum and therefore also connected by [5, p. 17, Theorem 2.5.].

Therefore we can choose a sequence {(xi, s)}∞i=i0
∈ Γ(f), where xi ∈ [x1

i , x
2
i ],

such that {(xi, s)}∞i=1 is convergent with the limit (a, s). This means that
(a, s) ∈ {a}×Limt↑af(t). Recall that (a, s) /∈ {a}× (U ∪V ). This contradicts
the assumption that U ∪ V = lim

t↑a
f(t).

2. Using a similar arguing we get that Limt↓af(t) is nonempty and con-
nected for each a ∈ [x, y).

Finally, we introduce countably Markov interval functions.

Definition 3.7. Let x, y ∈ R, x < y and let A be a countable subset of
I = [x, y], containing the endpoints x and y and such that the derived set A′

of A is a finite subset of A. We say that a u.s.c. function f from I to 2I is a
countably Markov interval function with respect to A, if

1. for each a ∈ A, there exist u, v ∈ A such that u ≤ v and f(a) = [u, v]
(degeneracy u = v is possible),

2. the restriction of f on every interval of I \ A is an injective single-
valued function,

3. for each a ∈ A \A′, the limits Limt↓af(t),Limt↑af(t) are subsets of A,
4. if a ∈ A′ and a 6= x, then min(Limt↑af(t)),max(Limt↑af(t)) ∈ A;

if a ∈ A′ and a 6= y, then min(Limt↓af(t)),max(Limt↓af(t)) ∈ A.
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The set A is called the Markov partition for the function f .
A function f is a countably Markov interval function if there exists a set

A, such that f is countably Markov interval function with respect to A.

Remark 3.8. Since A′ is a subset of A, obviously A is closed. Minima and
maxima that appear in Definition 3.7 do exist since Limt↑af(t),Limt↓af(t) are
nonempty and closed by Lemma 3.5.

Remark 3.9. By Theorem 2.1, each countably Markov interval function
has a closed graph, since it is a u.s.c. function.

One can easily see that every (generalized) Markov interval function (as
defined in [3] and [1]) is also a countably Markov interval function. The set
A is finite, therefore also countable and the set A′ in this case is empty.
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Figure 3. The graph of the function from Example 3.10.

Example 3.10. Let f : [0, 1]→ 2[0,1] be the function from [6, p. 17]. The
graph Γ(f) is the union of the infinite sequence of straight line segments as
shown in Figure 3. Obviously, for A = {0, 1} ∪ {1 − 3

2i+1 | i = 1, 2, 3, . . .} ∪

{1− 1
2i | i = 1, 2, 3, . . .}, f is countably Markov interval function with respect

to A. The set A′ is the singleton {1}.
This is an example of a countably Markov interval function whose inverse

limit has already been studied; the example is taken from W. T. Ingram’s
book [6, p. 17], where it is attributed to R. Bennet [2].

In Lemma 3.5 and Lemma 3.6, we have already shown some properties
of Limt↑af(t) and Limt↓af(t) for any u.s.c. function f . If f is a countably
Markov interval function with respect to A and if a ∈ A′, we give a more
precise description as follows.

Proposition 3.11. Let f : I = [x, y]→ 2I be a countably Markov interval
function with respect to A. For each a ∈ A′ the following statement holds true.
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If a 6= x then there exist u1, v1 ∈ A, u1 ≤ v1, such that

Limt↑af(t) = [u1, v1] ⊆ f(a),

and if a 6= y then there exist u2, v2 ∈ A, u2 ≤ v2, such that

Limt↓af(t) = [u2, v2] ⊆ f(a).

Proof. Let a ∈ A′, a 6= x.
By Lemma 3.5, Limt↑af(t) is a nonempty closed subset of f(a), and by

Lemma 3.6, Limt↑af(t) is connected. Therefore Limt↑af(t) = [u1, v1] for
some u1, v1 ∈ I. By Definition 3.7, u1, v1 ∈ A, since u1 = min(Limt↑af(t))
and v1 = max(Limt↑af(t)).

The claim about Limt↓af(t) can be proved analogously.

In the following definition we introduce when two countably Markov in-
terval functions follow the same pattern. This is done in such a way that for
any two generalized Markov interval functions that follow the same pattern
(as introduced in [1]) also follow the same pattern (as introduced in Definition
3.12) when being interpreted as countably Markov interval functions.

Definition 3.12. Let f : I = [x, y]→ 2I be a countably Markov interval
function with respect to A and let g : J = [x′, y′]→ 2J be a countably Markov
interval function with respect to B. We say that f and g follow the same
pattern with respect to A and B if there exists an increasing bijective function
τ : A→ B such that for each a ∈ A and for all u, v ∈ A,

1. f(a) = [u, v] if and only if g(τ(a)) = [τ(u), τ(v)],
2. Limt↑af(t) = [u, v] if and only if Limt↑τ(a)g(t) = [τ(u), τ(v)], and
3. Limt↓af(t) = [u, v] if and only if Limt↓τ(a)g(t) = [τ(u), τ(v)].

We say that f and g follow the same pattern if there exist Markov parti-
tions A and B, such that f is countably Markov interval function with respect
to A, g is countably Markov interval function with respect to B, and f and g
follow the same pattern with respect to A and B.

Remark 3.13. Note that in Definition 3.12 degeneration is possible, i.e.
it may happen that u = v.

In the following example we show that the function τ is not necessarily
uniquely determined.

Example 3.14. Let f : [0, 1] → 2[0,1] be a countably Markov interval
function with respect to A = { 1

2n | n = 1, 2, 3, . . .} ∪ {1 − 1
2(n+1) | n =

1, 2, 3, . . .} ∪ {0, 1}, defined by its graph, which is the union of the following
segments:

1. the straight line segment with endpoints from (a, 0) to (a, 1) for each
a ∈ A,
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2. the straight line segment with endpoints from (a, 0) to (a′, 1) for all
a, a′ ∈ A, where a < a′ and [a, a′] ∩ A = {a, a′}.

Obviously, A′ = {0, 1}. Let g : [0, 1] → 2[0,1], Γ(g) = Γ(f) and let B = A.
First we define τ1 : A → B to be the identity function. Then we define
τ2 : A→ B by

τ2(x) =























x; x = 0 or x = 1
3
4 ; x = 1

2
1
2n ; x = 1

2(n+1)

1− 1
2(n+2) ; x = 1− 1

2(n+1)

,

for each positive integer n. Obviously, τ1 and τ2 are both increasing bijective
functions from A to B satisfying 1., 2. and 3. from Definition 3.12.

4. Main result

The following theorem is the main result of this paper.

Theorem 4.1. Let {fn}∞n=1 be a sequence of functions from I = [x, y] to
2I which are all countably Markov interval functions with respect to A and
let {gn}∞n=1 be a sequence of functions from J = [x′, y′] to 2J which are all
countably Markov interval functions with respect to B. If fn and gn follow
the same pattern with respect to A and B for each n, then lim←−{I, fn}

∞
n=1 is

homeomorphic to lim
←−
{J, gn}∞n=1.

Proof. We fix an increasing bijective function τ : A → B, having the
properties from Definition 3.12. First we construct inductively homeomor-
phisms hi : I → J such that hi(t) = τ(t) for each t ∈ A and hi ◦ fi = gi ◦ hi+1

for each positive integer i, see the diagram.

I ✛
f1

I ✛
f2

I ✛
f3

I ✛
f4

. . . lim
←−
{I, fn}∞n=1

J

h1

❄

✛
g1

J

h2

❄

✛
g2

J

h3

❄

✛
g3

J

h4

❄

✛
g4

. . . lim←−{J, gn}
∞
n=1

H

❄

For i = 1 we fix a homeomorphism h1 : I → J satisfying the following
properties. For any t ∈ A, h1(t) = τ(t) and for any interval [a, a′] ⊆ I,
such that a < a′ and [a, a′] ∩ A = {a, a′}, h1|[a,a′] is a continuous strictly
increasing bijective function from [a, a′] to [τ(a), τ(a′)]. Obviously, such a
homeomorphism exists.

Next we construct h2 : I → J satisfying

1. h2(t) = τ(t) for each t ∈ A and
2. h1 ◦ f1 = g1 ◦ h2
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as follows:
1. For any t ∈ A, let h2(t) = τ(t).
2. Let t /∈ A. Then there exist a, a′ ∈ A, such that [a, a′] ∩ A = {a, a′}

and t ∈ (a, a′). Since f1 is a countably Markov interval function with respect
to A, it follows that f1|(a,a′) is injective single-valued. Therefore Lims↓af1(s)
and Lims↑a′f1(s) are singletons in A, say, {α} = Lims↓af1(s) and {α′} =
Lims↑a′f1(s). Therefore, if f1 is increasing on (a, a′), then f1(t) ∈ (α, α′), and
if f1 is decreasing on (a, a′), then f1(t) ∈ (α′, α). Without loss of generality,
we assume that f1 is increasing on (a, a′).

Obviously, h1(f1(t)) ∈ (τ(α), τ(α′)). Therefore

∅ 6= g−1
1 |(τ(a),τ(a′))(h1(f1(t))) ⊆ (τ(a), τ(a′)).

Since g1|(τ(a),τ(a′)) : (τ(a), τ(a′)) → (τ(α), τ(α′)) is bijective, it follows that

|(g1|(τ(a),τ(a′)))
−1(h1(f1(t)))| = 1, say that

(g1|(τ(a),τ(a′)))
−1(h1(f1(t))) = {t

′}.

Finally we define

h2(t) = t′.

It follows from the construction of h2 that h2(t) = τ(t) for each t ∈ A
and h1 ◦ f1 = g1 ◦ h2. Now we prove that h2 : I → J is a homeomorphism.

To prove that h2 is bijective, it is enough to prove that h2|(a,a′) is bijective
for each a, a′ ∈ A, [a, a′] ∩ A = {a, a′}. The function h2|(a,a′) is defined as
the composition of three bijective functions, namely, f1|(a,a′), h1|(α,α′) and

(g1|(τ(a),τ(a′)))
−1. Therefore h2 is bijective.

Since h2 is strictly increasing and surjective, it is a homeomorphism.
Let i > 2 be a positive integer. Assume that we have already defined

h1, h2, . . . , hi such that hk(t) = τ(t) for each t ∈ A and hk ◦ fk = gk ◦ hk+1

for each 1 ≤ k ≤ i − 1. One may construct hi+1 similarly as in the above
construction of h2. More precisely, in the above mentioned construction of h2

we just replace 1 by i and 2 by i+ 1. We leave the details to the reader.
Now we define the function H : lim

←−
{I, fn}∞n=1 → lim

←−
{J, gn}∞n=1. Let

x = (x1, x2, x3, . . .) ∈ lim
←−
{I, fn}∞n=1. Then H(x) is defined by

H(x) = (h1(x1), h2(x2), h3(x3), . . .).

By [5, Theorem 4.5.], H is a homeomorphism.

References
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