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Abstract. We examine a number of properties of the ternary linear codes defined by the
adjacency matrices of some strongly regular graphs that occur as induced subgraphs of the
McLaughlin graph, namely the graphs with parameters (105, 72, 51, 45), (120, 77, 52, 44),
(176, 105, 68, 54), and (253, 140, 87, 65), respectively. We show that the codes with param-
eters [120, 21, 30]3,[120, 99, 6]3, [176, 21, 56]3, [176, 155, 6]3, [253, 22, 97]3 and [253, 231, 8]3
obtained from these graphs are linear codes with complementary duals and thus meet the
asymptotic Gilbert-Varshamov bound.
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1. Introduction

While studying the binary codes defined by the row span of the adjacency matrices
of the strongly regular graphs with parameters (105, 32, 4, 12), (120, 42, 8, 18) and
(253, 112, 36, 60) it was observed in [17] that the ternary codes of the adjacency ma-
trices of the complements of these graphs possess interesting properties. This paper
has a two-fold purpose: Firstly, to examine the linear codes defined by the ternary
row span of the adjacency matrices of the strongly regular graphs Λn with n ∈
{105, 120, 176, 253} and parameters (105, 72, 51, 45), (120, 77, 52, 44),(176, 105, 68,
54), and (253, 140, 87, 65). It turns out that some codes from these graphs, in partic-
ular those with parameters [120, 21, 30]3, [120, 99, 6]3, [176, 21, 56]3, [176, 155, 6]3 and
[253, 22, 97], [253, 231, 8]3 respectively, belong to a class of optimal codes known as
linear codes with complementary duals, see [18]. As described by Sendrier in [19],
these codes meet the asymptotic Gilbert-Varshamov bound.

Secondly, it was shown in [9] (see also [12]) that for n ≡ 1 (mod 4), the binary
code of the complementary graph T (n) of the triangular graph T (n) equals the
dual code of T (n), and so the question was raised as to whether there exists any
other graph for which the code obtained from the graph equals the dual code of
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its complementary graph; and if any such graph exists, what its defining properties
are. We answer this question in the affirmative by showing that the ternary codes of
the strongly regular graphs with parameters (120, 77, 52, 44) and (176, 105, 68, 54),
respectively, satisfy this property.

Hence, we deduce the following main result summarized in Theorem 1. In the
theorem, we collect the parameters and some properties of the codes defined by the
ternary row span of the graphs Λn, where n ∈ {105, 120, 176, 253} and Λn denotes
the complementary graph of an induced subgraph of the McLaughlin graph on n
vertices.

Theorem 1. Let Γ respectively Λn denote the McLaughlin graph and a complemen-
tary graph of a strongly regular graph on n vertices with n ∈ {105, 120, 176, 253},
which occurs as an induced subgraph of Γ. Further, let CΛn

denote the code defined

by the ternary row span of the adjacency matrix of Λn. Then

(a) CΛ105
is a [105, 20, 33]3 self-orthogonal code, and Aut(Λ105) = Aut(CΛ105

) ∼=
L3(4):D12.

Furthermore, CΛ105
= 〈C,1〉 = C ⊕ 1, where C = [105, 19, 36]3 is a self-

orthogonal subcode of co-dimension 1.

(b) CΛ120
= [120, 21, 30]3 = C⊥

Λ120
and CΛ120

⊥ = [120, 99, 6]3 = CΛ120
are lin-

ear codes with complementary duals. Moreover, Soc(F3
120) = N , where N =

〈K,1〉 = K ⊕ 1 and K is one of three non-isomorphic 15-dimensional ir-
reducible F3-modules invariant under L3(4). The codes N and K are self-
orthogonal with parameters [120, 16, 48]3 and [120, 15, 48]3, respectively. More-
over, N⊥ = [120, 104, 4]3 and K⊥ = [120, 105, 4]3, and Aut(N) = Aut(K) ∼=
L3(4):2

2.

(c) CΛ176
= [176, 21, 56]3 = C⊥

Λ176
is a linear code with complementary dual, and

CΛ176

⊥ = [176, 155, 6]3 = CΛ176
. Moreover, Aut(CΛ176

) = Aut(Λ176) ∼= M22,
and CΛ176

is the unique 21-dimensional irreducible F3-module invariant un-
der M22.

(d) CΛ253
is a [253, 23, 77]3 code and its dual C⊥

Λ253

is a [253, 230, 6]3 code, and

Aut(Λ253) = Aut(CΛ253
) ∼= M23. Further, CΛ253

= 〈C̃,1〉 = C̃ ⊕ 1, where

C̃ = [253, 22, 97]3 and M23 acts irreducibly on C̃ as an F3-module. Moreover,
C̃ and C̃⊥ are linear codes with complementary duals.

The proof of Theorem 1 follows from a series of lemmas and propositions in
Sections 5 and 6. The paper is organized as follows: after a brief description of
our terminology and some background in Sections 2 and 3, Section 4 outlines the
construction of the graphs and in Sections 5 and 6 we present our results.

2. Terminology

We assume that the reader is familiar with some basic notions and elementary facts
from design and coding theory. Our notation for designs and codes follows that of
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[1] and for groups we follow the Atlas [5]. The groups G.H, G : H, and G·H denote
a general extension, a split extension and a non-split extension, respectively. For G
a finite group acting on a finite set Ω, the set FpΩ, that is, the vector space over
Fp with basis Ω is called an FpG permutation module if the action of G is extended
linearly on Ω. The socle of a module M denoted as Soc(M) is the sum of minimal
submodules of M. Terminology for graphs is standard: the graphs Γ = (V,E) with
vertex set V and edge set E, discussed here are undirected and simple, that is, with
no loops or multiple edges. A graph is regular if all its vertices have the same valency.
An adjacency matrix A of a graph of order n := |V | is an n×n matrix with entries
aij such that aij = 1 if vertices vi and vj are adjacent, and aij = 0 otherwise. A
regular graph is strongly regular of type (n, k, λ, µ) if it has n vertices, each of degree
k, and if any two adjacent vertices are together adjacent to λ vertices, while any two
non-adjacent vertices are together adjacent to µ vertices. If x is a vertex of Γ, then
the neighbourhood graph Γ(x) with respect to x is the subgraph of Γ which is induced
by all vertices that are adjacent to x. The neighbourhood graph of a vertex x of a
strongly regular graph Γ is also called the first subconstituent of Γ. The subgraph of
Γ induced on all vertices of Γ which are not adjacent to (and different from) x, is
called a second subconstituent. The neighbourhood design of a regular graph is the
1-design formed by taking the points to be the vertices of the graph and the blocks
to be the sets of neighbours of a vertex, for each vertex. The complementary graph
of a strongly regular graph with parameters (n, k, λ, µ) is a strongly regular graph
with parameters (n, n− k − 1, n− 2k + µ− 2, n− 2k + λ).

The codes here are linear codes, and the notation [n, k, d]q will be used for a q-ary
code C of length n, dimension k, and minimum weight d, where the weight, wt(v),
of a vector v is the number of non-zero coordinate entries. A generator matrix for C
is a k × n matrix made up of a basis for C, and the dual code C⊥ is the orthogonal
complement under the standard inner product (· , ·), i.e., C⊥ = {v ∈ Fn | (v, c) =
0 for all c ∈ C}. The hull of C is Hull(C) = C ∩ C⊥. A code C is self-orthogonal
if C ⊆ C⊥. The all-one vector will be denoted by 1, and it is the constant vector
of weight the length of the code whose coordinate entries consist entirely of 1’s. An
[n, k] linear code C is said to be a best known linear [n, k] code if C has the highest
minimum weight among all known [n, k] linear codes. An [n, k] linear code C is
said to be an optimal linear [n, k] code if the minimum weight of C achieves the
theoretical upper bound on the minimum weight of [n, k] linear codes, and near-
optimal if its minimum distance is at most 1 less than the largest possible value.
The weight enumerator of C is defined as WC(x) =

∑n

i=0 Aix
i, where Ai denotes

the number of codewords of weight i in C. If C1 is an [n1, k1]-code, and C2 is an
[n2, k2]-code, then we say that C is the direct sum of C1 and C2 if (up to reordering
of coordinates) C = {(x, y) |x ∈ C1, y ∈ C2}. We denote this by C = C1 ⊕ C2.
If moreover C1 and C2 are nonzero, then we say that C decomposes into C1 and
C2. A code C is said to be decomposable if and only if it is equivalent to a code
which is the direct sum of two or more non-zero linear codes. Otherwise it is called
indecomposable. An automorphism of a code is any permutation of the coordinate
positions that maps codewords to codewords. The code of a graph Γ over a finite
field F is the row span of an adjacency matrix A over the field F , denoted by CF (Γ)
or CF (A). The dimension of the code is the rank of the matrix over F , also written
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rankp(A) if F = Fp, in which case we speak of the p-rank of A or Γ, and write Cp(A)
or Cp(Γ) for the code. Throughout the paper we adopt the notation CΓ for the code
of the graph.

3. Preliminary results and construction

We obtain our codes through the use of the following method of construction of
symmetric 1-designs and regular graphs which was described in [14, Proposition 1],
corrected in [15] and used in [16]:

Result 1. Let G be a finite primitive permutation group acting on the set Ω of size
n. Further, let α ∈ Ω, and let ∆ 6= {α} be an orbit of the stabilizer Gα of α. If

B = {∆g : g ∈ G}

and, given δ ∈ ∆,
E = {{α, δ}g : g ∈ G},

then D = (Ω,B) is a symmetric 1− (n, |∆|, |∆|) design. Further, if ∆ is a self-paired
orbit of Gα, then Γ(Ω, E) is a regular connected graph of valency |∆|, D is self-dual,
and G acts as an automorphism group on each of these structures, primitive on
vertices of the graph, and on points and blocks of the design.

4. The graphs

Result 1 outlines a construction of codes using the row span of the adjacency
matrices of regular graphs. As an extension of the study in [17], this paper ad-
dresses the two questions posed in Section 1 for the ternary codes obtained from the
row span of the adjacency matrices of the strongly regular graphs with parameters
(105, 72, 51, 45), (120, 77, 52, 44), (176, 105, 68, 54) and (253, 140, 87, 65), respectively.
We now give a brief description of the construction of these graphs, omitting detail.
Constructions of these graphs can be found for example in [6, 3]. The uniqueness of
a graph with parameters (105, 72, 51, 45) follows from that of its complement which
was shown in [6, Theorem 3], (see also [7, Theorem 1]). A graph with these param-
eters can be constructed from the second subconstituent of the McLaughlin graph,
that is, the unique strongly regular graph with parameters (162, 105, 72, 60), as fol-
lows: the 162 vertices form a single orbit. The vertex stabilizer in that graph is
L3(4):2

2 with vertex orbit sizes 1 + 56 + 105. The orbit of size 105 corresponds to
the flags (i.e., the pairs (p, L), where p is a point of PG2(4), L is a line and p is a
point of L) of PG2(4), where two flags (x,R) and (y, S) are adjacent when x, y are
equal or R,S are equal, and x is on S or y on R. The induced subgraph is strongly
regular with parameters (105, 72, 51, 45) and spectrum {[72]1, [9]20, [−3]84}.

Constructions of strongly regular graphs with parameters (120, 77, 52, 44), (176,
105, 68, 54) and (253, 140, 87, 65), respectively, can be found for example in [3]. For
the sake of completeness we give a brief outline of the mentioned constructions
as described in [3, pp. 343]. Take X = {α1, α2, . . . , α23} to be a set of size
23, and let D = (X,∆) be a Steiner system S(4, 7, 23) on X. Define a graph Λ
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on ∆ such that two vertices are adjacent whenever the cardinality of their inter-
section equals 1, and for j = 0, 1, 2, let Dj = (X(j),∆(j)) be the design formed
from D by deleting the symbols α1, . . . , αj and all blocks containing at least one of
those symbols. Define Λ(j) as the subgraph of Λ induced by ∆(j). Then Λ(0),Λ(1),
and Λ(2) are strongly regular with parameters (253, 112, 36, 60), (176, 70, 18, 34) and
(120, 42, 8, 18), respectively, and spectra {[112]1[2]230[−26]22}, {[70]1[2]154[−18]21}
and {[42]1[2]99[−12]20}. Form this construction we obtain the respective complemen-
tary graphs with parameters (253, 140, 87, 65), (176, 105, 68, 54) and (120, 77, 52, 44)
and spectra {[140]1[25]22[−3]230}, {[105]1[17]21[−3]154} and {[77]1[11]20[−3]99}. We
make extensive use of the spectra of the graphs to study some pertinent properties
of the ternary codes discussed in the sequel.

5. The ternary codes of the graphs

We denote the complementary graphs discussed above by Λ105, Λ120, Λ176 and Λ253,
respectively, and their corresponding ternary codes by CΛ105

, CΛ120
, CΛ176

and CΛ253
.

Using only the parameters of the graphs we can show that the p-ary codes of these
graphs, for p 6= 3, are either the ambient space or a code of codimension 1 in the
ambient space. The only exception is the case p = 5 for Λ253 where the 5-rank equals
230, which is the multiplicity of the negative eigenvalue. The lemma that follows
gives the p-ranks for the codes defined by the row span of the adjacency matrix of
the graph Λ105. Similar results can be obtained for the codes of the other graphs
examined in the paper.

5.1. Ternary codes of Λ105

Lemma 1. The adjacency matrix A of the graph Λ105 has 2-rank 104, 3-rank 20,
and p-rank 105 for p 6= 2, 3.

Proof. It is easy to see that if det(A) ≡ 0 (mod p), then A does not have full rank
over Fp. This is the case for p = 2 or p = 3. Now, the 2-rank of A equals 104 since
det(J −A) 6= 0 (mod 2), where J is the all-one matrix.

The 3-rank of Λ105 and thus the dimension of CΛ105
can be deduced readily by

using the spectrum of the graph. It follows from Section 4 that the eigenvalues of
an adjacency matrix A of Λ105 are θ0 = 72, θ1 = 9, and θ2 = −3 with corresponding
multiplicities f0 = 1, f1 = 20 and f2 = 84. Now, using results of [3, Section 3] we
obtain an upper bound on the 3-rank of Λ105, namely that rank3(Λ105) ≤ min(f1 +
1, f2 + 1) = 21.

In addition, since Λ105 is an induced subgraph of the unique strongly regular
(162, 105, 72, 60) graph and the 3-rank of an adjacency matrix for this graph is 21 (see
[3] or [8, Proposition 5.13]) we conclude that rank3(A) 6= 21. Furthermore, from [3,
Section 3] and by using minimal idempotents we deduce that rank3(Λ105) = f1 = 20
since θ0 − θ2 and n = 105 are both divisible by 3 and θ0 − θ2/n can be interpreted
in F3.
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Proposition 1. CΛ105
is a [105, 20, 33]3 self-orthogonal code, and its dual CΛ105

⊥ is

a [105, 85, 6]3 code with 15680 words of weight 6. Moreover, Aut(Λ105) = Aut(CΛ105
)

∼= L3(4):D12 and CΛ105
is a decomposable F3-module invariant under L3(4):D12.

Proof. Since in Λ105 we have k = 72, λ = 51 and µ = 45, and these three numbers
are divisible by 3, self-orthogonality of CΛ105

follows. Now, since the adjacency

matrix of Λ105 can be regarded as the incidence matrix of the 1-(105, 72, 72) self-dual
symmetric design, then from 72 ≡ 0 (mod 3) we deduce that 1 ∈ CΛ105

⊥. Through
computations with Magma [2] we obtain that the sum (modulo 3) of all rows of the
generator matrix G of CΛ105

is the all-ones vector, so 1 ∈ CΛ105
. The dimension of

CΛ105
follows from Lemma 1, and the minimum distance 33 can be deduced from the

weight distribution of CΛ105
which is given in Table 1. In this table, m represents

the weight of a codeword wm in CΛ105
and Am denotes the number of codewords of

weight m.

m Am m Am m Am

0 1 57 21993720 81 58508240

33 770 60 108522288 84 9106500

36 3360 63 303515520 87 1230880

42 29640 66 606412800 90 127008

45 38304 69 818230000 93 128520

48 141120 72 804875190 96 15680

51 987840 75 526684032 99 3360

54 3649800 78 222579280 105 548

Table 1: The weight distribution of C
Λ105

From [20] we have Aut(Λ105) = L3(4):D12 acting transitively as a rank-4 group.
Moreover, by construction we have Aut(Λ105) ⊆ Aut(CΛ105

); and since |Aut(Λ105)| =

|Aut(CΛ105
)|, we deduce that Aut(CΛ105

) = Aut(Λ105) ∼= L3(4):D12. Taking the
images of the supports of the codewords of weight 36 in CΛ105

we form a set W36 =
{w ∈ CΛ105

|wt(w) = 36}. We can show that W36 spans a subcode C of codimension
1 in CΛ105

. Now, let ρ ∈ Aut(C). Since ρ(1) = 1 and CΛ105
= 〈C,1〉, we have

ρ ∈ Aut(CΛ105
) so that Aut(C) ⊆ Aut(CΛ105

). From L3(4) :D12 = Aut(Λ105) ≤
Aut(C) ≤ Aut(CΛ105

) = L3(4) :D12, we obtain that Aut(C) = L3(4) :D12. Since
CΛ105

= 〈C,1〉 = C ⊕ 1 and C and 1 are irreducible F3-modules, we deduce that
CΛ105

is a decomposable F3-module under the action of L3(4):D12.

That CΛ105

⊥ has minimum weight 6 was found using Magma [2]. Finally, from

[10, 11] we obtain that CΛ105

⊥ is a distance 2 less than the recorded distance.

We now have the following immediate consequence of Proposition 1.

Corollary 1. The codewords of weight 36 in CΛ105
span a subcode C of codimension

1. C is a [105, 19, 36]3 self-orthogonal code. The dual code C⊥ of C is a [105, 86, 5]3
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with 84 codewords of weight 5. Further, C is a non-trivial F3-module of the smallest
dimension on which L3(4):D12 acts irreducibly.

Proof. The dimension and self-orthogonality of C follow readily from Proposition 1.
The assertion on the minimum distance of C follows from the weight distribution of
CΛ105

. In fact, the weight distribution for C is given in Table 2 below.

m Am m Am m Am

0 1 57 6552000 78 74177040

36 3360 60 36809136 81 20054720

42 9480 63 101499720 84 2743020

45 336 66 202063680 87 544320

48 100800 69 269951640 90 54432

51 144480 72 272891220 96 15120

54 1659840 75 172986912 105 210

Table 2: The weight distribution of C

Using Table 2 we readily see that C does not contain an invariant subspace of
dimension 1. Suppose for a contradiction that C contains an invariant subspace U
of dimension 18. Then C = U ⊕ U , where U ∩ U = {0} and dim(U) = 1, and U
is invariant, but this is not possible. Hence, 19 is the smallest possible dimension
for any non-trivial F3-module on which L3(4):D12 acts irreducibly. Finally, C⊥ is
a distance 2 less than the recorded lower bound on the minimum distance for the
given length and dimension (see [10, 11]).

Remark 1. The set of codewords of minimum weight 33 in CΛ105
splits into four

obits of lengths 105, 105, 280, and 280, respectively, under the action of Aut(CΓ105
).

Remark 2. The code C is the only submodule of its dimension in the representation
of degree 105. In this representation we obtained three reducible and non-isomorphic
20-dimensional modules, which we denote by C1, C2, and C3, respectively. We found
that C3 is isomorphic to CΛ105

. The code C1 is a [105, 20, 30]3 code with 672 code-
words of weight 30 and C2 is a [105, 20, 28]3 with 720 codewords of weight 28.

6. Linear codes with complementary dual

Massey [18] defined a linear code with complementary dual as a linear code C whose
dual C⊥ satisfies C ∩ C⊥ = {0}, and gave the algebraic characterization of these
codes. He showed further that linear codes with complementary dual are asymp-
totically good codes, but stopping short of showing whether these codes attain the
Gilbert-Varshamov bound. A while later, Sendrier [19] showed that linear codes
with complementary dual meet the asymptotic Gilbert-Varshamov bound. In the
sections which follow we use results of [19] to show that the codes with parameters
[120, 21, 30]3, [120, 99, 6]3, [176, 21, 56]3, [176, 155, 6]3 and [253, 22, 97], [253, 231, 8]3
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are linear codes with complementary duals and thus meet the Gilbert-Varshamov
bound. In addition, this section addresses the second main aim of the paper which
is to deal with the question on the existence of graphs other than the triangular
graphs T (n) for which the code obtained from the graph equals the dual code of its
complementary graph. In particular, if any such graph exists, what are its defining
properties? We now give an affirmative answer to the existence part of this question.

While exploring the extent of the question on the defining properties of such
graphs, we have found that a more appropriate question is: Given a graph Γ and its
complement Γ, let CΓ and C⊥

Γ
be the code of Γ and the dual code of Γ, respectively.

If CΓ = C⊥

Γ
, does it follow necessarily that CΓ ∩ CΓ

⊥ = {0}, and conversely?

We start by examining the codes of the graph Λ120.

6.1. The graph Λ120 and related codes

Proposition 2. Let CΛ120
and CΛ120 denote the codes of the graphs Λ120 and Λ120,

respectively. Then CΛ120
= [120, 21, 30]3 = C⊥

Λ120
is a linear code with complemen-

tary dual and 112 codewords of weight 30. The code CΛ120

⊥ = [120, 99, 6]3 = CΛ120

is a code with 33600 words of weight 6. Moreover, 1 ∈ CΛ120
and Aut(CΛ120

) =

Aut(Λ120) ∼= L3(4):2
2.

Proof. Arguing as in Lemma 1, we can show that rk3(Λ120) = 21. Recall that the
eigenvalues of an adjacency matrix A of Λ120 are θ0 = 77, θ1 = 11, and θ2 = −3 with
algebraic multiplicities m0 = 1,m1 = 20 and m2 = 99, respectively. Observe that
rank3(A) ≥

∑
{mi | θi 6≡ 0 (mod 3)} = 1+20. In addition, observe that precisely one

eigenvalue, namely θ2 ≡ 0 (mod 3). So, we deduce from [4, Proposition 13.7.1(ii)]
that rk3(Λ120) = n − m2 = 120 − 99 = 21, and the claim holds. Since 3 | 120 and
3 ∤ 77, we have that all the row sums are non-zero modulo 3, and so 1 ∈ CΛ120

(see [3, Section 3]). Furthermore, since the dimension of the hull is zero, we have
Hull(CΛ120

) = {0}, and from this we infer CΛ120
⊕ CΛ120

⊥ = F120
3 as claimed. Now,

[12, Proposition 3.2 (iv)] adapted to the ternary case teaches us that CΛ120
= C⊥

Λ120

and CΛ120

⊥ = CΛ120
, since θ1 6≡ θ2 (mod 3) and θ0 is odd. In fact, in this case we

also have A · A ≡ 0 (mod 3), where A is the adjacency matrix of Λ120. Further, we
have that CΛ120

contains a subcode S of codimension 1 with parameters [120, 20, 30]3.

The dual S⊥ of S has parameters [120, 100, 6]3 and 43680 words of weight 6, and
it can be shown that S⊥ = CΛ120+I . Further, we have Aut(S) ∼= L3(4) : 22 and
Hull(S) = 〈1〉. Finally, the reader can verify from [11] that the minimum distance 6
of C⊥

Γ120
is 2 less than the theoretical upper bound on the minimum distance for a

[120, 99]3 code.

Remark 3. It is known that given a finite group acting primitively on a set Ω
of degree n, using Meat-Axe one is able to determine all irreducible faithful rep-
resentations invariant under the group. However, no general method is known to
appropriately locate the degree of the representations which contain such irreducible
representations. This seems to be an intricate problem in computational modular
representation theory. This is more apparent when n is very large. We will illus-
trate this using the group L3(4). The reader will notice for example from [13] that
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L3(4) has three non-isomorphic faithfully irreducible 15-dimensional representations
over F3. There is however no immediate technique available to ascertain the primi-
tive representations of L3(4) that contain such irreducible modules. In what follows,
and using a search through the primitive representations of L3(4) we are able to
find that one of these irreducible 15-dimensional modules occurs as a submodule of a
decomposable 16-dimensional module realizable as the socle of the 120-dimensional
permutation module over F3 defined by the action of L3(4) on the cosets of L3(2). In
this way, we locate the degree of the representation which contains one of the faithful
irreducible 15-dimensional modules. However, we cannot immediately localize the
remaining irreducible modules of this dimension. It is likely that these submodules
result from tensoring of modules or that they are found as constituents in other
representations of L3(4).

Hence, viewing the modules as codes invariant under L3(4) we show in Proposi-
tion 3 that these 15 and 16-dimensional codes are self-orthogonal.

Proposition 3. Let M be the 120-dimensional permutation module over F3 in-
duced by the primitive action of L3(4) on the cosets of L3(2). Then Soc(M) = N
where N is a 16-dimensional decomposable module invariant under L3(4). More-
over, N = 〈K,1〉 = K ⊕ 1 and K is one of three non-isomorphic 15-dimensional
irreducible F3-modules invariant under L3(4). The submodules N and K are re-
spectively [120, 16, 48]3 and [120, 15, 48]3 self-orthogonal codes with 1260 codewords
of weight 48. Further, N⊥ = [120, 104, 4]3 and K⊥ = [120, 105, 4]3 and Aut(N) ∼=
Aut(K) = L3(4):2

2.

Proof. The proof is essentially based on a combination of constructive arguments
using Meat-Axe and those given in Proposition 1 and Corollary 1, thus we omit
them here. We refer the reader to [13] for the irreducibility of K and the existence of
two non-isomorphic other 15-dimensional modules invariant under L3(4). Moreover,
from [11] we deduce that K⊥ and N⊥ are near-optimal codes (both codes are a
distance 1 less than optimal).

6.2. The ternary code of the graph Λ176

Proposition 4. CΛ176
= [176, 21, 56]3 = C⊥

Λ176
is a code with 924 codewords of

weight 56, and CΛ176

⊥ = [176, 155, 6]3 = CΛ176
is a code with 184800 words of weight

6. Moreover, 1 ∈ CΛ176

⊥, Aut(CΛ176
) = Aut(Λ176) ∼= M22, and CΛ176

⊕ CΛ176

⊥ =

F176
3 . Further, CΛ176

is the unique F3-module on which M22 acts irreducibly.

Proof. By the divisibility of the valency of Λ176 we obtain 1 ∈ CΛ176

⊥. Notice
that the 3-modular character table of M22 is completely known (see [13]). We can
deduce from it that the irreducible 21-dimensional F3-representation is unique. It
also follows from it that 21 is the smallest possible dimension for any non-trivial
irreducible F3-module invariant under M22. Further, CΛ176

⊥ is a distance 2 less than
the theoretical lower bound for a [176, 155]3 code. Arguing as in Proposition 2, we
can show that CΛ176

= C⊥

Λ176
and CΛ176

⊥ = CΛ176
since for Λ176 the eigenvalues
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θ1 = 17 and θ2 = −3 are such that θ1 6≡ θ2 (mod 3) and θ0 is odd. This fact can
also be verified with Magma [2].

6.3. Ternary codes from Λ253

Recall that the uniqueness of a graph with parameters (253, 140, 87, 65) remains
unknown. In Proposition 5 below, we summarize the properties of the codes related
to the graph Λ253.

Lemma 2. The adjacency matrix A of the graph Λ253 has 2 and 7-rank 252, 3-rank
23, 5-rank 230 and p-rank 253 for p = 11, 23.

Proof. The arguments are similar to those used in the proof of Lemma 1 or Propo-
sition 2, so we leave them to the reader.

Proposition 5. The code CΛ253
is a [253, 23, 77]3 code with 46 words of weight

77. Its dual C⊥

Λ253

= [253, 230, 6]3 contains 850080 words of minimum weight 6 and

1 ∈ CΛ253
. The code CΛ253

contains a subcode C̃ of codimension 1, and C̃ and

C̃⊥ have parameters [253, 22, 97]3 and [253, 231, 8]3. Moreover, CΛ253
⊕ CΛ253

⊥ =

〈1〉 ⊕ C̃ ⊕ C⊥

Λ253

= F253
3 and C̃ ⊕ C̃⊥ = F253

3 . Further, C̃ and C̃⊥ are irreducible

modules invariant under M23 and C̃ is the unique and smallest irreducible F3-module
of M23. Aut(Λ253) = Aut(CΛ253

) ∼= M23.

We omit the details of the proof as these follow virtually similar arguments to
those used in the proofs of the earlier propositions.
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[8] D.Crnković, V.Mikulić, B.G.Rodrigues, Some strongly regular graphs and self-
orthogonal codes from the unitary group U4(3), Glas. Mat. Ser. III 45(2010), 307–323.

[9] W.Fish, R. Fray, E.Mwambene, Binary codes from the complements of the trian-
gular graphs, Quaest. Math. 33(2010), 399–408.

[10] M.Grassl, Searching for linear codes with large minimum distance, in: Discovering
mathematics with magma, (W.Bosma, J. Cannon, Eds.), Springer, 2006.

[11] M.Grassl, Bounds on the minimum distance of linear codes and quantum codes,
available at http://www.codetables.de.

[12] W.H.Haemers, R.Peeters, J.M. van Rijckevorsel, Binary codes of strongly reg-
ular graphs, Des. Codes Cryptogr. 17(1999), 187–209.

[13] C. Jansen, K. Lux, R. Parker, R.Wilson, An atlas of brauer characters, Oxford
Scientific Publications, Clarendon Press, Oxford, 1995.

[14] J.D.Key, J.Moori, Designs, codes and graphs from the Janko groups J1 and J2, J.
Combin. Math. and Combin. Comput. 40(2002), 143–159.

[15] J.D.Key, J.Moori, Correction to: “Codes, designs and graphs from the Janko
groups J1 and J2” [J. Combin. Math. Combin. Comput. 40(2002), 143–159], J. Com-
bin. Math. Combin. Comput. 64(2008), 153.

[16] J.D.Key, J.Moori, B.G.Rodrigues, On some designs and codes from primitive
representations of some finite simple groups, J. Combin. Math. and Combin. Comput.
45(2003), 3–19.

[17] D.Leemans, B.G.Rodrigues, Binary codes of some strongly regular subgraphs of
the McLaughlin graph, Des. Codes and Cryptogr. 67 (2013), 93–109.

[18] J.Massey, Linear codes with complementary duals, Disc. Math. 106/107(1992), 337–
342.

[19] N.Sendrier, Linear codes with complementary duals meet the Gilbert-Varshamov
bound, Discrete Math. 285(2004), 345–347.

[20] L.H. Soicher, Three new distance-regular graphs, European J. Combin. 14(1993),
501–505.


