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Abstract: The present work describes the spectral finite element formulation and the solution of Bernoulli-Euler free 

vibrations beams. The formulation including the partial differential equations of motion, the spectral displacement field 

and the dynamic stiffness matrix, is established in the scope of the spectral element method. The development is 

recognized for the general case without considering boundary conditions. The work describes the solution of the 

problem using three distinct methods: (1) the finite element method, (2) the analytical method and (3) the spectral 

element method. Particularly, natural frequencies for clamped-free vibration of Bernoulli-Euler beams are established. 

In the finite element approach, the element number varied in order to improve the accurate solution. Contrary, the 

spectral element method requires only one to two elements. Results using this method are compared with the finite 

element method and analytical procedure ones. The spectral element method shows notable advantages compared to 

the finite element method reducing the number of elements as well as increasing the accuracy. 

Keywords: Analytical solution, Bernoulli- Euler beam, finite element method, free vibration, Spectral element method, 

spectral stiffness matrix.  

Prethodno priopćenje 

Sažetak: Rad opisuje formulaciju konačnog spektralnog elementa i rješenje slobodnih vibracija Bernoulli-Eulerovih 

zraka. Uključujući i parcijalne diferencijalne jednadžbe gibanja, spektralna polja pomaka i matricu dinamičke krutosti, 

uspostavljena je formulacija u okviru metode spektralnog elementa. Razvoj se promatra za općenite slučajeve, bez 

uzimanja rubnih uvjeta u obzir. Rad opisuje rješenje problema pomoću tri različite metode: (1) metoda konačnih 

elemenata, (2) analitička metoda i (3) metoda spektralnog elementa. Ustanovljene su prirodne slobodne vibracije 

Bernoulli-Eulerovih zraka. U metodi konačnog elementa, broj elementa mijenjao se s ciljem poboljšanja ispravnog 

rješenja. Nasuprot tome, metoda spektralnog elementa zahtijeva samo jedna do dva elementa. Rezultati koji koriste ovu 

metodu uspoređeni su s metodom konačnog elementa i metodom analitičkog pristupa. Metoda spektralnog elementa 

pokazala je  značajnu prednost u odnosu na metodu konačnog elementa u smanjenju broja elemenata i povećanju 

točnosti.  

Ključne riječi: analitičko rješenje, Bernoulli-Eulerova traka, metoda konačnog elementa, slobodna vibracija, metoda 

spektralnog elementa, matrica spektralne krutosti 

1. INTRODUCTION 

Beam members are the basic structural components 

widely used in mechanical, aeronautical, automobile and 

civil engineering fields. For these reasons, important 

researchers have made efforts to deal with the static and 

dynamic analyses. In the Bernoulli-Euler’s theory, the 

shear force is neglected in the formulation of the spectral 

and finite element methods, indifferently.  

In structural mechanics, the finite element method 

(FEM) becomes a popular tool largely used in many 

areas of engineering and science. In this scope, the FE 

technique is chosen to analyze a crane under a moving 

load [1]. The FEM and the boundary element method 

(BEM) are combined in order to analyze a 2D domain [2] 

and the Euler-Bernoulli nano-beam responses are studied 

by using the FEM [3]. However, the solutions using FEM 

become inaccurate in the higher frequency range. 

Vibration shapes of a structure vary with the frequencies. 

The FEM subdivides the structure into finite elements to 

accurate solutions and a large number of finite elements 

should be used to obtain reliable solutions.    

Recently, the spectral finite element method (SFEM) 

based on the fast Fourier transform (FFT) has widely 

been used in the structural dynamic analysis. SFEM is an 

efficient tool for the treatment of vibration problems in 
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the higher frequency domain. SFEM leads to the exact 

solution of partial differential equations in the frequency-

domain by using just one to two elements. The dynamic 

stiffness matrix (DSM) is formulated from the frequency-

dependent shape functions that are obtained from the 

exact solutions of governed partial differential equations. 

In addition to that, the method using DSM does not 

require a subdivision of the structure into a larger number 

of elements. It can be able to predict eigen-solutions by 

using a minimum number of the degrees of freedom.  

In this field, the basic concepts of SFEM are 

developed in [4]. During the last decades, SFEM is 

applied to the wave propagation in structures [5]. Doyle 

[6] and Doyle and Farris later [7] formulated SFEM for 

elementary isotropic waveguides. Furthermore, SFEM is 

developed for higher-order waveguides [8]. In general, 

many researchers applied SFEM to analyze the dynamic 

problems of beams, plates, trusses and other complex 

structures [9-11]. In the same context, the spectral 

element models are applied to the study of free vibrations 

and wave propagation analysis of uniform and tapered 

rotating beams [12]. 

In the present work, the SFEM formulation is 

developed to analyze the free vibration of the Euler-

Bernoulli beams. By using dynamic shape functions and 

the dynamic stiffness method of beams, the natural 

frequencies of clamped-free boundary conditions are 

evaluated. The study can be easily applied to other 

boundary conditions. The SFEM results compared with 

the FEM ones show a notable accuracy by using a 

reduced finite element number. Practically, SFEM leads 

to the exact solution and needs less computational effort 

and time computing. 

2. MATHEMATICAL FORMULATIONS

This section illustrates the formulation of clamped-

free vibration beams with the finite element method, the 

spectral element method, and finally with the 

conventional analytical solution.  

2.1. Finite element method 

A prismatic beam having the length L, a cross section

 , a moment of inertia I, Young’s modulus E and a 

density  , is selected (Figure 1).   

Figure 1. Geometrical and mechanical characteristics of 

the beam 

Each node is defined by two degrees of freedom; the 

vertical displacement v  and the slope 
( )dv x

dx
  . 

Therefore, the element shown in Figure (1) using the 

free-body diagram then has four degrees of freedom. The 

displacement expression can be expressed by a 

polynomial function by using four constants. 

 2 3

1 2 3 4( ) ( )v x a a x a x a x x a     (1) 

The slope expression is 

 
( )

( ) '( )
dv x

x x a
dx

  
   (2)

At the level of the element nodes, we can write 

      

1

1

3

2

2

1 0 0 0

0 1 0 0

1 ²

0 1 2 3 ²

e

v

q a A a
L L Lv

L L





   
   
      

  
          

(3) 

In the compacted form, the relation (3) can be written as 

     
1

ea A q



 (4)

The substitution of equation (4) into (1), the 

displacement field becomes 

   
1

( ) ( ) ev x x A q



 (5)

or, 

 ( ) ( ) ev x N x q
 (6) 

Where, 

 
1

( ) ( )N x x A



 (7) 

The shape functions (7) can be derived as 

2 3

1 2 3

3 2
( ) (1 )N x x x

L L
  

         (8.1) 

2 3

2 2

2 1
( ) ( )N x x x x

L L
  

     (8.2) 

2 3

3 2 3

3 2
( ) ( )N x x x

L L
 

      (8.3) 

2 3

4 2

1 1
( ) ( )N x x x

L L
  

          (8.4) 

The strain energy of the element can be developed as 
2 2

2

( ) ( )1 1
( )

2 2
e

L L

M x d v x
U dx EI dx

EI dx
          (9) 

The substitution of the displacement expression (6) in the 

relationship (9) gives 

 
2 2

2 20

1

2

L
i i

e e e

d N d N
U q EI dx q

dx dx

 
  

 


   (10)

The stiffness matrix of the finite element is therefore 
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2 2

2 20

L
i i

e

N N
K EI dx

x x

  
        

         (11)                          

The parameters of the stiffness matrix (11) are

   

3 2 3 2

2 2

3 2 3 2

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

e

EI EI EI EI

L L L L

EI EI EI EI

L L L L
K

EI EI EI EI

L L L L

EI EI EI EI

L L L L

 
 

 
 

 
      
   
 
 

 
 

               (12)                            

In the same manner, the mass matrix can be deduced by 

 
0

( ) ( )
L

e i iM N x N x dx     
     (13) 

The introduction of the relation (8) into (13), the 

consistent mass matrix can be derived    

2 2

2 2

156 22 54 13

22 4 13 3

54 13 156 22420

13 3 22 4

e

L L

L L L LL
M

L L

L L L L



 
 

       
 
   

        (14)                               

If a lumped mass hypothesis is considered, the mass 

matrix can be written as   

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

2
e

L
M



 
 

       
 
                                (15) 

Applying boundary conditions (0) 0.v 
 

and 

(0)
0.

v

x




 , the Lagrange’s equations becomes 

   2

e e e eK q M q        (16) 

Case 1: Lumped mass hypothesis 

3 2 2

2

12 6

1 0
0.

6 4 0 02

L L L

EI

L L

 

 
 

     
    
 

                       (17)                  

The free vibration pulsation is then 

2 2

6 2.4495EI EI

L L


 
 

                             (18)                                      

Case 2: Consistent mass hypothesis 

2 4

2 2

12 6 78 11
0.

6 4 11 4210

L LL

L L L LEI

     
    

    
(19) 

Set

2 4

210

L

EI

 





, the solutions of the previous 

equation are 

1 0.0594295 
 (20.1)   

2 5.76914 
    (20.2) 

     The corresponding circular frequencies can be 

computed as  

1 2

3.533
c

EI

L





  (21.1) 

2 2

34.807
c

EI

L





     (21.2) 

When comparing the obtained pulsations (18) and (21), it 

is necessary to adopt the consistent mass hypothesis in 

the study. 

2.2. Analytical method 

In the Bernoulli-Euler’s beam theory, shear strains 

are neglected. These mean that the plane section before 

loading remains plane after loading. 

 

 Figure 2. Free body diagram of the element dx

2.2.1. Equation of motion 

Consider a free body diagram of a beam element 

(Figure 2) where ( , t)M x  and T( , t)x are the bending

moment and the shear force at x and time t, respectively. 

q( )x
 
is the external loading and

 2

2

,xv t

t






is the 

inertia force acting on the beam element. 

The equilibrium equation according to the vertical 

axis is  

   
   2

2

, ,
, , ( ) 0

T x t x t
T x t T x t dx q dx

v
x dx

x t


  
      

  
   (22) 

or, 

   2

2

, ,
( )

T x t x t
q x dx

v

x t


 
  

 
                     (23) 

Since  
 ,

,
M x t

T x t
x





 and 

 2

2
( , )

v x
M x t EI

x





, 

the equation (23) can be written in the general partial 

differential equation as 
4 2

4 2

( , ) ( , ) ( )v x t v x t q x

x EI t EI

 
 

 
.                 (24) 
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For a free vibration, the external loads are not considered 

in the analysis and the equation (24) becomes 

4 2

4 2

( , ) ( , )
0.

v x t v x t

x EI t

 
 

 
                        (25)                                                                                                 

The general solution of the equation (25) by using a 

separated variable method can be introduced. 

( , ) ( ).Y( )v x t X x t                                                 (26)                                                    

The relationships (25) and (26) deal to 
4 2

4 2
2

X( ) ( )

( ) ( )

d x d Y t

dx dtEI
cste

X x Y t



   


      (27) 

The equation (27) can be written as 
4 2

4

( )
( )

d v x
X x

dx EI

 
         (28.1)         

2
2

2

( )
( )

d Y t
Y t

dt
           (28.2)                                                    

Set

2
4

EI

 



 , the first differential equation (28.1) 

can be written 

4
4

4

( )
( ) 0.

d X x
X x

dx
                (29)                                                 

The spatial solution of the equation (29) is 

( ) xX x Ce  (30)        

Substituting the equation (30) in the equation (29) 
4 4( ) 0.xCe                

 (31)
   

The spatial solution of the equation (31) can be deduced 

as 

1 2 3 4( ) i x i x x xX x c e c e c e c e         (32)                  

Thus, the general displacement field is 

1 2 3 4( , ) .i x i x x x i tv x t c e c e c e c e e            (33)        

This spatial solution (32) can be written as 

1 2 3 4( , ) cos e sin ex xX x A x A A x A             (34)         

The application of the boundary conditions of a clamped-

free beam are  

( 0, ) 0X x                                                      (35.1)                                   

( 0, ) 0
dX

x
dx

 
(35.2)

( 0, ) 0
dX

x
dx

 
   (35.2)

2

2
( , ) 0

d X
x L

dx
        (35.3) 

3

3
( , ) 0

d X
x L

dx
 

    (35.4)

By applying the boundary conditions, we can build the 

following matrix.  

 

1 1 0 1

0 1 1 1
( )

cos sin

sin cos

A
e e

e e

 

 


 

 





 
 


 
  
 

  
    (36)

  

With .L    

The determinant of the matrix ( )A   must be null.

4(1 cos .cosh( ) 0                                          (37)

The first five solutions of the equation (37) are regrouped 

in the table (1). 

Table 1. First five eigen-values 
Solution 1 2 3 4 5 

L   1.8751 4.69409 7.85476 10.9955 14.1372 

2.3. Spectral element method 

The partial differential equation (25) can be solved by 

using the Fourier decomposition of the displacement 

field into the sum of the harmonic vibration as 
1

0

1
( , ) ( ).e n

N
i t

n

n

v x t W x
N






 
   (38) 

By substituting the equation (38) into the relationship 

(25), we get the eigen-values of the problem for n   .  

4
4

4

W( )
W( ) 0

d x
x

dx
 

  (39) 

Then the solution of the equation (39) is 

1 2 3 4W( , ) cos sin cosh sinhx c x c x c x c x       
(40)  

The nodal displacement and the slope at both ends can be 

expressed as 

 

1

1

2

2

1 0 1 0

0 0

cos sin cosh sinh

cos cos sinh cosh

e

v

q
L L L Lv

L L L L

  

   

       

  
   
     

  
     

 (41) 

or, 

    ( )eq B c  (42)     

When using the equation (40), transverse shear forces 

and bending moments at element node level are  

 

3 3

2 2

3

11

21

3

3 3 3

2 2

2

2

2

4

2

0 0

0 0

- .sin .cos - .sinh - .cos

α .cos -α .sin α .cosh α .sinh

e
L L L L

L L

cT

cM
F EI

cT

M cL L

 

 

       

   

    
    

        
    
 

      







  

(43) 

or, 

          
1

( ) ( ) . ( )e eF EI F c EI F B q  


 
 (44) 

The quantity    
1

(EI. ( ) . ( ) )F B 


is called the 

spectral stiffness matrix.         

Finally, the parameters of the spectral element matrix of 

the Euler-Bernoulli beam are given by  
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 3

11 33 ( ) cos .sinh sin .coshK K L L L L L       
    

(45.1)

 3

22 44 cos .sinh sin .coshK K L L L L L        (45.2) 

2 3

12 34 .sin .sinhK K L L L     (45.3)

 3

13 ( ) sin sinhK L L L     
 (45.4) 

 2 3

14 23 cos coshK K L L L      

    (45.5)                                          

 3

24 sin sinhK L L L     (45.6) 

With, 
1

1 cos L .cosh La a
h

-
=

 

After obtaining the spectral element matrix and applying 

the boundary conditions, the determinant of the spectral 

element matrix is zero.   
2

33 44 34. 0K K K K  
 (46) 

The equation (46) leads to compute pulsations of free 

vibration. 
2 2( ) sin ( ) 0tgh L L  

     (47) 

The solutions of the previous equation are, sequentially 

1 1.8751  , 
2 4.69409  , 

3 7.85475  , 

4 10.9955  , 5 14.1372  , …. 

They are the exact solutions of the partial differential 

equation (39).  

3. OBTAINED RESULTS

In this section, a clamped-free beam (Figure 3) is 

considered. Mechanical and geometrical data are 

regrouped in Table 3.  

Figure 3. Studied beam 

Table 3. Properties of the beam used 

b (cm) h (cm) L (m) E (N/m²)  (kg/m3) 

20 20 1 1011 1000 

Table 4. First five modes of vibration (rad/s) 

Mode 1 2 3 4 5 Ratio 

2 elements (SFEM) 203 1272.156 3565.087 6980.219 - 0.0% 

20 elements (FEM) 203 1272.16 3562.03 6980.22 11540.73 0.155% 

Exact Solution 203 1272.156 3565.087 6980.219 11538.940 - 

3.1. Finite element method 

The obtained results by using the finite element 

method are regrouped in Table (4). The first five modes 

of the clamped-free vibration beam are regrouped. The 

beam is meshed of different meshes as: 2, 5, 10, 15 and 

20 elements.  

Table (4) shows that the convergence towards the 

exact results is validated when 20 finite beam elements 

are used. Moreover, higher-order modes of vibration 

have a notable influence on the cantilever beam 

vibration. To accurate the dynamic results, it’s necessary 

to use an important number of elements and a higher 

order of modes of vibration simultaneously.  Figure 4. Transversal vibration of the first five modes 

Figures (4-5) illustrate the shape modes of the 

vibration for the first five modes of the vibration. Figures 

(4-5) show the transversal and rotational shape modes of 

the vibration. 
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Figure 5. Rotational vibration of the first five modes 

3.2. Spectral finite element method 

Table (5) shows a comparison between the results 

obtained by the spectral element method (2 elements), 

the finite element method (20 elements) and the 

analytical solution. The analysis shows that the 

numerical computing can be achieved in the spectral 

element results and analytical method when the number 

of elements must be superior then 20.    

Figure 6 shows the comparison between the diagonal 

stiffness parameters evaluated by using the FEM and 

SFEM. The finite element diagonal parameters are 

under-estimated compared to the SFEM ones.   

Table 5. Comparison between the results of the methods used 
Mode 1 2 3 4 5 Ratio 

1 element 204 2009.60 57.96% 

2 elements 203 1283 4339 12594 80.42% 

5 elements 203 1273 3575 7062 11721 1.577% 

10 elements 203 1272.20 3563 6986.90 11568 0.251% 

15 elements 203 1272.18 3562.50 6983.20 11560.35 0.185% 

20 elements 203 1272.16 3562.03 6980.22 11540.73 0.155% 

Exact Solution 

(rad/s) 
203 1272.156 3565.087 6980.219 11538.940 - 

Figure 6. Diagonal stiffness parameters 

Figure 7. Non-diagonal stiffness parameters 

In the same context, Figure 7 shows the comparison 

between the non-diagonal stiffness parameters computed 

with the FEM and SFEM. The figure illustrates that the 

finite element non-diagonal parameters are over-

estimated compared to the SFEM ones.Rods and Euler-

Bernoulli beams behave in the same manner 

corresponding to the diagonal and non-diagonal stiffness 

parameter variations evaluated with FEM and SFEM 

[13]. Finally, what can bring the effect of shear forces on 

the free vibration of beam responses [14]?  

4. CONCLUSIONS

In this work, the spectral finite element method 

(SFEM) is described as a numerical approach to predict 

the free-vibration of the Euler-Bernoulli beam responses. 

The exactness of the SFEM is validated by using only 

one to two elements. On the contrary, the finite element 

method requires important finite elements to reach an 

accurate solution. In this case, to predict the solution by 

using the FEM it is necessary to incorporate higher 

modes of vibration in the analysis.  

The comparison is performed by the calculation of 

circular frequencies. The study shows that the proposed 

method is practical, efficient and can be used as a 

reference for the convergence criteria of structural 

dynamics via the finite element method. 

The convergence of SFEM is principally due to the 

fact that the diagonal finite element method parameters 

are under-estimated, but the non-diagonal ones are over-

estimated compared to the SFEM stiffness parameters.    
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