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 In this paper a model of two pendulums sliding 

along an elastic cable is presented. There is a time 

delay between them, so the problem has been 

divided into two phases in which systems of 

ordinary differential equations are solved. In phase 

one there is only one mass and the solution at the 

end gives the initial conditions for phase two. In 

phase two, the second mass is added and a system 

of six differential equations with six unknowns with 

initial conditions is derived. The validation of the 

model is shown in an example of a zip line structure 

in Croatia. Three cases are studied – when 

resistance is introduced when pendulums are in 

antiphase and when the second mass reaches the 

first mass. 
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1 Introduction 
 

This paper is an extension of the previous work in [1] 

where a model of one body sliding along a cable is 

derived (Figure 1), and [2] where a second mass has 

been introduced. Here, we deal with two pendulums, 
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so new differential equations have to be derived, and 

the ones already obtained in [2] have to be modified 

to account for the substitution of sliding masses with 

sliding pendulums. This is a little more realistic 

representation of engineering structures such as zip 

Figure 1. One pendulum sliding along a cable (phase one). 
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lines, ropeways or cableways where the center of the 

mass is usually dislocated from the cable axis.  

Regarding previous works related to this topic, 

Brownjohn [3] describes the dynamics of a cableway 

system but without moving loading (masses), Bryja 

[4] extends the cableway analysis to a coupled 

moving system but without time delays and Peng [5] 

deals with determination of the friction coefficient 

between the moving cable and the pulley at a rather 

low speed. A possible application of the proposed 

model is in situations similar to the ones in [6] and 

[7].  

 

2 The model 
 

The problem of two bodies sliding along a cable with 

delay could be modeled by a system of Delay 

Differential Equation (DDEs) [8] where all terms 

related to the first mass depend on time 𝑡, and all 

terms related to the second mass depend on time (𝑡 −
𝜏) where 𝜏 is the time delay between two pendulums. 

Instead of solving the DDE problem that can lead to 

complex computations, we have decided to simplify 

the calculation by dividing the problem into two 

phases. In phase one only the first pendulum is 

sliding along the cable, and in phase two the second 

pendulum is added. In each phase a system of 

ordinary differential equations (ODEs) is solved. 

In Figure 2, 𝑥𝑖 denotes the horizontal, and 𝑦𝑖 the 

vertical position of each mass where 𝑖 = 1 refers to 

the first mass, and 𝑖 = 2 to the second mass. A dot 

above a symbol denotes the derivative in time, so 𝑥̇𝑖 

is the horizontal and 𝑦̇𝑖 is the vertical velocity. Two 

dots stand for the second derivative of time, so 𝑥̈𝑖 and 

𝑦̈𝑖 are the horizontal and vertical accelerations. 

Cable lengths are marked with 𝐿1, 𝐿2 and 𝐿3, and 𝑙 
and ℎ are the horizontal and vertical distances 

between the supports. 

When pendulums are introduced, the mass centers are 

not located on the cable axis any more, but they are 

dislocated, so the variables 𝑥𝑖𝑝 and 𝑦𝑖𝑝 have to be 

introduced to define the position of the new mass 

centres (Figure 3): 

 

 xip=xi+Lp sin θi   

yip=yi+Lp cos θi 
(1) 

 

Here, 𝐿𝑝 represents the pendulum length, which is 

taken to be constant for both pendulums, and 𝜃𝑖 is the 

pendulum position (angle). 
 

 
 

Figure 3. A pendulum. 

 

Figure 2. Two pendulums sliding along a cable (phase two). 
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As in [1] and [2], it is assumed that the cable is 

straight and its self-weight is neglected. The terms RF 

and Ra that appear in the equations are used to 

describe resistance, and they will be explained in 

more detail in section 3.1. 
 

2.1 Phase one 
 

In phase one there is only one pendulum sliding along 

the cable (Figure 1). This phase ends at 𝑡1 = 𝜏 when 

the second pendulum is released from the support. 

The following equations have already been derived 

in [1], but we list them here for the sake of clarity and 

completeness, and because of slight changes in 

nomenclature.  

We can start by deriving the dynamic balance 

equations for the first mass: 
 

 -T cos α1 +T cos α2 -RF1=m1ẍ1p 

-T sin α1 -T sin α2 +m1g=m1ÿ1p. 
(2) 

 

An additional equation is related to the length of the 

cable: 
 

 L1+L2=L+∆L, (3) 

 

where, the elongation of the cable is defined as ∆𝐿 =
(𝑇 𝐿)/𝐸𝐴. Here, 𝑇 is the tension force, and 𝐸𝐴 is the 

axial stiffness of the cable. 

From (3), the tension force is given/derived as: 
 

 T=EA (
L1+L2

L
-1). (4) 

 

The equations for the lengths 𝐿1 and 𝐿2 and for the 

sines and cosines of the angles 𝛼1 and 𝛼2 are obtained 

from trigonometric relations (Figure 1): 
 

 
L1=√x1

2+y1
2, 

 

L2=√(l-x1)2+(y1-h)2, 

 

sin α1 =
y1

L1
;    cos α1 =

x1

L1
, 

 

sin α2 =
y1-h

L2
;    cos α2 =

l-x1

L2
. 

(5) 

The second derivatives of the coordinates of the first 

mass (1) are: 

 

 ẍ1p=ẍ1+Lp(θ̈1 cos θ1 -θ̇1
2 sin θ1), 

ÿ1p=ÿ1-Lp(θ̈1 sin θ1 +θ̇1
2 cos θ1 ). 

(6) 

 

By inserting (4), (5) and (6) into (2), we obtain: 

 

 
ẍ1=

EA

m1
(

L1+L2

L
-1) (

l-x1

L2
-

x1

L1
) 

-Lp(θ̈1 cos θ1 -θ̇1
2 sin θ1)-Ra1, 

ÿ1=
G1

m1
-

EA

m1
(

L1+L2

L
-1) (

y1

L1
+

y1-h

L2
) 

+Lp(θ̈1 sin θ1 +θ̇1
2 cos θ1 ). 

(7) 

 

From the angular balance equation 

 

 Lpθ̈1=ÿ1p sin θ1 -ẍ1p cos θ1 -g sin θ1 ,  
(8) 

 

after some transformations, we get: 

 
θ̈1=

1

2Lp

(ÿ1 sin θ1 -ẍ1 cos θ1 -g sin θ1). (9) 

 

The initial conditions are defined as follows: 

 

 x1(0)=x10,   ẋ1(0)=0,   y1(0)=y10, 

ẏ1(0)=0,   θ1(0)=θ10,   θ̇1(0)=0. 
(10) 

 

The initial horizontal position 𝑥10 and the initial 

angle 𝜃10 can be chosen at will. The initial value for 

𝑦10 is obtained from Equation: 

 

 
G1-EA (

L1+L2

L
-1) (

y1

L1
+

y1-h

L2
) =0. (11) 

 

Equations (7) and (9), with initial conditions (10), 

form a system of three differential equations with 

three unknowns. As it was explained in [2], the values 

for 𝑥1, 𝑥̇1, 𝑦1, 𝑦̇1, 𝜃1 and 𝜃̇1 at the end of this phase are 

the initial conditions for the first mass in phase two, 
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and they are named 𝑥1𝜏, 𝑥̇1𝜏, 𝑦1𝜏, 𝑦̇1𝜏, 𝜃1𝜏 and 𝜃̇1𝜏 , 

respectively. 

 
2.2 Phase two 

 
Phase two begins when the second pendulum is 

released from the support, while the first pendulum 

continues to slide (Figure 2). Time 𝑡2 starts at 𝜏. 

Again, we can start with the dynamic balance 

equations for both masses [2]: 

 

 -T cos α2 +T cos α3 -RF1=m1ẍ1p, 

-T sin α2 -T sin α3 +m1g=m1ÿ1p, 

-T cos α1 +T cos α2 -RF2=m2ẍ2p, 

-T sin α1 -T sin α2 +m2g=m2ÿ2p. 

(12) 

 
Equation (3) now takes the form:  

 

 L1+L2+L3=L+∆L, (13) 

 

so the tension force is: 

 

 
T=EA (

L1+L2+L3

L
-1). (14) 

 
The lengths and the sines and cosines are again 

defined from trigonometric relations (Figure 2): 

 

 
L1=√x2

2+y2
2 

L2=√(x1-x2)2+(y1-y2)2 

L3=√(l-x1)2+(y1-h)2 

sin α1 =
y2

L1
;    cos α1 =

x2

L1
 

sin α2 =
y1-y2

L2
;    cos α2 =

x1-x2

L2
 

sin α3 =
y1-h

L2
;    cos α3 =

l-x1

L2
 

(15) 

 
The coordinates of the second mass are defined by: 

                     x2p=x2+Lp sin θ2, 

                    y2p=y2+Lp cos θ2, 
(16) 

 

and their second derivatives are: 

 

 ẍ2p=ẍ2+Lp(θ̈2 cos θ2 -θ̇2
2 sin θ2 ), 

ÿ2p=ÿ2-Lp(θ̈2 sin θ2 +θ̇2
2 cos θ2 ). 

(17) 

 

An additional angular equation has to be introduced: 

 

 
θ̈2=

1

2Lp

(ÿ2 sin θ2 -ẍ2 cos θ2 -g sin θ2). (18) 

 

By substituting (6), (9), (14), (15), (17) and (18) into 

(12), after some transformations, a system of six 

equations with six unknowns is obtained: 

 

 
ẍ1=

EA

m1
(

L1+L2+L3

L
-1) (

l-x1

L3
-

x1-x2

L2
) - 

-Lp(θ̈1 cos θ1 -θ̇1
2 sin θ1)-Ra1, 

𝑦̈1=
G1

m1
-

EA

m1
(

L1+L2+L3

L
-1) (

y1-y2

L2
+ 

+
y1-h

L3
) +Lp(θ̈1 sin θ1 +θ̇1

2 cos θ1 ), 

θ̈1=
1

2Lp

(ÿ1 sin θ1 -ẍ1 cos θ1 -g sin θ1), 

ẍ2=
EA

m2
(

L1+L2+L3

L
-1) (

x1-x2

L2
-

x2

L1
) - 

-Lp(θ̈2 cos θ2 -θ̇2
2 sin θ2)-Ra2, 

𝑦̈2=
G2

m2
+

EA

m2
(

L1+L2+L3

L
-1) (

y1-y2

L2
- 

-
y2

L1
) +Lp(θ̈2 sin θ2 +θ̇2

2 cos θ2 ), 

θ̈2=
1

2Lp

(ÿ2 sin θ2 -ẍ2 cos θ2 -g sin θ2). 

     (19) 

 

In phase two, the initial conditions for the first mass 

are the final results obtained from phase one. The 

initial conditions for the second mass are the same as 

the ones already derived in [2], but we have to 
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introduce four new conditions for 𝜃1,  𝜃̇1,  𝜃2 and 𝜃̇2. 

All the initial conditions for phase two are listed here: 
 

 x1(𝜏)=x1τ,    ẋ1(𝜏)=ẋ1τ,   y1(𝜏)=y1τ, 

ẏ1(𝜏)=ẏ1τ,   θ1(𝜏)=θ1τ,   θ̇1(𝜏)=θ̇1τ, 

 x2(𝜏)=x2𝜏,    ẋ2(𝜏)=0,      y2(𝜏)=y2𝜏, 

 ẏ2(𝜏)=0,     θ2(𝜏)=θ2𝜏,    θ̇2(𝜏)=0. 

   (20) 

 

The terms 𝑥2𝜏 and 𝜃2𝜏 can be chosen at will, and 𝑦2𝜏 

is obtained from Equation: 
 

 
G2+EA (

L1+L2+L3

L
-1) (

y1-y2

L2
-

y2

L1
) =0. (21) 

 

Now the model is completely defined. 
 

3 Example 
 

The same example is taken as in [1] and [2], and the 

geometric and material properties correspond to a 

real engineering structure – a zip line – in Omiš, 

Croatia: 
 

 l=600.0 m, 

h=60.0 m, 

L=603.2 m, 

EA=6∙106 N, 

Lp=1.0 m, 

     m1=m2=150.0 kg. 

(22) 

This example is solved using Wolfram Mathematica 

[10]. Mathematica can solve systems of differential 

equations symbolically using the function DSolve 

and numerically using the function NDSolve. 

DSolve has more restrictions on the system to be 

solved, so a numerical solution has been applied in 

the paper. The default setting in NDSolve for the 

integration procedure is “Automatic” when the 

internal algorithm chooses between the fixed and 

adaptive step size, explicit or implicit procedure etc. 

The user can override the “Automatic” setting, and 

during numerical testing several options have been 

tried out, all with the same results and comparable 

execution times. Even the simplest integration 

procedure has been tried out, for instance, the 

“Linearly Implicit Euler” with “Fixed step”, with the 

same result for the system of 6 differential equations 

but significantly longer solution time. The conclusion 

is that the choice of the numerical integration 

procedure is not significant for the problem presented 

in this paper. 
 

The analysis time in phase one is taken to be 𝑡1,𝑚𝑎𝑥 =
𝜏 = 10 𝑠. The analysis time in phase two is taken to 

be 𝑡2,𝑚𝑎𝑥 = 15 𝑠. This is slightly before the first 

mass reaches the support on the right side, because it 

is not desirable that the first mass reflects back from 

the support. So, the total analysis time is 𝑡𝑚𝑎𝑥 =
𝑡1,𝑚𝑎𝑥 + 𝑡2,𝑚𝑎𝑥 = 25 𝑠. For now, it is assumed that 

there is no resistance, so 𝑅𝑎1 = 𝑅𝑎2 = 0.  
 

 
 

Figure 4. The path of the first mass (blue solid) and 

second mass (red dashed). 
 

In Figure 4, the paths of the masses in both phases are 

shown where the solid blue line represents the path of 

the first mass and the dashed red line the path of the 

second mass. In the total analysis time 𝑡𝑚𝑎𝑥, the first 

mass has almost reached the support (𝑥1, 𝑦1) =
(585.1 𝑚; 61.5 𝑚), and mass two has reached the 

point (𝑥2, 𝑦2) = (234.3 𝑚 ; 43.4 𝑚). 

Figure 5 shows the horizontal velocities of both 

masses in time, and Figure 6 shows their vertical 

velocities. 

The maximum velocities for the first mass are: 

𝑥̇1,𝑚𝑎𝑥 = 35.4 𝑚/𝑠, and 𝑦̇1,𝑚𝑎𝑥 = 4.2 𝑚/𝑠, and for 

the second mass: 𝑥̇2,𝑚𝑎𝑥 = 28.7 𝑚/𝑠, and 𝑦̇2,𝑚𝑎𝑥 =
4.3 𝑚/𝑠. The tension force in the cable is shown in 

Figure 7. 
 

  
 

Figure 5. Horizontal velocity of the first mass (blue 

solid) and second mass (red dashed). 

0 100 200 300 400 500

60

50

40

30

20

10

0

horizontal position , x m

ve
rt
ic
al
po
si
tio
n
,y

m

0 5 10 15 20 25

0

5

10

15

20

25

30

35

time, t s

ho
ri
zo
nt
al
ve
lo
ci
ty
,x

m
s



16                                                                                                      T. Rukavina, I. Kožar: Analysis of two time-delayed… 
________________________________________________________________________________________________________________________ 

 

 

 
 

Figure 6. Vertical velocity of the first mass (blue 

solid) and second mass (red dashed). 

 

 
 

Figure 7. Tension force in the cable. 

 
Figure 8 shows that pendulum angles for the first and 

second mass range from −0.76 to 0.40 radians.  

It can be noticed that both pendulums are swaying in 

phase if the initial pendulum angles for both masses 

are chosen to be zero. 

 

 
 

Figure 8. Pendulum angle for the first mass (blue 

solid) and second mass (red dashed). 
 

3.1 Introduction of resistance 

 

Resistance 𝑅 is intended for the approximate 

assessment of motion resistant forces like braking, 

friction, wind resistance etc., but without describing 

each of them in detail since their equations differ 

significantly [5], [9].  

The braking force is realized through a braking 

moment resulting in a jump in the cable’s internal 

forces. The introduction of friction and braking force 

would change the cable force 𝑇 into (𝑇 + 𝑅) before 

the pendulum and (𝑇 − 𝑅) after the pendulum. In this 

case, 𝑅 would appear in both equations, for 

horizontal and for vertical force balance (2).  

Aerodynamic (wind) resistant force is [9]: 

 

 
F= ∫ p dA =

1

2
ρv2 ∫ CpdA, 

 
(23) 

 

where, 𝜌 and 𝑣 are the mass and velocity of the fluid 

and 𝐶𝑝 is a dimensionless coefficient. The force acts 

on the pendulum mass and would appear in (7). 

Both resistance forces are difficult to predict: the 

duration and intensity of braking is user controlled 

and wind resistance depends on the coefficient 𝐶𝑝 

that is shape and velocity dependent. Authors have 

decided that resistant forces should be approximately 

taken into account through a function that could only 

reduce the velocity of the pendulum and stop it before 

the end of the cable (as it happens in reality). 

The braking (friction) resistance type is described in 

(2) where 𝑅 has the dimension of force with the term 

−𝑅 (cos 𝛼1 + cos 𝛼2) for the horizontal force 

balance and 𝑅 (sin 𝛼1 − sin 𝛼2) for the vertical force 

balance. Since 𝑅 is not known, cosines in the first 

term are assumed to be one, and the sine difference is 

assumed to be zero. As a result, the resistance force 

𝑅𝐹 appears only in the first equation. 

The wind resistance type is described in (19) and this 

is what has been calculated in numerical experiments. 

In (19), 𝑅𝑎 has the dimension of acceleration since 

𝑅𝑎 = 𝑅𝑤𝑖𝑛𝑑/ 𝑚𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚. The exact force 𝑅𝑤𝑖𝑛𝑑 is 

not known but it is, namely, approximated so that the 

pendulum stops before end of the cable. The simplest 

procedure that can be carried out through trial and 

error is the use of the logistic function (Figure 9) for 

direct approximation of 𝑅𝑎 as a function of the 

horizontal position. More realistically, 𝑅𝑎 should be 

a function of velocity, but that would require a 

separate numerical procedure just for the 

determination of 𝑅𝑎. 
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The logistic function shows that initial exponential 

growth is followed by a period in which growth slows 

and then levels off, approaching (but never attaining) 

a maximum upper limit [11]. 

 

 
 

Figure 9. Logistic function. 

 

The logistic function is described with the following 

equation: 

 

 
𝑅𝑎=

Ra,max

1+e-k(x-xm)
, (24) 

 

where, 𝑅𝑎,𝑚𝑎𝑥 is the maximum value of resistance, 𝑘 

is the steepness of the curve, and 𝑥𝑚 is the midpoint. 

The chosen parameter values in this example are 

𝑅𝑎,𝑚𝑎𝑥 = 2 𝑚/𝑠2, 𝑘 = 1, 𝑥𝑚 = 200 𝑚. 

 

 
 

Figure 10. The path of the first mass – without 

resistance (blue solid) and with 

resistance (red dashed). 
 

In Figures 10-13, the path, velocity and pendulum 

angle for the first mass are shown, the values of 

which/whose values are compared for the case with 

and without resistance. From Figure 10 it can be seen 

that the first mass does not come so near the support 

any more, but only reaches 𝑥1 = 438.3 𝑚.  

 
 
Figure 11. Horizontal velocity of the first mass – 

without resistance (blue solid) and with 

resistance (red dashed). 

 

 
 

Figure 12. Pendulum angle for the first mass – 

without resistance (blue solid) and with 

resistance (red dashed). 
 

 

 
 

Figure 13. Tension force in the cable – without 

resistance (blue solid) and with 

resistance (red dashed). 
 

It can be seen that the resistance starts acting around 

time 𝑡 = 13 𝑠 when the velocity starts to decrease 

(Figure 11), and the pendulum angle increases 
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(Figure 12). Also, the tension force in the cable 

increases because of it (Figure 13). 

 

3.2 Pendulums in antiphase 

 

In the first example when initial pendulum angles 

were zero for both masses, it was shown that 

pendulums were swaying in phase (Figure 8). Is there 

any difference when the pendulums are in antiphase 

(Figure 14)?  

 

 
 

Figure 14. Pendulum angle for the first mass (blue 

solid) and the second mass (red dashed) 

when they are in antiphase. 

 

In this case, the mass paths do not change 

significantly, and the major differences are found in 

the horizontal and vertical velocity of the second 

mass (Figures 15 and 16). 

 

 

 
 

Figure 15. Horizontal velocity of the second mass – 

pendulums in phase (blue solid) and in 

antiphase (red dashed). 

 

 
 

Figure 16. Vertical velocity of the second mass – 

pendulums in phase (blue solid) and in 

antiphase (red dashed). 
 

3.3 Catching up 
 

It is interesting to observe what happens if the second 

mass reaches the first mass. For example, this can be 

accomplished by shortening the time interval 𝜏 

between the two masses, or by giving the second 

mass an initial speed. Here, both ways were used, so 

the second mass is released from the support at 

𝑡1,𝑚𝑎𝑥 = 𝜏 = 5 𝑠, and an initial speed 𝑥̇2(𝜏) =
10 𝑚/𝑠 has been given to the second mass. To have 

the same total analysis time as in the previous 

examples (𝑡𝑚𝑎𝑥 = 25 𝑠), the duration of phase two 

has to be 𝑡2,𝑚𝑎𝑥 = 20 𝑠. 

It has been calculated that the second mass catches up 

with the first mass at 𝑡 = 19 𝑠. In this model, no 

conditions for the impact have been introduced, and 

the behavior of the masses is shown in the following 

figures. 

When the masses come near each other, the velocity 

of the first mass is increased (Figure 17), and the 

velocity of the second mass decreased (Figure 18). 

Also, the collision makes the pendulums sway in 

opposite directions, increasing their amplitudes 

(Figure 19).  
 

 
 

Figure 17. Horizontal velocity of the first – without 

initial speed of the second mass (blue 

solid) and with initial speed of the 

second mass (red dashed). 
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Figure 18. Horizontal velocity of the second mass – 

without initial speed of the second mass 

(blue solid) and with initial speed of the 

second mass (red dashed). 
 

 
 

Figure 19. Pendulum angle for both masses with 

initial speed of the second mass – first 

mass (blue solid) and second mass (red 

dashed). 

 

This model could be developed further, i.e. by 

introducing a condition that the two masses connect 

in the moment when they come near, so they continue 

sliding along the cable together. Also, in order to 

consider the friction, in a future extension of this 

paper, the velocity dependent resistance force could 

be developed.  

 

4 Conclusion  
 

The model of pendulums sliding along a cable is a 

coupled problem, because a cable imposes nonlinear 

constraints onto dynamic equations of mass 

movement [1]. This leads to a differential algebraic 

system of equations that can be solved using various 

solvers, e.g. Wolfram Mathematica. The example 

solved in this paper has proven the validity of the 

model and some special cases have been analyzed – 

with resistance force, with pendulums in antiphase, 

and the case where the second mass reaches the first.  

It has been shown that this problem can be modeled 

as a non-linear system of differential equations, in 

analytical form, without the need for finite element 

discretization. 
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