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 Transformers are crucial components in power 

systems. Due to market globalization, power 

transformer manufacturers are facing an 

increasingly competitive environment that 

mandates the adoption of design strategies yielding 

better performance at lower mass and losses. 

Multi-objective Optimization Problems (MOPs) 

consist of several competing and incommensurable 

objective functions. Recently, as a search 

optimization technique inspired by nature, 

evolutionary algorithms have been broadly applied 

to solve MOPs. In this paper, a power Transformer 

Design (TD) methodology using Non-dominated 

Sorting Gravitational Search Algorithm (NSGSA) 

is proposed. Results are obtained and presented 

for NSGSA approach. The obtained results for the 

study case are compared with those results 

obtained when using other multi objective 

optimization algorithms which are Novel Gamma 

Differential Evolution (NGDE) Algorithm, Chaotic 

Multi-Objective Algorithm (CMOA), and Multi-

Objective Harmony Search (MOHS) algorithm. 

From the analysis of the obtained results, it has 

been concluded that NSGSA algorithm provides 

the most optimum solution and the best results in 

terms of normalized arithmetic mean value of two 

objective functions using NSGSA to the TD 

optimization. 
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1 Introduction  
 

A transformer is a static electric device that consists 

of one or more windings, with or without a 

magnetic core, for introducing mutual coupling 

between electric circuits.  

Transformers are extensively used in electric power 

systems to transfer power by electromagnetic 

induction between circuits at the same frequency, 

usually with changed values of voltage and current. 

Transformers are one of the primary components for 

transmission and distribution system [1].  
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Transformer design, in terms of construction, rated 

power and voltage level, depends mainly on the 

range of application. Therefore, transformer design 

is a complex task in which power engineers have to 

ensure that compatibility with the imposed 

specifications is met, while keeping manufacturing 

costs low. Moreover, the design methodology may 

vary significantly according to the transformer type 

and its operating frequency (ranging between 50 

and 60 Hz). Many alterations in the design may be 

introduced according to the constructional 

characteristics of the core, cooling method and type 

of magnetic material used [2, 3]. 

From the overview of research papers in 

Transformer Design (TD), efforts are focused on the 

prediction of specific transformer characteristics, 

techniques adopted for transformer design 

optimization, transformer post-design performance, 

modeling and recent trends in transformer 

technology. In a nutshell, TD optimization problems 

remain an active area [4]. Based on the objective 

functions used, TD optimization can be achieved 

through the minimization of no-load losses [5, 6] or 

load losses [7], maximization of efficiency [8-12], 

minimization of cost [8, 9] or mass [12], or 

maximization of rated power [12]. 

Optimum design of transformer was presented in 

[13] using Non-Linear Programming (NLP) 

technique, while Geometric Programming (GP) was 

used for the minimization of total mass of 

transformer [12]. Mixed Integer Programming 

(MIP) in combination with Finite Element Method 

(FEM) [14], MIP in combination with Branch 

Bound Algorithm (BBA) [15], Bacterial Foraging 

Algorithm (BFA) [8] and Simulated Annealing (SA) 

technique [16] have been all adopted for the 

minimization of main material cost of transformer. 

BBA tailored to a Mixed Integer Non-Linear 

Programming (MINLP) [17], numerical field 

analysis technique in combination with Boundary 

Element Method (BEM) [18] and multiple 

algorithm based hybrid approach [19] have 

addressed the minimization of Total Life Time Cost 

(TLTC) of transformer. Scatter Search (SS) 

algorithm and Genetic Algorithm (GA) [20] are 

applied for minimization of the cost of transformer. 

Covariance Matrix Adaptation Evolution Strategy 

(CMA-ES) [21] is applied for the minimization of 

purchase cost, TLTC, total mass and losses. Further 

techniques were used such as Gradient Search 

Technique (GRT) [22], Particle Swarm 

Optimization (PSO) algorithm [23] and Time 

Variant Particle Swarm Optimization (TV-PSO) 

algorithm [24]. For multi-objective optimization of 

TD, application Novel Gamma Differential 

Evolution (NGDE) approach [25], Chaotic 

Evolutionary Algorithm (CEA) [26], and Harmony 

Search Algorithm (HSA) [27] are used. 

Evolutionary algorithms are relatively new, but very 

powerful techniques used to find solutions to many 

real-world search and optimization problems. Many 

of these problems have multiple objectives, which 

lead to the need to obtain a set of optimal solutions, 

known as effective solutions. It has been found that 

using evolutionary algorithms is a highly effective 

way of finding multiple effective solutions in a 

single simulation run [28].  

In engineering design problems, computational 

models are often used to describe the complex 

behaviors of physical systems and optimal solutions 

are sought with respect to some performance 

criteria. Hence, multi-objective optimization 

becomes useful in obtaining a set of optimal 

solutions so that the designer can select the best 

choice.  

Non-dominated Sorting Gravitational Search 

Algorithm (NSGSA) is a non-conventional 

optimization technique with high global searching 

capability as it utilizes the non-dominated sorting 

concept to update the gravitational acceleration of 

the agents. The NSGSA approach applied to solve 

multi-objective optimization TD problems aims to 

minimize the total mass and losses of power 

transformer. The proposed optimization algorithm 

was applied to the design of a dry-type, and shell 

core for single power transformer. The simulation 

results show advantages of using the NSGSA 

approach and its applicability to TD. 

This paper is organized as follows: Section II 

presents the design of power transformer; Section 

III presents an overview of NSGSA algorithm 

(objective functions and constraints); Section IV 

presents the simulation results and finally the 

conclusions of the paper are presented in Section V. 

 

2 Fundamentals of transformer design  
 

To verify using the non-dominated sorting 

optimization algorithm in electromagnetic 

modeling, the classical TD problem has been 

selected since electrical transformers play a key role 

in AC systems.   
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The optimization method used here aims to obtain 

the best configuration of a single-phase transformer 

trying to optimize its electrical and magnetic losses 

and geometrical characteristics. The parameters of 

the transformer under study are shown in the 

Appendix. Figure 1 shows the geometry of the 

transformer with the dimensions of the core, 

primary (N1) and secondary (N2) windings. 

 

 
 

Figure 1. Transversal transformer cutaway:  

dimensions of the core, primary (N1) and 

secondary (N2) windings. 

 

The transformer must present a maximum efficiency 

with a minimum mass, including windings mass. 

Thereby, the optimization procedure must find an 

optimum core dimension and a number of turns that 

satisfy both the constraints and the operational 

requirements. In the following text, a classical 

methodology of transformers design is presented. 

Some transformer parameters are related to the 

spatial dimensions defined as follows [25, 26]: 

 

1) Central leg core area (central limb transversal 

area): 

 

                                 
2. .cA c t ,                               (1) 

 

where, t is the deepness of the transformer. 

 

2) Effective central leg core area:  
 

                                
.e f cA K A ,                             (2) 

 

where, Kf is the core stacking factor. 

 

3) Mean length per turn (copper winding length):  

 

                         
4. 2. . wMLT c t b   .                    (3) 

 

4) Window area (frontal window area where the 

windings will be fitted):    

 

                                  
.a w wW b h .                           (4) 

 

5) Winding volume:  

 

                                
.w aV W MLT .                         (5) 

 

6) Core volume:  

 

                      
 . 2. 2. 4.c c w wV A h b c   .                 (6) 

 

First, the primary and secondary currents are 

obtained using the ratio between power and voltage 

transformer: I=S/V, with S in VA. The number of 

turns for primary windings is obtained as follows: 

 

                        

1
1

2. . . . .f c

V
N

K f B A
 ,                      (7) 

 

where, B is the magnetic flux density in T. The 

number of turns of secondary winding is given by 

the voltage ratio: N2 = N1.(V2/V1). 

The efficiency is obtained by calculating the 

transformer core losses (including hysteresis and 

eddy currents) and the copper losses (Joule losses) 

in the windings. The core losses are given by: 

 

                               
. .c cp K B f  ,                         (8) 

 

where, pc is the ferromagnetic losses in W/kg, B is 

the magnetic flux density in T and f is the frequency 

in Hz. The coefficients Kc, α, and β are constants 

characteristics for each core magnetic material. The 

total core losses in the transformer volume are given 

by: 

 

                        
. . . . .c c f c cP K V K B f  ,                   (9) 

 

where, Pc is the power losses in W and ρc is the core 

density. The primary and the secondary currents are 

obtained by the ratio between power and voltages of 

the transformer: I = S/V, with S in VA. 

Once the current densities d (in A/mm2) has been 

defined, the conductors section areas are calculated 
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for primary and secondary windings as Acd = I/d, in 

mm2. 

Once the number of turns of the primary and 

secondary windings and the conductor section areas 

have been obtained, it is possible to calculate the 

copper-occupied area Wcu.  For a transformer with a 

primary winding and secondary windings, the area 

occupied by the copper is given by: 

 

                         
1 1 2 2. .cu cd cdW N A N A  ,                  (10) 

 

where, Acd1 and Acd2 are the primary and the 

secondary conductor section areas, respectively. 

The copper mass, while taking into account the 

primary and the secondary windings, is given by: 

 

                            
. .cu cu cum W LMT .                    (11) 

 

For a copper density of 8890 kg/m3 and a resistivity 

of 2.3 ×10-8 Ω.m at 75 °C, the copper losses can be 

calculated approximately by: 

 

                             

22.43. .cu cuP d m ,                     (12) 

 

where, Pcu is the copper losses in Watt, and mcu are 

the copper mass in kg, and d is the current density 

in A/mm2 (d = 3 A/mm2 for power under 500 VA). 

Thus, the total losses are the sum of core and copper 

losses: 

 

     

2. . . . . 2.43. .T c cu c f c c cuP P P K V K B f d m     .   (13) 

 

The ferromagnetic core mass is given by: 

 

                                
.c c cm V .                            (14) 

 

The transformer mass is calculated as the sum of 

core and copper mass as: 

 

            
. . .T c cu c c cu cuM m m V W LMT     .          (15) 

 

The multi-objective optimization problem aims to 

minimize mass (f1) and the losses (f2) while ensuring 

the operational requirements. The design variables 

are the core dimensions, turns of windings, and 

currents densities. In this way, the objective 

functions are [25-27]:  

 

                            
 1 min Tf M ,                          (16) 

 

                            
 2 min Tf P .                           (17) 

 

From the previous equations, it is obvious that the 

number of variables involved in the design of a 

transformer is relatively large, even for a simple 

single-phase structure, which would justify the use 

of an optimization methodology for the structure.  

The leakage reactance, the phenomenon of 

saturation, costs, and temperature restrictions are all 

neglected since the inclusion of these phenomena 

and additional restriction will make the work of the 

designer more complex and complicated. 

To illustrate the magnetic flux density distribution, 

the 2D finite element method is used. A transversal 

transformer cutaway with primary and secondary 

windings is shown in Figure 2. It can be observed 

that the magnetic flux density distribution is 

concentrated at central limb with an average value 

close to 1.15 T [25]. 

 

 
 

Figure 2. Transversal transformer cutaway: 

magnetic flux density distribution on the 

transformer core [25]. 

 

 

3 Non-dominated sorting multi objective 

gravitational search algorithm 
 

 This multi-objective problem is mathematically 

formulated as follows: 

 

           
     1 2Minimize  , ,...,

T

Tf X f X f X   ,      (18) 

 

                      

 

 

0
Subject to:  

0

X

X










.                   (19) 
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 The overall objective function is the combined 

function which includes all the different objective 

functions f1, f2, … , fT  etc.; λ and ζ are the inequality 

and equality constraints, respectively, and X is the 

vector of decision variables.  

The solution to the above problem is not unique but 

a set of Pareto optimal points. A Pareto optimal 

solution is the best solution vector out of several 

numbers of solution vectors that could be achieved 

without disadvantaging other objectives. Each 

solution set is known as a non-dominated solution 

set. An array containing all the Pareto optimal 

solutions of a multi-objective problem is called the 

Pareto optimal set. Thus, instead of being a unique 

solution to the problem, the solution of a Multi-

objective problem is a possibly infinite set of Pareto 

points. A Non-dominated Sorting Gravitational 

Search Algorithm (NSGSA) is a non-conventional 

optimization technique with high global searching 

capability and it utilizes the non-dominated sorting 

concept to update the gravitational acceleration of 

the agents. In NSGSA, the mass of each agent is 

calculated according to its fitness value, as follows 

[29, 30]: 

 

        
 

   

   

fit worst
,      1,2,...,

best worst

p

p a

t t
m t p n

t t


 


,     (20) 

 

            
 

 

 
 

1

,    0 1 
m

p

p n

q

m t
M t Mp t

mq t


  


,          (21) 

 

where, fitp(t) is the fitness of the pth agent at time t 

(iteration); Mp(t) is the normalized mass; na is the 

number of agents, while the worst(t) and best(t) for 

a minimization problem are defined as: 

 

                    
 

 
 

1,2,...,
worst max fitq

q N
t t


 ,                  (22) 

  

                      
 

 
 

1,2,...,
best min fitq

q N
t t


 .                  (23) 

 

In the case of a maximization problem, the worst (t) 

and best (t) may be written as follows: 

 

                    
 

 
 

1,2,...,
worst min fitq

q N
t t


 ,                  (24) 

 

                     
 

 
 

1,2,...,
best max fitq

q N
t t


 .                   (25) 

The gravitational constant G is initialized at the 

beginning and will be reduced with time to control 

the search accuracy.  

In other words, G is a function of the initial value 

G0 and time t and therefore can be written as 

follows: 

 

                             
   0. ,G t G G t .                      (26) 

 

In NSGSA, the force acting on mass p due to mass q 

may be represented as: 

 

   
   

 
    aq pp

pq q p

pq

M t M t
F t G t x t x t

R t 

 
      

, (27) 

 

where, Maq is the active gravitational mass related to 

agent q; Mpp is the passive gravitational mass related 

to agent p; G(t) = G(G0, t) is gravitational constant 

at time t; ε is a constant term whose magnitude is 

very small; xp(t) is the position vector of the pth 

agent; xq(t) is the position vector of the qth agent; 

and Rpq(t) is the Euclidian distance between two 

agents p and q which can be represented as: 

 

                     
     

2
,pq p qR t X t X t .                   (28) 

 

Total gravitational acceleration of the pth agent can 

be determined as follows: 

 

      
   

 

 
 

1

.
mn

q

p q q p

q pq

M t
a t G t rand X X

R t 

 


 ,      (29) 

 

where, randq is a uniform random number in the 

interval [0, 1]. The velocity and position of each 

agent can be calculated as follows: 

 

                 
     1p q p qv t rand v t a t    ,             (30) 

 

                     
     1 1p p px t x t v t    ,               (31) 

 

where, randp is another uniform random number in 

the interval [0, 1]. To reduce the exploitation 

capability and to enhance the exploration power of 

the agents, a set of best agents (Kbest(t)) are chosen 

so that only the Kbest(t) of the moving agents will 

attract the others. Therefore, Equation (29) can be 

modified as follows: 
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   

 

 
 

( )

.
m

best

n
q

p q q p

q K t pq

M t
a t G t rand X X

R t 

 


 .   (32) 

 

For updating the gravitational acceleration of 

agents, NSGSA uses the same equation as basic 

GSA. The most important parameter of this 

equation is the gravitational constant, G(t). In [30], 

G(t) is suggested as G0.exp (α.t /tmax) so that α and 

G0 are the function parameters. It is difficult to find 

a suitable constant G0 for various test functions. In 

this paper, the procedure to calculate the value of G0 

is as follows: 

 

                      
 0

1,2,...,
max d d

u l
d N

G x x


  ,                  (33) 

 

where, σ is a coefficient of search interval 

parameter of NSGSA. In NSGSA method, the main 

loop starts after initializing the particle positions 

and velocities. Then, the external archive is updated 

based on the Pareto dominance criterion. To obtain 

a set of solutions that spans the whole Pareto 

optimal area as homogeneously as possible, a 

crowding distance is calculated as in [32] as 

follows: 

 

         
   

2

, ,

1

,         1,2,...,
N

q

c p c p archive

q

d d p n


  ,       (34) 

 

 , 1 1fit fit ,     1,2,.., ; 1,2,..,q q q

c p p p archived p n q N     ,  (35) 

 

                         

archive
,

1 archive

n cc p

cp
p ep

d d

n q d



 


  ,                  (36) 

 

where, ep is the set of extreme points, the size of 

which is taken equal to q. To get a uniform spread 

of Pareto-archive, the spread indicator (  ) must be 

reduced. This has been done by reducing the 

difference between max (dc,p) and min (dc,p). 

In order to update the list of moving agents for the 

next flight, m extreme points of the single objective 

optimal solutions of the external archive and m 

points located in the least crowded area are inserted 

to the list. In NSGSA, two mutation operators, 

called sign and reordering mutation has been added 

to the original GSA to decrease the chance of 

trapping in local optima. Moreover, these two 

mutation operators promote and preserve diversity 

within the moving agents. The mutation operator in 

NSGSA works as follows: the velocity of particle is 

first mutated by the sign and then by reordering the 

mutations.  

To update the positions of each agent using sign 

operator, the sign of velocity vectors changes 

temporally in dth direction with a predefined 

probability, Pu, as follows [29]: 

 

                   
   ' 1 1d d d

p p pV t S V t   ,                      (37) 

 

d =1, 2, …. , N; p = 1, 2, …. , nm , 

 

                   

1      rand  

1     Otherwise

d

p

Pu
U

 
 



 ,                      (38) 

  

               
     '1 1t

p pX t X t V t    ,                  (39) 

 

where, V′d
p(t+1) is the mutated velocity by the sign 

mutation operator and rand is a uniform random 

number generated in the interval [0, 1]. Then, the 

reordering operator is used for updating the position 

of each agent as follows [28, 29]: 

 

                
       1p p pV t w t V t a t    ,              (40) 

 

              
    ' 1 sign_mutate 1p pV t V t   ,            (41) 

 

         
    '' ''1 reordering_mutate 1p pV t V t   ,        (42) 

 

                  
     "1 1p p pX t X t V t    ,               (43) 

 

where, w(t) is the Time Varying Inertia Co-efficient 

(TVIC) which can be determined by the following 

equation: 

 

                   
   0 0 1

max

t
w t w w w

t

 
   

 

 .                (44) 

The basic difference between TVIC taken in basic 

GSA and in NSGSA is that the TVIC value is 

considered as a random number in the interval [0, 

1], in GSA based approach, whereas in NSGSA, a 

decreasing inertia is considered instead of using a 

random number.  
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The TVIC is taken as a decreasing inertia in this 

paper for proper exploration and exploitation in the 

first and the last iterations, respectively. 

Having obtained the Pareto optimal set, choosing a 

best compromise solution is vital in decision 

making process. In this article, an interactive fuzzy 

membership approach has been applied to obtain 

satisfactory and best compromise solution from the 

non-inferior solution or non-dominated solution set 

in the multi-objective optimization.  

The imprecise or fuzzy goal for each of the 

objective functions is quantified by defining their 

corresponding membership functions. The fuzzy 

sets are defined by Equation (45) and known as 

membership functions μfi. These functions represent 

the degree of membership in certain fuzzy sets in 

terms of values from 0 to 1. The membership value 

0 indicates incompatibility with the sets, while 1 

means full compatibility. By taking account of the 

minimum (fi
min) and maximum (fi

max) values of each 

objective function together with the rate of increase 

of membership satisfaction, the membership 

function μfi is determined in an individual manner. 

Here, it is assumed that μfi is a strictly 

monotonically decreasing and continuous function 

defined as [30-34]: 

 

          

min

max
min max

max min

max

      1               

       

        0                

i

i i

i i
f i i i

i i

i i

f f

f f
f f f

f f

f f



  



  


 

.         (45) 

The values of the membership functions indicate 

that how much (in the scale of 0–1) a non-

dominated solution has satisfied the objective μi 

[33]. The sum of the membership function values 

(μfi; i = 1, 2, ... , N) for all the objectives can be 

computed in order to measure the effectiveness of 

each solution in satisfying the objectives. This 

effectiveness of each non-dominated solution can be 

rated with respect to all the non-dominated 

solutions (M) by normalizing its values over its total 

sum as follows [30, 33]: 

 

                         

1

1 1

i

i

N k

fik

M N k

fk i








 




 
 .                     (46) 

 

The functions μk in Equation (46) are treated as a 

normalized membership function for non-dominated 

solutions in a fuzzy set and are represented as a 

fuzzy cardinal priority ranking of the non-

dominated solutions. The solution that attains the 

maximum normalized membership μk in the fuzzy 

set, i.e., max {μk; k = 1,2, ..., M}, is chosen as the 

‘best non-dominated’ solution. 

The different steps of the implemented NSGSA 

algorithm are depicted in Table 1 below: 

 

 

Table 1. Different algorithmic steps of NSGSA approach 

 

Step Operation 

Step 1 Search space identification 

Step 2 Randomized initialization 

Step 3 Fitness evaluation of each particles 

Step 4 Update external archive 

Step 5 Non-dominated sorting 

Step 6 Update the list of moving particles 

Step 7 Update the mass of moving particles 

Step 8 Update particles acceleration 

Step 9 Update particles velocity 

Step 10 Update and mutate particles position 

Step 11 
If the number of iterations exceeds its maximum predetermined bound, then end; 

or else, repeat Steps 3–10 until the maximum number of iteration is exceeded 
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4 Simulation results and discussion   
 

The single-phase transformer was designed 

following the presented methodology. For this 

particular case, the stacking factor was chosen to be 

10%. 

A classical transformer design procedure was also 

performed to provide a comparative device. 

Transformer parameters are given in the Appendix. 

The program has been developed using MATLAB.  

To validate the presented approach, two TD 

objectives were considered: the mass and the losses 

that are to be minimized simultaneously in order to 

achieve the most appropriate trade-off between 

objectives all across the Pareto front. The Pareto 

front obtained for the TD using NSGSA approach is 

shown in Fig. 3. 

 

 
 

Figure 3. The Pareto-optimal front obtained using 

NSGSA.  

 

Table 2. Parameters and results of TD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 shows the parameters of the single-phase 

transformer obtained with a classical procedure (not 

optimized) and the NSGSA approach with 

normalized arithmetic mean minor. 

In spite of the fact that NSGSA approach provides 

better results than NGDE, CMOA and MOHS, 

Table 2 shows that NSGSA algorithm offers the 

best performance and provides the minimum 

objective function when compared with the other 

multi objective optimization algorithms.  

Simulation results indicate the advantages of the 

NSGSA approach and its applicability to the TD.  

The simulation results in Table 2 shows the 

effectiveness of the proposed NSGSA algorithm, in 

terms of the solution quality, and the amount of 

elements of the Pareto set found by NSGSA.  

The result of NSGSA with normalized arithmetic 

mean minor between the objective functions was          

f1 = 4.173 kg and f2 = 0.067 W. 

Comparing the proposed optimization algorithm 

with the MOHS approach, the percentage reduction 

in mass and losses is found to be increased by 

1.82%, and 20.04%, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Parameters 
Classical 

[25] 

NGDE 

[25] 

CMOA 

[26] 

MOHS 

[27] 

Proposed 

NSGSA 

  
  
O

p
ti

m
iz

ed
 

  
 V

ar
ia

b
le

s 

c [cm] 2.50 1.82 2.60 1.71 1.70 

t [cm] 4.00 5.77 4.00 3.99 3.95 

hw [cm] 7.50 6.07 10.00 10.00 9.98 

bw [cm] 2.50 2.81 1.50 1.76 1.81 

N1 231 166 210 319 354 

N2 507 334 423 643 662 

f1 : mass [kg] - - 4.77 6.11 4.25 4.173 

f2 : losses [W] - - 0.07 0.07 0.0838 0.067 
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5 Conclusions  
 

In this paper, NSGSA algorithm is employed for the 

optimum design of single phase distribution 

transformer. The work aims at developing a TD that 

minimizes the objectives (such as the total mass and 

losses of power transformer) by using proposed 

multi-objective optimization approach, and by 

taking into account the constraints imposed by the 

international standards and transformer 

specifications.  

The validity of the NSGSA algorithm for solving 

TD optimization problem is illustrated with its 

application to a 400 VA distribution transformer 

design, and then by comparing the obtained 

simulation results with those obtained in literature 

when using other optimization algorithms, such as 

NGDE, CMOA, and MOHS algorithms.  

Based on the obtained simulation results, NSGSA 

algorithm in particular proved its superiority in 

providing the minimum values of the two objective 

functions (mass and losses).  

In this simple transformer model, voltage 

regulation, power factor and temperature limits 

were not considered. A more detailed and accurate 

model will be developed in future papers. Future 

work will also consider development of the 

proposed algorithm capable of dealing with more 

complicated cases such as three phase transmission 

and distribution transformers for various feasible 

transformer designs. 

 

6    Appendix  
 

6.1. Power transformer parameters 
 

Shell core, dry-type, single-phase transformer:  

S = 400 VA, fn = 50 Hz, V1 = 110 V and V2 = 220 V.  

Minimum efficiency ηmin = 80 %, Kf = 1.1, Kc = 0.5 

× 10−3 and α = 1.7, β = 1.9. 

 

6.2. NSGSA parameters 
 

Archive length (narchive) = 100, 

Agent size (nm) = 100, 

Reordering mutation probability = 0.4, 

Sign mutation probability = 0.9, 

Percent of elitism (pelitism) = 0.5, 

Initial value of inertial coefficient (W0) = 0.9, 

Final value of inertial coefficient (W1) = 0.5, 

Coefficient of search interval (σ) = 2.5. 
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