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A STUDY ON THE EFFECTS OF LOCAL ADDED MASSES ON THE 
NATURAL AND THE SOUND RADIATION CHARACTERISTICS OF 

THIN PLATE STRUCTURES 

Summary 

As panel-like structures are widely used in industrial products such as high speed trains, 
automobiles, and ships, the effects of additional attachments (e.g. lumped mass, rib-stiffeners) 
to the panels on their dynamic/acoustic characteristics have been investigated analytically, 
numerically, experimentally or combining two or all the methods in the past decades. The 
present study focuses on highlighting the differences among local mass effects on the 
vibration and the radiation behaviour of flexible modes of the flat panel structures. A simple 
model comprising a local mass attached to a rectangular plate surface is set up, allowing us a 
deep insight into how the local mass affects the inherent mode parameters and the 
corresponding vibration and radiation characteristics of panel structures. The influential 
phenomena are first investigated analytically and then verified using FE-numerical 
simulations. The results show that: (1) the dynamic modal parameters of flat panel structures 
show different sensitivity to the values of the added mass and its locations; (2) the vibration 
and radiation characteristics of elastic modes with the same order can be affected in quite 
different degrees by the same local mass attachment; and (3) the modal acoustic interactions 
of thin plates can be significantly affected by the local mass attachments. 

Key words: Local mass, panel structure, dynamic modal property, radiation 
characteristics, self-/mutual-radiation 

1. Introduction 
The vibro-acoustic characteristics of panel-like structures have been extensively 

investigated in the past decades due to the significance of numerous industrial structures that 
are modelled, to a first approximation, as finite flat panels. Typical examples include high 
speed trains, automobiles, ship hulls, etc. An extensive literature is available either on the 
vibro-acoustics of single panel structures [1-2] or on panel-like structures consisting of certain 
kinds of attached components, e.g. rib-stiffened panel structures [3], double plates with 
typical stiffeners [4], framed panel structures [5], etc.  

The presence of local masses attached to the surfaces of structures, which affect the 
structural vibro-acoustics, has been widely studied based on conventional modelling 
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techniques, e.g. the analytical, numerical-, and experimental methods, and/or any appropriate 
combination of two or more of them For example, a mathematical model describing the lateral 
free vibration of a clamped–clamped cracked beam carrying concentrated masses has been 
derived by Alsaid [6]. The local mass effects on the vibration of panel structures have been 
investigated by Kopmaz [7] and Wong [8], while the local mass effects on panel radiation 
characteristics have been investigated by Li [9] and Sharma [10], mainly based on the 
analytical and the numerical modelling. Further relevant investigations include the local mass 
effects on vibro-acoustic characteristics of cylindrical shells [11] and a honeycomb panel [12] 
based on the numerical and the experimental modelling. All these investigations have clearly 
shown that the modification level of the panel vibro-acoustic characteristics depends greatly 
on both the location and the size of the attached mass and its distribution over the panel 
surfaces. However, there were no direct comparisons showing how the degree of influence on 
the modal vibration of a panel may differ from that on its modal radiation when the panel 
structure is subjected to the same level of point mass loading.  

It has been well understood that the flexible modes of a thin panel structure behave 
quite differently in terms of vibration and radiation [13]. It is typically exhibited that the 
structural modes in general do not radiate independently so that a portion of the radiated 
power is attributable to the acoustic interaction between vibrating modes. Consequently, it is 
very important to be able to distinguish the local mass effects on the modal vibration 
characteristics of an elastic panel from those on the modal radiation characteristics so that 
more efficient passive techniques can be further generated for the noise and the vibration 
control [14], especially for the low and medium frequency ranges. 

With the above in mind, a simple mass-plate model is set up in the present study, as 
shown in Fig. 1, in order to gain a deep insight into the mass effects on the vibro-acoustics of 
the plate flexible modes. An analytical mode decomposition method is adopted on the basis of 
simply supported rectangular plates, which allows the calculations of both the vibrational 
modes of the panel (including the rib-stiffened panel cases in a parallel investigation) and the 
associated acoustic radiation of the structures in a baffled condition. The modified modal 
vibration and radiation characteristics (e.g. the natural frequencies and corresponding modal 
radiation coefficients) of the plate after the attachment of the point mass are then directly 
compared with those of the “unloaded” plate modes. Following the evidence by the analytical 
modelling, the corresponding phenomena are illustrated with numerical simulations for other 
boundary condition cases of the plate.  

In the text that follows, an analytical method used for finding the eigenfrequencies of a 
rectangular plate with a point mass attachment is presented in Section 2. In Section 3, the 
vibration response of a plate subjected to a harmonic point excitation at the local mass is 
presented in terms of mode summation and the corresponding sound power, which is 
presented in terms of a discretized surface approach, with the self-radiation and mutual-
radiation being addressed. Then, in Section 4, both the analytical and the numerical study are 
conducted to assess the contribution of individual modes to the total vibration energy 
response and to the radiated sound power of the rectangular plate. Thus, the physical 
mechanisms are interpreted in an explicit way. The significance of the local mass impact on 
the modal vibro-acoustic characteristics of plates is finally given in Section 5. 

2. Eigenfrequencies of a rectangular plate with a point mass attachment  

In this section, an analytical method is employed to find the eigenfrequencies of a 
rectangular plate with a point mass attachment. 

Consider a thin plate with a local mass located at the point C C( , )x y . The width, length, 
and thickness of the plate are a, b and h, respectively, as shown in Fig. 1. 
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Fig. 1  Arectangular plate with a local mass 

By neglecting the effects of shear deformation and rotary inertia, the governing equation 
of a uniform isotropic rectangular plate carrying a point mass may be written as 

4
C C C( , , ) ( , , ) ( , ) ( , , )D w x y t hw x y t m x x y y w x y t         (1) 

where, ( , , )w x y t  is the displacement at a general location ( , )x y , 3 2/[12(1 )]D Eh    is the 
flexural rigidity, E  and   are Young’s modulus and Poisson’s ratio, respectively,  is the 
density of the plate, Cm  is the weight of the local mass, and ( , )x y  is the Dirac delta 
function. 

The vibration response at a grid of points ( , )x y  on the surface of the plate obtained by 
using the modal summation method is given as 

( , , ) ( ) ( , )k k
k

w x y t q t x y  (2) 

where, ( )kq t  are the modal coordinates, ( , )k x y  is the thk mode shape function of the 
structure at the point  ,x y , respectively, which satisfies the natural boundary conditions of 
the plate. The orthogonality property of ( , )k x y , if mass normalized, gives 

2
2

1,
( , ) ( , )d

0,

,( , ) ( , )d
  0 ,

k kV

k
k kV

k k
h x y x y x

k k

k kD x y x y x
k k

  

 






  

   





 (3) 

Assuming that only K  modes are involved in the calculation, one can rewrite the 
governing equation in matrix form by combining Eq. (1)-(3) 

 2 =c cm   Λ E Φ q 0  (4) 

In the above equation,  2 2 2
1 2diag , , K  Λ  is the ( )K K  diagonal matrix and k  

is represented to the thk  natural frequency of the unloaded plate, E  is the ( )K K  unit 
matrix, cΦ  is the ( )K K  matrix, whose ( , ) thk k element is given by  

     , = , , , d dc kk k k c c
S

x y x y x x y y x y       (5) 

Equation (4) represents the eigenvalue equation, which can be solved by an eigenvalue 
solver to obtain natural frequencies and the corresponding modes.  
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For example, a rectangular, thin plate structure is loaded by a mass Cm  at the location 

C C( , )x y . If simply supported boundaries are assumed, the plate mode ( , )k x y  can now be 
separated into x  and y directions, i.e. ( , ) ( ) ( )k m nx y x y   . The mass-normalized mode 
shape and the corresponding natural frequency in this case can be written as 

2 2

2( , ) sin sink

k

m x n yx y
a babh

D m n
h a b

 


 


       
   

         
     

  (6) 

where, D  is the dynamic stiffness of the plate, and   and h  are the mass density and the 
thickness of the plate, respectively. Combining Eq. (5) and (6) with Eq. (7), one can obtain the 
natural frequencies and mode shapes of the loaded plate.  

 2 0c cm  Λ E Φ   (7) 

Equations (4)-(5) imply that (1) the eigenfrequency of the mass-plate system is related 
to the plate mode shapes at the point mass location ( , )c cx y ; (2) when the point mass is 
located at the node of vibration mode in the x  or y  directions, neither the natural frequency 
nor the modal shape in this particular mode can be affected, e.g. if a simply supported plate 
carries a point mass located at its centre, according to Eq. (6), 2 ( , ) 0c cx y  . Consequently, 
according to Eq. (5) and (7), ,2 2c  , i.e., the mass loading has a negligible effect on the 
2nd  order natural frequency and mode shape of the plate. 

3. Vibration and radiation responses of the plate subjected to a harmonic force point 
excitation 

In this section, the mass-plate system vibration response to harmonic point excitation is 
presented using the modal summation method, and the associated sound power, both the self-
radiation and the mutual-radiation, is illuminated in terms of discretized surface approach. 

3.1 Vibration response 

Assume a time harmonic force at the point 0 0( , )x y  based on the free vibration mode 
described in Section 2. According to Eq. (1) and Eq. (5), the mass-plate system vibration 
response may be written, in matrix form, as 

 2 T
0=c cm F    0Λ E Φ q φ  (8) 

where, 0F  is the harmonic force and 0φ  is the (1 )p  modal shape vector with matrix 
elements  0 0,k x y . The modal coordinate vector q  of the mass-plate system can be found 
by solving the equation below 

 
12 T

0= c cF m


    0q Λ E Φ φ  (9) 

The mass-plate harmonic displacement response at an arbitrary point  ,x y , obtained by 
the modal summation method, can then be expressed as 
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   
12 T

0, , c cw x y t F m
       

0φ Λ E Φ φ  (10) 

where, φ  is the vector formed by the modal shape values (i.e. eigenvectors of 
 2 0c cm  Λ E Φ ) at the  ,x y  location of the plate. In the case of small mass loading, 

the mode shapes of the plate tend to be affected fairly little.  
As for harmonic vibrations, the time-average kinetic energy of the plate is computed 

from 

2
0

1 1 ( , , ) d d
2

T

S
K h v x y t t S

T
       (11) 

where, S  is the area of the vibration surface and T  is the time over one period, 
where ( , , )v x y t  is the velocity response of the plate at point  ,x y . In general, the expression 
of kinetic energy given in Eq. (11) can be used to well represent the vibration level of a plate 
surface.  

Substituting the modal summation method from Eq. (10) into Eq. (11), the time-average 
kinetic energy can be determined by using a matrix form as 

H T
0 0

d d
4

a bhK x y
   v vq φ φq  (12) 

where, the two superscripts H  and T  denote the complex conjugate and the vector transpose, 
respectively, and vq  is the ( 1)p  complex modal vector of velocities, which can be found by 
taking the time derivative of Eq. (10). 

3.2 Radiation response 
The total acoustic power radiated from the plate can be evaluated by introducing the so-

called “power transfer matrix” [15] and the “radiation resistance matrix” [3] and by presenting 
the discretized surface approach based on elementary radiators.  

Divide the baffled plate into a grid of R  rectangular elements, and assume that the size 
of each radiator is much smaller than the acoustic wavelength of the structure. The total sound 
power is given by  

H T HP  v Ψ RΨv v Av  (13) 

In Eq. (13), Ψ  is the ( )R K  matrix formed by the exact modal shape vectors 

 T
1 2, Kφ φ φ , v  is the ( 1)K   associated complex modal vector of velocities, and R  is the 

( )R R  matrix given by 
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Equation (14) is the so-called “radiation resistance matrix”, where 0  is the density of 
the air, 0c  is the sound speed in the air, eS  is the area of each radiator, and ijR  is the distance 
between the centres of the thi  and thj  elements. 

From Eq. (13) and Eq. (14), A  is the  K K  matrix determined by  

TA Ψ RΨ  (15) 

A is referred to as “the power transfer matrix”. The main diagonal terms of A represent 
the sound power radiated directly from each individual vibrating mode, i.e. the so-called 
“self-radiation” parts, while the off-diagonal terms account for the sound power radiated via 
the acoustic coupling between different orders of vibrating modes, i.e. the so-called “mutual- 
radiation” parts [13]. Consequently, the self-radiated sound power can be obtained from Eq. 
(13) by letting the off-diagonal terms of A  be zero, while the rest of the total power radiation 
accounts for the mutual-radiation part. 

3.3 Radiation efficiency 
The radiation efficiency of a vibrating structure is generally defined as 

2
0 0

P

c S v



  (16) 

where, P  is the total radiated sound power calculated by Eq. (13), and 2v  is the space-

average mean square velocity of the plate surface vibration. Clearly, 2v  is related to the 

time-average kinetic energy by 

2
2

PMK v  (17) 

The modal radiation efficiency of a particular vibrating mode can then be calculated in a 
similar way as in Eq. (16) but with P  and 2v  to be replaced by the vibro-acoustic responses 

associated only with that particular vibrating mode.  

4. Results and discussion 

In this section, a set of mass-plate numerical examples are set up to investigate the local 
mass effects on the modal vibro-acoustic characteristics of thin, rectangular plate structures. 
Extra effort is devoted to highlight different effects on the plate modal vibration and the 
associated modal radiation.  

4.1 Model description 
The mass-plate models employed in the investigation are briefly introduced in this 

subsection. The material properties and dimensions of the plate are listed in Table 1. The local 
mass effects on the vibro-acoustic characteristics of the plate are investigated by varying the 
mass value of the point mass (in percentage of the total plate mass) and the connecting 
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location with the plate surface. Three mass values and three connecting locations are 
employed as shown in Table 2. 

Table 1  Material properties and dimensions of the plate 

Length, 
mm 

Width, 
mm 

Thickness, 
mm 

Young’s  
modulus, GPa 

Density,  
kg·m-3 

Poisson’s  
ratio 

790 640 1.5 210 7850 0.3 

Table 2  Point masses employed  

 Mass 1 Mass 2 Mass 3 
(mC/MP) 6% 15% 30% 

 Point 1 Point 2 Point 3 
(xC/a, yC/b) (0.437, 0.585) (0.5, 0.5) (0.17, 0.273) 

The plate is first assumed to be with four edges simply supported so that a physical 
interpretation can be made in an efficient and analytical way. Then, the plate boundaries are 
assumed to be fully fixed so as to simulate a condition more closely related to the practical 
engineering.  

In the numerical examples below, all the calculations for simply supported plates are done 
by analytical equations derived in Sections 2-3, e.g. the natural frequencies from Eq. (5)-(7), the 
total radiated sound power from Eq. (13)-(14). Note that the exact plate mode shapes after mass 
loading are determined by the eigenvectors of Eq. (4). However, when calculating the radiation, 
unloaded plate mode shapes are used in Eq. (15) for simplicity due to the minor influence of the 
loaded masses in these specified cases. For example, representative mode shapes of the plate 
before and after mass loading are compared in Fig B1 and Fig B2 in Appendix B. The 
comparison clearly shows that the mass effects on mode shapes are indeed fairly modest. 

On the other hand, FE simulations of simply supported mass-plate systems conducted by 
ANSYS are used for simulation validity in which quadrilateral meshes are generated with 
element size of 0.02m, which is less than one-sixth of the plate wavelength at 200Hz. The 
analytical and the FE simulation results are given in Table A1 and Table A2, respectively, of 
Appendix A. A comparison between the two sets of results shows that the analytical method 
results are in agreement with the FE-simulation results, though FE-simulation results exhibit 
lower values than the former. Finally, FE models of fully fixed mass-plate systems are 
established in Subsection 4.2 and are used for verifying the mass effects on natural 
frequencies of the plate, which are listed in Table A3 of Appendix A.  

4.2 Natural frequencies 
The first 15 orders of natural frequencies of the mass-plate systems for the following 4 

different mass-plate coupling cases are calculated as shown in Fig. 2-5, and the comparisons 
between Cases 1 and 2 and those between Cases 3 and 4 are given in Tables A1 and A3, 
respectively.  

Table 3  Cases of mass-plate systems 

No. Boundary Condition  Mass Value Mass Location 
Case 1 Simply supported Mass-1, -2, and -3 Point-1 only 
Case 2 Simply supported Mass-1 only Point-1, -2 and -3 
Case 3 Fully constrained Mass-1, -2, and -3 Point-1 only 
Case 4 Fully constrained Mass-1 only Point -1, -2, and -3 
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Generally speaking, the natural frequencies of the plate structures tend to be reduced 
after adding a point mass, as can be seen from Tables A1-A3 in Appendix A. Here, the 
decreasing levels of natural frequencies from Fig. 2-5 are compared in percentages for the 
above four cases. 
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Fig. 2  Decrease in natural frequencies,  Case 1 Fig. 3  Decrease in natural frequencies, Case 2 
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Fig. 4  Decrease in natural frequencies, Case 3 Fig. 5  Decrease in natural frequencies, Case 4 

From Fig. 2 and Fig. 4 one can see that, for a fixed interface location, the following is 
valid: the larger the local mass is, the bigger is the dynamic influence on the plate modes, 
especially with the lower order modes, which tend to be more affected than the higher order 
ones. The above phenomena occur regardless of the boundary conditions of the plate 
structures. However, Fig. 3 and Fig. 5 show that, in the case of the same point mass but with 
various interface locations, the trends in the impact on the plate modes become fairly 
complicated in that the higher order modes may be much more significantly affected than the 
lower order ones. Meanwhile, the degrees of influence on different orders of plate modes 
also depend on the detailed boundary conditions.  

Therefore, one may conclude that, by a proper combination of the local mass value, the 
coupling location, and the plate boundary settings, it is possible to achieve an efficient 
passive control for a particular mode of the plate.  

4.3 Vibration response 
Figures 6 and7 compare vibrational energy responses of the plate before and after being 

connected with a point mass, corresponding to the mass-plate coupling, for Cases 1- and 2, 
respectively.  

It can be seen that the surface velocity response of the plate structure at the first natural 
frequency is most significantly affected after the local mass has been attached.  

The results suggest that if the plate vibration is dominated by its lower order modes, the 
mass value effects tend to be much more significant than the coupling location effects. 
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However, if the plate vibration is dominated by the higher order modes, the influence of  the 
mass values and that of the coupling locations tend to be similar. 
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Fig. 6  Influences on the kinetic energies of a plate  Fig. 7  Influences on the kinetic energies of a plate  
with a varied point mass (Case 1) with a varied connecting  location mass (Case 2) 

4.4 Sound power radiation 
In addition to the comparisons of vibration shown in Fig. 6 and 7, comparisons of the 

sound power radiation from the plate in the Case 1 and Case 2 are given in Fig. 8 and 9, 
respectively. 
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Fig. 8  Influences on the sound power of a plate  Fig. 9  Influences on the sound power of a plate with 
with a varied point mass (Case 1) a varied connecting location mass (Case 2) 

It can be seen that, at the fundamental frequency of the plate, the local mass effects on 
the acoustic radiation of the plate are very similar to those on the plate vibration; thus, a point 
mass tends to reduce both the vibration and the radiation at the fundamental frequency. 
However, if the radiation is mainly from the high order vibrating modes, the effects of point 
mass on the radiation become quite different from those on the vibration. One can see that an 
added mass can significantly increase the acoustic radiation from the higher order modes. 
These phenomena can be noted for both the mass variation and coupling point variation cases.  

To understand the reasons why the radiation from the higher order modes has been 
increased by an added mass, the modal radiation efficiencies for the first 3 bending modes of 
the plate when different point masses are attached to the plate vibrating surfaces are shown 
and compared in Figures 10-13. 
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Fig. 10  Influences on the 1st radiation efficiencies  Fig. 11  Influences on the 1st radiation efficiencies  
of a plate with a varied point mass (Case 1) of a varied connecting location mass (Case 2) 
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Fig. 12  Influences on the 2nd radiation efficiencies  Fig. 13  Influences on the 3rd radiation efficiencies  
of a plate with a varied point mass (Case 1) of a plate with a varied point mass (Case 1) 

Figures 10-11 show that the radiation efficiency of the fundamental mode is almost not 
affected by an added mass, regardless of the exact point mass value or its varied connecting 
location. However, the radiation efficiencies for the second (Fig. 12) and the third (Fig. 13) 
bending mode of the plate have all been increased, while the larger the added mass value is, 
the sharper is the increase in the radiation efficiency. 

Figures 10-13 can well explain why the acoustic radiation from the plate is s increased 
in the region dominated by the higher order modes after the attachment of a point mass (e.g. 
in Fig. 8-9).  

4.5 Self-radiation and mutual-radiation 
Finally, local mass effects on the self-radiation and mutual- radiation characteristics of 

plate vibrating modes are investigated analytically.  
Figures 14-15 show the self-radiation and mutual-radiation versus the total sound power 

radiation before and after a point mass is attached to the plate, respectively.  
One can see that an added local mass can significantly increase the mutual- radiation of 

the plate bending modes, especially for the higher order vibrating modes. This clearly 
indicates that the acoustic interactions between different vibrating modes can be significantly 
increased by the local point mass. 
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Fig. 14  Total, self- and mutual-radiation sound  Fig. 15  Total, self-and mutual-radiation sound 
power of a simply supported plate power of a mass-plate (Point 1) 

5. Conclusions 

The present study was developed to highlight the differences among local mass effects 
on the vibration and the radiation behaviour of flexible modes of the flat panel structures. A 
simple model comprising a local mass attached to a rectangular plate surface is set up, which 
allows us a deep insight into how a local mass can affect the inherent modal characteristics, 
and the corresponding vibration and radiation characteristics of a generic, thin, flat panel 
structure. The influential phenomena are first investigated analytically and then verified with 
FE-numerical simulations. The following conclusions can be drawn from the investigations.  

(1) The modal dynamics of the lower order plate modes tend to be more affected by a 
local mass than that of the higher order ones if the attachment location of the mass to the plate 
is fixed. However, such influential trends can be significantly altered when varying the 
location of the same local mass attachment to the plate: a higher order mode can be more 
significantly affected than a lower order mode provided that a mass-plate coupling location is 
properly chosen.  

(2) When the plate vibration is dominated by its lower order modes, the mass value 
effects tend to be much more significant than the coupling location effects. However, if the 
plate vibration is dominated by the higher order modes, the influence of the mass values and 
those of the coupling locations tend to be similar. 

(3) In the low frequency range, e.g. close to the fundamental frequency of the plate, a 
point mass tends to reduce both the vibration and the radiation at the fundamental frequency. 
However, at higher frequencies, where the radiation is mainly from the high-order vibrating 
modes, an added mass can significantly increase the acoustic radiation from the higher order 
modes. This is because the radiation efficiency of the fundamental mode is almost not 
affected by an added mass, while the radiation efficiencies of the higher order vibrating 
modes can be significantly increased by the added local mass.  

(4) An added local mass can significantly increase the mutual-radiations of the plate 
bending modes, especially those for the higher order vibrating modes. This suggests that the 
acoustic interactions between different vibrating modes can be significantly increased by the 
local point mass.  
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Appendix A: Natural frequencies of the plate before and after the attachment of a point 
mass 

Natural frequencies of the mass-plate system of 4 different coupling cases described in 
Subsection 4.2 are calculated and compared with the natural frequencies of the single plate 
case. On the other hand, the natural frequencies obtained by the analytical method and those 
by FE simulations have been compared. Note that, in the calculation below, only the point 
mass value is varied in Case 1 and Case 3, while only the point mass location is varied in 
Case 2 and Case 4. 

Table A1  Analytical results of natural frequencies of simply supported plates (Case 1 vs. Case 2) 

Mode 
Order 

Single 
plate 

Case 1 Case 2 
Mass 1 Mass 2 Mass 3 Point 1 Point 2 Point 3 

1 14.9 13.5 11.9 10.1 13.5 13.4 14.6 
2 32.6 32.1 31.6 30.9 32.1 32.6 30.7 
3 41.9 40.8 39.7 38.8 40.8 41.9 40.6 
4 59.7 57.8 54.8 52.8 57.8 55.8 53.4 
5 62.2 59.9 59.8 59.8 59.9 59.7 61.2 
6 86.9 82.4 79.6 78.0 82.4 81.0 82.3 
7 89.2 88.7 88.6 88.6 88.7 89.2 87.2 
8 103.5 100.1 98.8 98.2 100.1 103.6 100.8 
9 104.7 104.6 104.5 104.5 104.6 104.7 104.3 
10 130.6 127.4 125.1 123.9 127.4 124.7 125.3 
11 134.2 132.1 131.8 131.7 132.1 130.6 133.5 
12 150.0 143.8 142.3 141.8 143.8 150.0 149.8 
13 156.7 155.5 155.3 155.2 155.5 150.6 155.9 
14 167.7 166.8 166.6 166.5 166.8 167.7 167.1 
15 175.6 173.8 173.4 173.2 173.8 175.6 173.9 

 

Table A2  FEM results of natural frequencies of simply supported plates (Case 1 vs. Case 2) 

Mode 
Order 

Single 
plate 

Case 1 Case 2 
Mass 1 Mass 2 Mass 3 Point 1 Point 2 Point 3 

1 14.7 13.3 11.7 9.9 13.3 13.2 14.4 
2 32.1 31.6 31.0 30.3 31.6 32.1 30.1 
3 41.2 40.1 38.9 37.9 40.1 41.2 39.9 
4 58.6 56.5 53.1 50.8 56.5 54.3 52.0 
5 61.1 58.9 58.8 58.8 58.9 58.6 60.1 
6 85.3 80.2 76.7 75.0 80.2 78.8 80.0 
7 87.5 87.0 86.9 86.9 87.0 87.5 85.5 
8 101.5 97.6 95.9 95.2 97.6 101.5 98.5 
9 102.6 102.5 102.5 102.5 102.5 102.6 102.3 
10 127.9 122.9 119.3 117.6 122.9 119.1 121.5 
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Mode 
Order 

Single 
plate 

Case 1 Case 2 
Mass 1 Mass 2 Mass 3 Point 1 Point 2 Point 3 

11 131.4 129.1 128.8 128.8 129.1 127.9 130.6 
12 146.8 139.1 137.4 136.9 139.1 145.5 146.6 
13 153.3 151.9 151.6 151.6 151.9 146.8 152.1 
14 163.3 162.6 162.0 161.8 162.6 163.9 162.9 
15 171.5 168.9 168.1 167.8 168.9 171.5 168.9 

 

Table A3  FEM results of natural frequencies of fully constrained plates (Case 3 vs. Case 4) 

Mode 
Order 

Single 
plate 

Case 3 Case 4 
Mass 1 Mass 2 Mass 3 Point 1 Point 2 Point 3 

1 27.0 23.4 19.6 15.9 23.4 23.0 26.8 
2 47.8 46.6 45.3 44.3 46.6 47.9 45.7 
3 61.6 58.9 56.8 55.5 58.9 61.6 59.3 
4 80.8 76.5 73.7 72.3 76.5 72.2 69.9 
5 81.6 80.9 80.9 80.9 80.9 80.8 81.3 
6 113.0 106.3 102.2 100.2 106.3 105.2 99.6 
7 114.4 113.6 113.5 113.5 113.6 113.0 114.3 
8 127.5 122.8 121.6 121.2 122.8 127.5 122.9 
9 132.9 132.4 132.3 132.2 132.4 132.9 131.0 
10 157.7 152.7 149.5 148.1 152.7 149.1 146.7 
11 163.9 161.1 160.5 160.3 161.1 157.7 162.1 
12 185.1 173.0 170.9 170.2 173.0 177.2 181.7 
13 185.2 185.2 185.2 185.2 185.2 185.1 185.2 
14 203.2 200.6 199.7 199.4 200.6 203.2 200.0 
15 207.5 205.7 205.5 205.4 205.7 207.6 203.2 
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Appendix B: Representative mode shapes of unloaded and mass-loaded plates 

In order to illustrate the mass effects on flexible mode shapes of the plate, 
representative mode shapes of the unloaded and mass-loaded plates are compared in the 
figures below. Mass-1, Mass-2, and Mass-3 located at Point 1 (in Table 2) are employed for 
the relevant FE calculations.  
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Fig. B1  1st mode shapes of unloaded and mass-loaded plates 
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Fig. B2  5th mode shapes of unloaded and mass-loaded plates 
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