CCA-1848

YU ISSN 0011-1643 UDC 541.653 Original Scientific Paper

The Molecular Structure of Six-Membered Lactams Related to the Lactam Rule¹

Hiroaki Takayanagi and Haruo Ogura*

School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108, Japan

Received November 1, 1988

Stereochemistry of isodihydrolumisantoninlactam (2) was determined by means of X-ray analysis and CD. The six-membered lactam ring of 2 and D-glucono-1,5-lactam (3) is in halfchair conformation in agreement with the lactam rule.

INTRODUCTION

Some time ago, we proposed the lactam rule³ for correlation of the $n-\pi^*$ Cotton effect with the conformation of a seven-membered lactam ring and the classification of solely two types A (+ve) and B (-ve).² This rule should be applicable to four-membered, five-membered, and six-membered lactam rings too, owing to the coplanarity of the lactam (C-NH-CO-C) moiety.⁴

For the confirmation of the lactam rule we carried out X-ray analyses of some lactams.^{2,5,6} We herewith wish to report the stereochemistry of a six-membered lactam by means of X-ray analysis and CD data of isodihydrolumisantoninlactam (2) prepared from isodihydrolumisantonin (1),⁷ and D-glucono-1,5-lactam (3).⁸

EXPERIMENTAL

Preparation of Isodihydrolumisantoninlactam [(1S,2S,6R,7S,2'S-8-Aza-5,7-dimethyl-9-oxo-spiro[5,5]-4-undecen-2-(1'-methylethan)-1-olide; 2]

A mixture of isodihydrolumisantonin⁷ (1; 340 mg), sodium azide (200 mg), and conc. sulfuric acid (1.5 ml) in chloroform (10 ml) was stirred for 30 minutes at -10 °C. After stirring for 3 hours at room temperature, the reaction mixture was left overnight. The excess of conc. sulfuric acid was neutralized with 5% NaHCO₃ and the aqueous solution was extracted with chloroform. After removal of the

solvent, the residue was crystallized from methanol to give the lactam (2; 256 mg) as colorless plates, m. p. > 300 °C. IR^{KBr} cm⁻¹: 3400 (NH), 1767 (lactone), 1670, 1644 (lactam). CD (MeOH) $[\Theta]^{25}$ (nm): +1282 (229.2).

Anal. Calcd. for C₁₅H₂₁O₃N: C 68.41; H 8.03; N 5.31. Found: C 68.59; H 7.70; N 5.12.

X-Ray Analysis of the Lactam (2)

A crystal of the dimensions of $0.2 \times 0.3 \times 0.2$ mm³ was used for intensity measurements. Three-dimensional intensity data were collected on a Rigaku automatic four-circle diffractometer (AFC-4) with graphite monochromated CuKa radiation. A total of 1039 independent reflections with $|F_{\sigma}| > 3\sigma |F_{\sigma}|$ were collected up to 2Θ of 140° and corrected for Lorentz and polarization factors but not for the absorption.

Crystal Data

C₁₅H₂₁O₃N, MW 263.33, m. p. > 300 °C, crystal system: monoclinic, space group: P2₁, a = 10.203(2), b = 7.417(1), c = 9.021(2) Å, $\beta = 91.82(1)^{\circ}$, V = 682.3 Å³, Z = 2, $D_c = 1.282$ g cm⁻³.

Determination and Refinement of the Structure

The crystal structure was solved by the multi-solution method (MULTAN).⁹ The E-map showed positions and bond relations for all the non-hydrogen atoms. Refinement of positional parameters of the nineteen atoms was carried out by the block-diagonal least-squares method, the quantity minimized being $\Sigma w (|F_o| - |F_c|)^2$, with w = 1.0 for all the reflections used. All the hydrogen atoms of the molecule were found from the difference map. Non-hydrogen atoms were refined with anisotropic thermal parameters and hydrogen atoms with isotropic thermal parameters. Refinement by the block-diagonal least-squares method gave the final R value of 0.004 for 920 reflections. The atomic scattering factors for C, O, N were given by Cromer and Mann,¹⁰ and that for H by Stewart *et al.*¹¹ The atomic coordinates and their equivalent isotropic temperature factors are listed in Table I.¹²

RESULTS AND DISCUSSION

A perspective drawing of the molecular structure of the lactam is shown in Figure 1 with atomic numbering.

The bond angles and bond length are listed in Table IV. As shown in Table IV, the conformation of the lactam ring is the half-chair form which is similar to that of D-glucono-1,5-lactam.⁵ The torsional angle of the lactam ring (C12—N1—C11—C10) is $10(2)^{\circ}$, which has confirmed that the lactam group of the six-membered ring is also nearly planar.

Figure 1. A perspective view of the lactam (2) molecule and atomic numbering.

TABLE I

Atom	x	y	z	$B_{ m cq}/{ m \AA}^2$ "
01	8861(7)	4454(13)	9198(7)	2.4
O 2	10378(9)	4042(18)	10985(9)	2.1
O 3	5435(8)	3450(13)	10528(9)	3.0
N 1	5941(9)	5100(16)	8546(11)	1.4
C 1	10404(11)	4445(21)	5572(13)	2.9
C 2	9162(11)	4353(18)	4604(12)	2.6
C 3	7932(12)	4172(19)	5100(12)	2.7
C 4	7588(9)	4111(16)	6765(11)	3.0
C 5	8835(10)	4816(18)	7601(11)	5.0
C 6	10090(10)	3791(17)	7127(12)	2.0
C 7	11039(10)	4310(20)	8406(12)	2.4
C 8	10123(12)	4252(20)	9718(15)	3.2
C 9	7176(12)	2132(18)	7143(14)	2.6
C10	6635(14)	1897(18)	8709(15)	3.1
C11	5960(11)	3503(19)	9286(12)	2.3
C12	6393(11)	5343(17)	7024(13)	2.4
C13	6655(12)	7356(17)	6801(15)	2.8
C14	6809(14)	4033(25)	3951(14)	4.2
C15	12233(13)	3058(24)	8598(16)	3.9

Atomic coordinates $(\times 10^4)$ and equivalent isotropic temperature factors (Standard deviations in parentheses)

^a W. C. Hamilton, Acta Crystallogr. 12 (1959) 609.

TABLE II

Bond lengths (Å) (Standard deviations in parentheses)

$ \begin{array}{c} 0 & 1 - C & 5 \\ 0 & 1 - C & 8 \\ 0 & 2 - C & 8 \\ 0 & 3 - C & 11 \\ N & 1 - C & 11 \\ N & 1 - C & 12 \\ C & 1 - C & 2 \\ C & 1 - C & 2 \\ C & 1 - C & 6 \\ C & 2 - C & 3 \\ C & 3 - C & 4 \\ \end{array} $	= 1.46(1) = 1.36(1) = 1.17(2) = 1.26(1) = 1.36(2) = 1.36(2) = 1.52(2) = 1.53(2) = 1.55(2)	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{array}{c} {\rm N} \ 1 {\rm H}({\rm N}1) \\ {\rm C} \ 1 - {\rm H} \ 1 \\ {\rm C} \ 1 - {\rm H} \ 1 \\ {\rm C} \ 2 - {\rm H} \ 2 \\ {\rm C} \ 5 - {\rm H} \ 5 \\ {\rm C} \ 6 - {\rm H} \ 6 \\ {\rm C} \ 9 - {\rm H} \ 9 \\ {\rm C} \ 10 - {\rm H}10 \\ {\rm C} \ 10 - {\rm H}10 \\ {\rm C} \ 10 - {\rm H}10' \\ \end{array} $	= 1.07(13) = 1.05(14) = 1.11(14) = 1.08(8) = 1.11(10) = 1.08(9) = 1.09(13) = 1.12(13) = 1.11(12) = 1.08(13)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

TABLE III

Bond angles (°) (Standard	deviations in parentheses)
---------------------------	----------------------------

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	9) 10) 9) 10) 10) 10) 10) 8) 10) 9) 9) 10) 9) 9) 8) 9) 9) 9) 9)	C 1—C 6—C 7 = 117.8(10) C 5—C 6—C 7 = 100.1(9) C 6—C 7—C 8 = 100.9(9) C 6—C 7—C 8 = 100.9(9) C 6—C 7—C15 = 114.4(11) C 8—C 7—C15 = 113.4(11) O 1—C 8—O 2 = 121.8(16) O 1—C 8—C 7 = 108.9(10) O 2—C 8—C 7 = 129.3(11) C 4—C 9—C10 = 114.3(10) C 9—C10—C11 = 114.6(11) O 3—C11—N 1 = 119.1(12) O 3—C11—C10 = 118.9(12) N 1—C12—C 4 = 109.9(10) N 1—C12—C 4 = 109.9(10) C 4—C12—C13 = 107.5(10) C 4—C12—C13 = 114.9(10)
C11—N 1—H(N1) = 112.2(C12—N 1—H(N1) = 123.4(C 2—C 1—H 1) = 123.4(C 2—C 1—H 1) = 111.9(C 2—C 1—H 1' = 108.1(C 6—C 1—H 1' = 109.6(C 1—C 2—H 2 = 119.9(C 3—C 2—H 2 = 119.9(C 3—C 2—H 2 = 119.9(C 3—C 2—H 2 = 114.6(C 2—C 3—C14 = 117.8(O 1—C 5—H 5 = 111.1(C 4—C 5—H 5 = 110.3(C 6—C 5—H 5 = 108.3(C 1—C 6—H 6 = 110.6(C 7—C 6—H 6 = 110.6(C 7—C 6—H 6 = 109.5(C 4—C 9—H 9 = 108.8(C10—C 9—H 9' = 109.2(C10—C 9—H 9' = 107.2(C 9—C10—H 10 = 108.7(C 9—C10—H 10 = 108.7(C 9—C10—H 10 = 106.5($\begin{array}{c} 71)\\ 71)\\ 68)\\ 64)\\ 68)\\ 70)\\ 103)\\ 41)\\ 41)\\ 41)\\ 41)\\ 41)\\ 43)\\ 44)\\ 43)\\ 44)\\ 44)\\ 44)\\ 73)\\ 77)\\ 67)\\ 67)\\ 67)\\ 67)\\ 67)\\ 66)\\ 68)\\ 72) \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

TABLE IV

Some torsional angles ($^{\circ}$) (Standard deviations in parentheses)

C12-N1 -C11-C10	=	10(2)
N1 —C11—C10—C9	=	6(2)
C11—C10—C9 —C4	=	30(2)
C10-C9 -C4 -C12	=	
C9 —C4 —C12—N1	=	55(1)
C4 —C12—N1 —C11	=	36(2)

A (+) B (-)

Figure 3. Projection of six-membered lactam rings (A) and (B).

As shown in Figure 2, CD curves of D-glucono-1,5-lactam⁸ (3, conformation B) show a negative $n-\pi^*$ Cotton effect both at higher (65 °C) and at lower temperatures (-30, -80, -170 °C). On the other hand, it was noted with interest that a positive $n-\pi^*$ Cotton effect $[\Theta]_{229.2}$ + 1282 was found for the lactam (2, conformation A).

These results prove that Ogura's lactam rule could be also applied to six-membered lactam rings A (+ve) and B (—ve), as shown in Figure 3.

REFERENCES

- 1. This paper constitutes Part XIII entitled »Studies on Lactams«. Part XII preceding.²
- 2. H. Takayanagi, I. Hara, M. Goto, and H. Ogura, Croat. Chem. Acta, 62 (1989) 89.
- 3. H. Ogura, H. Takayanagi, and K. Furuhata, Chem. Lett. (1973) 387.
- 4. a) H. Ogura, H. Takayanagi, K. Kubo, and K. Furuhata, J. Amer. Chem. Soc. 95 (1973) 8056. b) H. Ogura, K. Takeda, and H. Taka-

hashi, Chem. Pharm. Bull. Jpn. 23 (1975) 2469. c) H. Ogura, H. Takayanagi, and K. Furuhata, J. Chem. Soc. Perkin I. (1976) 665. d) H. Umeyama, K. Takeda, H. Ogura, I. Moriguchi, and A. Imamura, Chem. Pharm. Bull. Jpn. 26 (1978) 3440.

- 5. H. Ogura, K. Furuhata, H. Takayanagi, N. Tsuzuno, and Y. Iitaka, Bull. Chem. Soc. Jpn. 57 (1984) 2687.
- 6. H. Takayanagi, E. Hirose, K. Furuhata, and H. Ogura, Bull. Chem. Soc. Jpn. 58 (1985) 745.
- 7. D. Arigoni, H. Bosshard, H. Bruderer, G. Büchi, O. Jeger, and L. J. Krebaum, *Helv. Chim. Acta* 40 (1957) 1732.
- 8. D-Glucono-1,5-lactam was kindly supplied from Dr. S. Inouye, Meiji Seika, Ltd.
- 9. P. Main, S. E. Hull, L. Lessinger, G. Fermain, J. P. Declercq, and M. M. Woolfson, A System of Computer Program for the Automatic Solution of Crystal Structures for X-Ray Diffraction Data, MULTAN78, University of York, England and Louvain, Belgium, 1978.
- 10. D. J. Cromer and J. B. Main, Acta Cryst. A24 (1958) 321.
- 11. R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Phys. Chem. 42 (1965) 3175.
- 12. Tables of observed and calculated structure factors, isotropic thermal parameters and the atomic coordinates of hydrogen atoms and anisotropic thermal parameters of non-hydrogen atoms are available from one of the authors (H. T.) on request.

SAŽETAK

Molekulska struktura šestočlanih laktama u odnosu na laktamsko pravilo

Hiroaki Takayanagi i Haruo Ogura

Stereokemija izohidrolumizantonin-laktama (2) određena je rentgenskom strukturnom analizom i iz CD krivulja. Šestočlani laktamski prsten spoja 2 i D-glukono--1,5-laktama (3) nalazi se u konformaciji polu-stolca, što je u skladu s laktamskim pravilom.