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The effect of the modulus of elasticity of concrete on seismic behavior of Koyna gravity 
dam in India is studied in the paper using probabilistic analysis. Numerical model based 
on the finite element method is used to analyse the base-case scenario involving the 
dam-reservoir-foundation interaction. The results show that the modulus of elasticity 
significantly affects seismic behaviour of concrete gravity dams. The results of the 
analysis are presented as bilinear curves.
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Istraživanje seizmičkog ponašanja betonskih gravitacijskih brana pomoću 
probabilističke analize

U radu se istražuje utjecaj modula elastičnosti betona na seizmičko ponašanje 
gravitacijske brane Koyna u Indiji pomoću probabilističke analize. Za analizu osnovnog 
scenarija koji se zasniva na interakciji brane, akumulacije i temelja, koristi se numerički 
model baziran na metodi konačnih elemenata. Rezultati pokazuju da modul elastičnosti 
bitno utječe na seizmičko ponašanje betonskih gravitacijskih brana. Rezultati analize 
prikazani su kao bilinearne krivulje.
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Untersuchung des seismischen Verhalten von Betongewichtsstaumauern 
mittels probabilistischer Analyse

In dieser Arbeit wird mittels probabilistischer Analyse der Einfluss des 
Elastizitätsmoduls des Betons auf das seismische Verhalten der Gewichtsstaumauer 
Koyna in Indien untersucht. Zur Analyse des Grundszenarios, das auf der Interaktion 
zwischen Staumauer, Akkumulation und Fundation beruht, wird ein auf der Finite-
Elemente-Methode beruhendes numerisches Model verwendet. Die Resultate 
zeigen, dass sich das Elastizitätsmodul bedeutend auf das seismische Verhalten 
von Betongewichtsstaumauern auswirkt. Die Resultate der Analyse sind als bilineare 
Kurven dargestellt.
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1. Introduction 

Gravity dams can be found all over the world and some of them 
have been built in earthquake-prone areas. The need to build 
gravity dams in high seismicity regions is expressed even today 
due to an increasing demand for both water supply and flood 
protection. On the other hand, the accuracy of risk evaluation 
associated with existing dams, as well as the success of design 
of future dams, are highly dependent on proper understanding 
of their behaviour with regard to earthquake action. Because 
the dam failure consequences can be disastrous, the seismic 
design of such structures has been widely recognized as being 
of particular significance. As a result, further study of seismic 
behaviour of dams remains a topical issue for engineers [1-3].
Some of the important aspects that may affect the response of 
gravity dams subjected to earthquakes have been recognized 
through the dam-reservoir-foundation interaction. The dam-
water interaction must be taken into account since the dam 
undergoes deformation, which influences the motion of water 
in the reservoir. The interaction between the dam and water 
stored behind the dam leads to an increase in the period of 
vibrations at the dam. The reason for this is that the dam can 
not move without spatial variability of water tangent. The water 
that moves along the dam increases the total mass moved due 
to earthquake. The added mass increases the natural vibrations 
period of the dam, and affects inertial forces created due to 
earthquake action [3-4].
The interface of the dam with the impounded water is an 
important boundary where the static and hydrodynamic 
forces are applied to the dam structure. These forces provide 
a significant contribution to seismic response analysis and 
design of dams. The maximum hydrodynamic pressure on the 
dam when subjected to a moderately strong earthquake ground 
motion may reach the magnitude of hydrostatic pressure [4-6].
The seismic performance of dams with regard to interaction 
effects is dependent on some uncertain parameters. Specific 
concrete properties used in the design of concrete gravity dams 
include unit weight, compressive, tensile, and shear strengths, 
modulus of elasticity, creep, Poisson’s ratio, coefficient of 
thermal expansion, thermal conductivity, specific heat, and 
diffusivity. Out of these properties, the modulus of elasticity is 
considered to be the most important for the design of dams. 
In fact, the modulus of elasticity is the main factor affecting 
concrete strength. Concrete strength should satisfy the early 
load and construction requirements, and the stress criteria. 
Thus, selecting an optimum value of the modulus of elasticity is 
very important in the design of concrete gravity dams. 
The probabilistic and sensitivity analysis is used in the paper 
to identify the modulus of elasticity of concrete as a particular 
parameter that has a significant effect on seismic behaviour of 
gravity dams. The Monte Carlo simulation with Latin hypercube 
sampling (LHS) is applied as the probabilistic analysis technique 
for evaluating intensity of parameter influence on seismic 
behaviour of concrete gravity dams. Monte Carlo simulations 

are typically characterized by a large number of unknown 
parameters, many of which are difficult to obtain experimentally. 
Some of the parameters that are used in seismic analysis of 
concrete dams are the concrete modulus of elasticity, concrete 
density, and modulus of elasticity of the bed rock or foundation. 
The parameter sensitivity analysis can be used to quantify 
the effect of unknown parameters. Sensitivity analysis, as 
applied in risk assessment, is dependent on the variability and 
uncertainty of factors contributing to risk. In short, sensitivity 
analysis identifies what is "driving" the risk estimates. It is used 
in both point estimate and probabilistic approaches to identify 
and rank important sources of variability, as well as important 
sources of uncertainty. The quantitative information obtained 
by sensitivity analysis is important for properly dealing with 
complexity of the analysis, and for communicating important 
results. The sensitivity analysis focuses on a set of graphical 
and statistical techniques that can be used to determine 
which variables present in risk model contribute most to the 
variation of risk estimates. This variation in risk could represent 
variability or uncertainty, depending on the type of risk model 
and characterization of input variables [7].
The Monte Carlo Simulation method is the most common method 
for probabilistic analysis. One simulation loop represents one 
system component that is subjected to a particular set of loads and 
boundary conditions. The method is always applicable regardless of 
the physical effect modelled in a finite element analysis. Assuming 
the deterministic model is correct and a very large number of 
simulation loops are performed, Monte Carlo techniques always 
provide correct probabilistic results. Monte Carlo simulations 
can be employed using either the Direct Sampling method or 
the Latin Hypercube Sampling method. Monte Carlo simulation 
can be improved using the LHS as described by McKay et al. [8]. 
The Latin Hypercube Sampling may be viewed as a stratified 
sampling scheme designed to ensure that the upper or lower 
ends of the distributions used in the analysis are well represented. 
Latin hypercube sampling is generally recommended over Direct 
Sampling method when the model is complex or when time and 
resource constraints are an issue [8]. The nature of LHS does not 
determine the sample size needed to achieve a certain confidence 
level. There is no specified value for sample size N to achieve a 
certain confidence level in LHS [9].
By sampling N times from the parameter distributions, this 
procedure creates a population of N possible instances of the 
structure, each of which needs to be analysed. The use of relatively 
high N that is substantially larger than the number of parameters 
will always result in reasonably accurate estimates for practical 
purposes. The optimal N to use is a function of the number of 
random variables and their influence on the response [10].
In this research, Monte Carlo with LHS is performed and the 
value of N equal to 30 is chosen to allow sufficient accuracy in 
the estimates, and the sensitivity of the dam performance to 
the main parameter is investigated. For this purpose, the Koyna 
dam in India is considered as a case study and a complete 
analysis is conducted using the finite element method in the 
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time domain. The effects of concrete modulus of elasticity on 
seismic performance of gravity dam are also discussed using 
probabilistic and sensitivity analysis.

2. Governing equations

The structural and hydrodynamic aspects of the problem 
involving the base-case model are formulated separately in this 
section. The dam and foundation are considered as an elastic 
solid with linear and plane stress behaviour. Water is taken as 
a compressible, inviscid fluid, and the dam as an elastic solid 
[11-13]. It must be mentioned that the dam and foundation 
are different in material characteristics such as the modulus 
of elasticity, density, and Poisson factor. So, the dam and 
foundation are the structural section of system, and they are 
modelled together but with relative material characteristics.

2.1. Dam and foundation model

The governing equation for the dam and foundation model is the 
motion equation. But, in order to completely describe the fluid-
structure interaction problem, the fluid pressure load acting at 
the interface is now added to structural equation. The reason 
is that the dam and foundation move with spatial variability of 
water tangent. The moved water increases the total mass and 
inertia due to an earthquake action [11-13]. So, the equations of 
the system subjected to the ground motion including the effects 
of reservoir are written as

 (1)

where:
M  - the mass matrix
C  - the structural damping matrix
K  -  the structural stiffness matrix.

K can be obtained from material and strain-displacement 
matrix, and C is proportional to the mass and stiffness matrix 
according to the Rayleigh method [14-15]. u is the vector of 
displacement relative to ground,  is the vector of velocity, and is 
the vector of ground acceleration. The fluid pressure load FPr at 
the dam-reservoir and foundation-reservoir interface is induced 
because of interaction, and it is obtained by integrating the 
hydrodynamic pressure over the dam and foundation wetting of 
the unit length surface. The hydrodynamic pressure is induced 
at the solid-fluid interface because of the following boundary 
condition [16-18]:

 (2)

where:
n  - denotes the inward normal direction to interface
an  - the normal component of acceleration
ρw  - he mass density of water.

2.2. Reservoir model

In acoustical fluid-structure interaction problems, the structural 
dynamics equation needs to be considered along with the 
Euler equations of fluid momentum and the flow continuity 
equation. Assuming that the water in the reservoir is inviscid, 
compressible and irrotational, and that its motion is of small 
amplitude, the fluid momentum and continuity equations are 
simplified to get the acoustic wave equation as follows [16-18]:

 (3)

where:
C - the speed of sound in fluid medium
P - the hydrodynamic pressure. 

Since the viscous dissipation has been neglected, equation (3) 
is referred to as the frictionless wave equation for propagation 
of sound in fluids. The discretized structural equation and the 
frictionless wave equation have to be considered simultaneously in 
the fluid-structure interaction problems. The fluid pressure acting 
on the structure at the fluid-structure interface will be considered 
to form the coupling stiffness matrix. The Sommerfeld boundary 
condition is implemented for a truncated boundary at the tail of 
reservoir. This boundary condition is assuming a damper in the end 
of reservoir with the following equation [17-18]:

 (4)

where:
C - the sound velocity in water
n -  denotes the outward normal direction to the far end of 

reservoir.

3. Finite element formulation

Governing equations of the fluid-structure system can be 
expressed in the matrix form using the finite element method 
[14]. In order to completely describe the fluid-structure 
interaction problem, the fluid pressure load acting at the 
interface is now added to structural equation. The finite element 
approximating shape functions for the spatial variation of 
displacement components can be expressed as [15]:

u = {N’}T{ue} (5)

P = {N}T{Pe} (6)

where:
{N} i {N’}  -  the element shape functions for pressure and displacements
{Pe}  - the nodal pressure vector
{ue}  - the nodal displacement component vector.
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From equation (5) and equation (6), the first and second time 
derivative of the variables and the virtual change in the pressure 
can be written as follows:

 (7)

 (8)

 (9)

δP = {N}T{δPe} (10)

3.1. Finite element model of dam and foundation

The discretized structural dynamics equation can be formulated 
by means of structural elements. The structural equation is 
rewritten here as follows [15]:

 (11)

 (12)

 (13)

 (14)

 (15)

where:

 - Solid mass matrix

 - Solid stiffness matrix

 - Strain-displacement matrix

 -  Matrix operator applied to element shape functions 

{Fe}  - Force of seismic loading

 -  Matrix related to fluid-
structure interaction

ρ  - Concrete density
[C]  - Material matrix of plane stress element.

3.2. Finite element model of reservoir

The matrix operator 
 
 applied to the fluid element shape 

function {N} is defined by [15]:

[B] = {L} {N}T  (16)

So, the finite element statement of the wave equation is given 
by:

 (17)

In which {n} is the normal vector at dam-reservoir and 
foundation-reservoir interface boundary.
Terms which do not vary over the element are taken out of the 
integration sign. {δP} is an arbitrarily introduced virtual change 
in nodal pressure, and it can be factored out in equation (17). 
Since {δP} is not equal to zero, equation (17) becomes:

 (18)

Equation (18) can be written in matrix notation to get the 
discretized wave equation:

 (19)

where:
ρ0 - Water density

 - Fluid mass matrix

 - Fluid stiffness matrix

 -  Mass matrix related to fluid-
structure interaction

The finite element discretization and numerical time integration 
procedures developed in previous section have been 
implemented into a finite element model. In the model, the 
hydrodynamic pressure, solid displacement, and stresses are 
nodal unknown variables. In this paper, the Newmark method is 
applied to solve discretized dynamic equations. The step by step 
solution based on the Newmark integration method is defined 
as follows:
 - Form stiffness matrix K, mass matrix M, and damping matrix 

C
 - Select time step ∆t and parameters α and δ and calculate 

integration constants [15]:

 

 - Form effective stiffness matrix: 
 - Triangularize: 
 - For each time step calculate effective loads at time t + ∆t:
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 - Solve for displacement and pressure at time t + ∆t: 
 or 

 - Calculate acceleration and velocity at time t + ∆t:

 

 

 where:
 ∆t - the time step
	 α i δ  -  parameters that can be determined to obtain 

integration accuracy and stability. 

When α= 0.25 and δ = 0.5 the Newmark method is 
unconditionally stable [15]. So, these values are selected in the 
paper as integration constants. 

4. Case study

To demonstrate effectiveness of the analytic procedure 
presented in this paper and the effect of the modulus of elasticity 
on seismic performance of concrete gravity dams, the response 
of Koyna Dam to the horizontal and vertical component of El 
Centro earthquake is presented. 
The Koyna Dam is one of the largest dams built on the 
Koyna river in Maharashtra State in western India. The dam 
has withstood many earthquakes in recent past. This large 
engineering structure is located in one of the earthquake-
prone zones of Maharashtra and is, therefore, an ideal site for 
deformation monitoring studies. The structure is subjected 
to the effect of crustal movements, seasonal changes in 
water load in the reservoir, and to the effect of seismicity in 
the region. Consequently, the Koyna Dam has been selected 
as a case study for the seismic and risk analysis by many 
researchers.
The 1940 El Centro earthquake (or the 1940 Imperial Valley 
earthquake) occurred at Pacific Standard Time on May 
18 in the Imperial Valley in Southern California near the 
international border of the United States and Mexico. It was 
the first major earthquake to be recorded by a strong-motion 
seismograph located next to a fault rupture. The earthquake 
was characterized as a typical moderate-sized destructive 
event with a complex energy release signature. It was the 
strongest recorded earthquake to hit the Imperial Valley, and it 
caused widespread damage to irrigation systems and resulted 
in nine fatalities. The El Centro earthquake is usually used to 
evaluate seismic performance and safety of structures during 
earthquake action.
Figure 1 and Figure 2 show ten seconds of the horizontal and 
vertical components of the El Centro site records, as selected 
for the purpose of seismic analysis. The values of integration 
parameters according to the Newmark method were taken 
as α= 0.25 and δ = 0.5 with the time step (∆t) equal to 0.02 
second.

Figure 1. Horizontal component of El Centro earthquake 

Figure 2. Vertical component of El Centro earthquake 

The geometry of the Koyna Dam and finite element discretization 
of dam-reservoir-foundation system are shown in figures 3 and 
4. The number of division in horizontal and vertical direction for 
dam, reservoir and foundation are selected 12×17, 51×17 and 
80×17, respectively.

Figure 3. Geometrical cross–section of Koyna concrete dam  [16]

The modulus of elasticity, density and Poisson`s ratio of 
concrete were taken as 20.7 GPa, 2643 kg/m3 and 0.2 for the 
dam structure, while for foundation, the modulus of elasticity 
and Poisson s ratio were taken as 16.86 GPa and 0.2. For 
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reservoir, the water density and bulk modulus of water were 
taken as 1000 kg/m3 and 2.1 GPa [16]. 
The stiffness and mass proportional damping (Rayleigh 
damping) is used in the analysis. The velocity of pressure wave 
in water was taken as 1438.66 m/s.
The lognormal distribution, which is a basic and commonly used 
distribution, was used to describe scatter of the input data. 
The lognormal distribution is very suitable for phenomena that 
arise from the multiplication of a large number of error effects. 
It is also correct to use the lognormal distribution for a random 
variable resulting from multiplication of two or more random 
effects [7, 19, 20].
The simulations performed here comprised 30 simulations per 
random seed number. These simulations consisted of a base-
case simulation with the modulus of elasticity (EC) amounting 
to 20.7 GPa. The maximum of horizontal displacement at dam 
crest, 1st principal stress at heel, and 3rd principal stress at dam 
toe, were assumed to be critical responses during earthquake 
and were selected as output parameters affected by EC. Their 
sensitivity was investigated.

5. Model analysis

First, the base-case model was analysed. Then the probabilistic 
analysis was done to show the effect of variation of the 
modulus of elasticity as related to seismic performance of the 
dam-reservoir-foundation system. Figures 5 to 8 show the 
results obtained from time history analysis of the base-case 
model with the mean value of modulus of elasticity. In Figure 
5, positive and negative values of horizontal displacement 
denote dam crest movement in the downstream and upstream 
directions along the river, respectively.

Figure 5. Time history of horizontal displacement of dam crest

Figure 6. Time history of hydrodynamic pressure at dam heel

Figure 4. Finite element model of dam-reservoir-foundation system 
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Figure 7. Time history of 1st principal stress at dam heel

Figure 8. Time history of 3rd principal stress at dam toe

5.1. Sensitivity analysis

Sensitivity generally refers to the variation in output of a 
mathematical model with respect to changes in the values of the 
model input. A sensitivity analysis attempts to provide a ranking of 
the model’s input assumptions with respect to their contribution 
to model output variability or uncertainty [7]. The effect of the 
modulus of elasticity of concrete as a random input variable on 
outputs is investigated and illustrated in Figures 9 to 11.

Figure 9.  Sensitivity of horizontal displacement curve to concrete 
modulus of elasticity 

Figure 10.  Sensitivity of hydrodynamic pressure at heel to concrete 
modulus of elasticity 

Figure 11.  Sensitivity of maximum principal stresses to concrete 
modulus of elasticity 

5.2. Probabilistic analysis

In this section, the probabilistic analysis is illustrated using 
cumulative distribution functions of output parameters. The 
cumulative distribution functions are alternatively referred to 
in literature as the distribution function, cumulative frequency 
function, or the cumulative probability function. The cumulative 
distribution function expresses the probability that a random 
variable will assume a value lower than or equal to some value. 
For continuous random variables, the cumulative distribution 
function is obtained from the probability density function by 
integration, or by summation in the case of discrete random 
variables [7]. The cumulative distribution function also 
visualizes what the reliability or failure probability would be if 
it were necessary to change admissible limits of the design. 
Figures 12 to 14 show the cumulative distribution function of 
selected responses of the model.

Figure 12.  Cumulative distribution function of horizontal displacement 
of dam crest
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Figure 13.  Cumulative distribution function of hydrodynamic pressure 
at heel of dam

Figure 14.  Cumulative distribution function of maximum principal 
stresses 

The value of the cumulative distribution function is the 
probability that the values will stay below a specific value. For 
example, it can result from curves:
 - There is about 50 % probability that the horizontal maximum 

displacement of dam crest will remain below 7.5 cm during 
earthquake.

 - There is about 50 % probability that the maximum 
hydrodynamic pressure at heel of dam will remain below 340 
KPa during earthquake.

 - There is about 50 % probability that the 1st principal stress at 
the heel of dam will remain below 4.5 MPa.

 - There is about 50 % probability that the 3rd principal stress at 
the toe of dam will remain below 3.6 MPa.

If cumulative distribution is considered, the comparison 
between stresses induced in dam body with allowable stress of 
concrete can be possible. For example, if the allowable tensile 
stress is equal to 3.56 MPA, it can be concluded that there is 
about 15 % probability that the tensile principal stress at the 
heel of dam will remain below the allowable value.

6. Conclusion

The modulus of elasticity is of highest significance in the 
design of dams because it varies with concrete strength. 
While concrete strengths should satisfy the early load 
and construction requirements and the stress criteria for 
safety design, it is very important in the design of concrete 
gravity dams to select an optimum value of the modulus of 
elasticity. In this paper, a probabilistic and sensitivity analysis 
of a dam-reservoir-foundation system was performed using 
Monte Carlo simulation to show the effect of the modulus of 
elasticity on seismic performance of concrete gravity dams. 
The method was used to identify the modulus of elasticity 
(EC) as a particular parameter that has a significant effect on 
the responses. Maximum values of horizontal displacement of 
dam crest, hydrodynamic pressure at heel, 1st principal stress 
at heel, and 3rd principal stress at dam toe, were assumed as 
critical responses during earthquake, and selected as output 
parameters that are strongly dependant on the variation of EC. 
Because of the relation between the modulus of elasticity and 
concrete strength, conclusions can be made about uncertainty 
in the design of gravity dams using cumulative distribution 
function of results. For example, it is possible to evaluate 
the stresses induced in dam body with the allowable stress 
of concrete for safety design. Finally, it must be mentioned 
that the model is applicable in probabilistic analysis of other 
parameters as a means to show sensitivity of responses. Its 
use is particularly recommended for the realistic analysis of 
large dams.
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