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Abstract: In this study, we introduce a model for opti-
mizing the arrangement of final material depots at a con-
struction site. The target is to minimize the construction 
time, cost and resources by minimizing the total delivery 
distance. The model simplifies the structures that shall be 
constructed as line segments or curves. The model uses 
continuous conditions: the feasible positions of the final 
material depots are searched on the entire XY plane and 
the structures are used in a continuous way also. A simple 
example demonstrates the algorithm, and the calculated 
result is compared with an expert’s solution. The practi-
cability of the model is discussed by comparing the result 
of the model with the output of the mentality of the labor-
ers. The further generalization of the model is declared. 
It needs less input data than the discrete model does so 
that it can be an alternative model to the discrete model if 
the number of units that build up the structure is large or 
unknown. This article is an extended version of a confer-
ence paper (Pém and Mályusz 2016).

Keywords: construction site layout planning, continuous 
demand, facility location allocation

1  Introduction
One of the preliminary processes in construction man-
agement is the planning of the construction process. Part 
of the construction planning process is construction site 
layout planning (CSLP), in which space, time, material, 
labor, money and equipment are recognized as resources 
(Tommelein et al. 1992; Winch and North 2006). The 
target of CSLP is to minimize construction time, cost or 
required resources. Because CSLP has significant impact 
on productivity, cost, time, safety and security, several 
site layout planning models have been developed in the 
past decades. These have been collected and presented 
in an overview (Sadeghpour and Andayesh 2015). These 
models use the space in three different ways: predeter-
mined location, grid system and continuous site space. The 
space types were clustered into the following five groups: 
total space, product space, installation space, availa-
ble space and required space (Winch and North 2006). 
A partial task of CSLP is the allocation of construction 
objects on site. In practice, the allocation of construction 
objects is carried out routinely (Sanad et al. 2008) based 
on human judgment using the first-come-first-served 
method (Zouein and Tommelein 1999) or using the con-
struction manager’s experience (Cheng and O’Connor 
1996). Due to the large number of factors that are involved 
in CSLP, computers have been identified as efficient tools 
for solving the problem, using resources such as com-
puter-aided systems that are based on computer-aided 
drawing (CAD) (Sadeghpour et al. 2004), artificial intelli-
gence (AI) techniques (Tommelein et al. 1992) or genetic 
algorithms (Hesham et al. 2003; Li and Love 1998; Hegazy 
and Elbeltagi 1999; Mawdesley et al. 2002; Tam and 
Tong 2003). The objects, the structure and the spaces are  
continuously adjusted during different phases of the con-
struction project. Therefore, researchers have developed 
dynamic site planning methods as well, such as the max–
min ant system (Ning et al. 2010) or building information 
modeling (BIM) (Kumar and Cheng 2015). Most of the 
developed models identify the number and the size of the 
temporary facilities that serve the construction site and 
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2   Pém and Mályusz, Arrangement of final material depots

then search for the optimal arrangement by minimizing the 
total transportation costs between the facilities or from the 
facility to the structure to be built:
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where n is the total number of construction objects; m is 
the total number of constraining objects; dij is the trave-
ling distance from the location of the construction object 
i to its ideal location concerning the constraining object j 
and Rij (Rij∈Q) is the parameter that represents the trans-
portation cost or the weight of constraint between con-
struction objects i and constraining object j (Sadeghpour 
et al. 2004). The traveling distances can be calculated by 
using either Euclidean distance or rectilinear distance.

The root of the CSLP problem is known as the k-median 
problem in the operation research literature as a part of 
the location allocation problem (LAP), where the demand 
is understood as the structure that needs to be built, the 
density is readable as the volume of the structure and the 
facility is readable as the material depot. If the number of 
facilities (k) is one, the problem is known as the classic 
Fermat–Weber problem (Friedrich 1929). In the CSLP 
models, if the number k≥1, the facilities’ locations can be 
calculated in discrete form by dividing the site into a given 
grid-based set of feasible location points and dividing the 
structures into unit areas or even in a continuous manner 
using genetic algorithms or other AI techniques because 
of the infinite number of possibilities. Most of the LAP 
literature is based on discrete demand (Drezner 1995), 
such as the known models of the CSLP where the target 
is to define the site objects’ space and shape by using a 
collection of unit areas. In this article, for the k-median 
problem, a model is presented that uses the structures as 
continuous demand as line segments or areas (as these 
were provided by the architect and engineers in their CAD 

drawings) and searches for the optimal arrangement on 
the entire XY plane.

2   Assumptions and objective 
functions

Architects and engineers define most structures with 3D 
CAD elements. The structures are represented by 2D mark-
ings, with the Z directional information included on the 
drawings. Some structures are marked by symbols (e.g. 
pillars or windows), some are marked by line segments 
or curves (e.g. wall tiling) and some are marked by areas 
(e.g. floor tiling, concrete slabs or the boarding of the slab 
formwork). The material, size, volume and exact location 
of the structure are given in the architectural documen-
tation in advance. The problem presented in this study is 
very similar to the problem studied in an earlier publica-
tion of the authors (Pém and Mályusz 2015), but here we 
deal with the structures that are marked as line segments 
instead of areas. The structure is modeled as a 2D figure 
denoted by the end points (Ai) of the line segments.

2.1  Assumption 1

The structures are marked by a group of line segments. The 
line segments that belong to a depot must look like a line 
segment chain. The group of line segments consists of K 
pieces of line segment chains. The line segment chains are 
connected to each other by their end points. A line segment 
chain consists of L pieces of line segments where the end 
point of each line segment is the beginning point of the 
next one that has a volume W>0 if it is possible (as shown 
in Fig. 1). Each line segment is defined in advance by its end 

Fig. 1: Modeling the structure.
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points Ai(x,y), where (i=1 . . . m, m∈N), and a Wi,i+1 figure that 
represents the Z directional size of the structure Vs. At each 
point of a line segment, the Z directional size is constant.

2.2  Assumption 2

The material laydown is denominated as the final material 
depot from where the material is delivered to the struc-
ture in units. The final material depots are represented 
by the projection of their center of gravity S(x, y) onto the 
XY plane. One type of material depot usually consists of 
a certain number of material elements, resulting in equal 
material depot volumes Vd. The number of the required 
final material depots (K, where k=1 . . . K, k∈N) can be 
easily calculated by dividing the volume of the structure 
by the volume of the final material depots, i.e. K=Vs/Vd.

2.3  Assumption 3

According to Moore (1980), there are two basic methods 
to deal with the CSLP problem. One is placing everything 
everywhere (or in a couple of combinations) and picking 
the best from these. The other method, used in this article, 
is bringing objects one by one in a certain order and cal-
culating the optimal arrangement after each step (Hegazy 
and Elbeltagi 1999). The model deals with one type of 
material at a time.

2.4  Assumption 4

The handling paths from a final material depot to each 
point of the served structure (line segment) can be 

calculated by two ways: using either the Euclidean distance 
or the shortest path inside the feasible handling area. In 
this study, for the calculations, we use the Euclidean dis-
tance in an unusual way. The length of the total delivery 
path from a certain point to the structure is counted by the 
measure of the areas or volumes that are defined by the 
modeled structure’s 2D marking [Fig. 2(a)] and the vertical 
projection of the marking onto the envelope of the Euclid-
ean cone, which is set into that certain point. In this case, 
where the structure is marked by line segment [AiA(i+1)] or 
curve and defined by its end points Ai(x,y), the total deliv-
ery path from a point S(a,b) to the structure is counted as 
areas (line integrals), as shown in Fig. 2(b).
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where T represents the size of the area bounded by the 2D 
marking, the vertical projection of it onto the Euclidean 
cone; dΦ is an extremely small change in arc length of the 
curve and A′i is the distance between the points Ai and S;

x=g(t), y=h(t):

ϕ = +d dx dy( )2 2 1/2

 ( ) ( )′ = − + −






A a x b y

i i i

2 2
1/2

 (3)

2.5  Objective function

The objective is to find the allocation of the final material 
depots, from where the material can be handled in pieces 
to their built-in locations in the structure along the minimal 
length of paths. This model leaves out of consideration the 

Fig. 2: (a) 2D marking of the structure. (b) The length of the total delivery path.
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delivery cost because it assumes that all of the delivery 
paths are horizontal and that the delivery cost is directly 
proportional to the length of the delivery path. The target is 
to minimize the length of the total delivery path.

2.5.1  In the case of k=1

The line segment chain is given and the minimization form 
can be solved by any kind of two-parameter minimization:

 ∫∑ ϕ− + −
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where l (l∈N) is the number of line segments; W(i, i+1) (W∈Q) 
is the Z directional volume of the line segment between Ai 
and Ai+1 (defined by the volume of the structure); and ak 
and bk are the x and y coordinates of the searched (Sk) final 
material depot on the entire XY plane.

2.5.2  In the case of k>1

There are an infinite number of solutions because the start 
points and the end points of each line segment chains are 
unknown. If any point of the line segment group is renamed 
as cut point (C) for dividing the structure into K pieces 
with equal volume, then each of the line segment chains is 
defined and the minimum of the sum of the delivery paths 
(areas) for that certain cut point can be calculated as follows:
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where C is the cut point for dividing the group of line 
segments into line segment chains, C is any point of any 
line segment and Ek∈(Ai, Ai+1) is the end point of each 
line segment chain. The end point of a line segment 
chain is the start point of the next line segment chain; K 
(k=1 . . . K, k∈N) is the number of needed depots and Lk 
is the number of line segments that belong to the certain 
depot.

If all Ai and Ek are identified and renamed as relevant 
points Rj (j=1 . . . n, n∈N and n≤k·m), where R(j+1) is the 
closest Ai or Ek point counterclockwise to Rj, then the form 
can be simplified as follows:
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So, the minimization form for the case of k>1 is as follows:
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The objective is to find C for the global optimal arrange-
ment. If we place C onto each Ai and solve the equation 
m times, each counting will give a minimum of the total 
delivery paths that belongs to the certain Ci (where Ci is the 
cut point set in Ai). If we relocate the cut point to any of the 
EK

 points that are produced by a certain Ci, the equation 
will give the same result as with the original Ci. If we place 
the cut point anywhere on the line segment between Rj 
and Rj+1, the solution will be a member of a curve (fR) that 
has one minimum or one maximum point. If the curve is 
concave, then Rj or Rj+1 will be the location of the cut point 
for the local minimum solution between Rj and Rj+1. If the 
curve is convex, the minimization of the curve between 
Rj and Rj+1 will give the location of the best cut point and 
will result in the minimum of the total delivery distance, 
as shown in Fig. 3.

The global minimum of the model is the lowest 
result of all the counted local minimums. This means the 

Fig. 3: Length of the total delivery distance for different cut points between Rj and Rj+1.
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minimization has to be solved 2m times (m times for all Aj 
and m times for all the curves between Rj and Rj+1) to find 
the global minimum of the model (Fig. 6.).

3  Example
In this example, the target is to find the optimal allocation 
of the final material depots [Si(a,b)] for the wall tiling work of 
a rectangular room (Fig. 4), from where the material units 
can be delivered to the structure along the minimal path.

The volume of a material depot, as well as the volume 
and the geometry of the tiling work, with Z directional 
information is provided in advance [Vd, Vs, Ai(x,y), Fig. 
4]. The number of needed depots is calculated using the 
expression k=Vs/Vd.

Vs=3×(10+5+10+5)−(3 × 1.5)−(1 × 1.5)−(2.5 × 1.5)−
(1 × 3)=77.25 m2; Vd=25.75 m2; k= Vs/Vd=3 pieces

At first, all Rj points have to be found by measuring coun-
terclockwise k pieces’ Vd, the volume of line segment 
chains from all Ai (Fig. 5), and their coordinates have to be 
marked (Tab. 1). We have m=12 pieces for Ai and we have 
(k−1)m=24 pieces for Eik.

Fig. 4: Drawing provided by the architect (left panel), and the information transformed into the model (right panel).

Fig. 5: Measuring counterclockwise k pieces’ Vd, volume of line segment chains from all Ai.

Tab. 1: Coordinates of all Ri.

Ci Ai(x) Ai(y) Ei,K Ei,1(x) Ei,1(y) Ei,K  Ei,2(x) Ei,2(y)

C1=A1 0 0 E1,1 10 0.08 E1,2 5.84 5.00
C2=A2 6 0 E2,1 8.43 5 E2,2 0 3.59
C3=A3 9 0 E3,1 6.92 5 E3,2 0 2.09
C4=A4 10 0 E4,1 5.92 5 E4,2 0 0.08
C5=A5 10 1.5 E5,1 3.33 5 E5,2 1.42 0
C6=A6 10 2.5 E6,1 2.67 5 E6,2 1.92 0
C7=A7 10 5 E7,1 0.17 5 E7,2 4.42 0
C8=A8 5.5 5 E8,1 0.33 0 E8,2 10 0.42
C9=A9 3 5 E9,1 1.58 0 E9,2 10 1.83
C10=A10 0 5 E10,1 4.58 0 E10,2 9.83 5
C11=A11 0 2 E11,1 9.07 0 E11,2 6.83 5
C12=A12 0 1 E12,1 9.07 0 E12,2 6.83 5
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6   Pém and Mályusz, Arrangement of final material depots

After all of the relevant points are found, the local 
minimums of the total delivery paths are counted by a 
program called Mathematica 7 for each Ai as cut point. The 
minimization form ran 12 times and gave the minimums of 
the sums of the total delivery path for all Rj (Tab. 2).

 ∫∑∑ ϕ− + −
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The calculated lengths of the sums of the total deliv-
ery path (Tab. 2) are marked in each Rj point by a 

perpendicular line to the line segment chain, where the 
length of each marked line corresponds to the length of 
the sum of the total delivery path (Fig. 6). In Fig. 6, the 
line segment chains are rotated into one straight line so 
that the calculated lengths are more readable. If we move 
the cut point counterclockwise from Rj, the minimal of the 
total delivery distance will move on a curve (Fig. 6) until 
the cut point reaches Rj+1.

The equation of the curve is known between all Rj. It 
means that we know k·m=36 pieces of curves, but there 
are only m=12 pieces of different essential curves because 

Fig. 6: The curve of the sum of the delivery path.
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it gives the same result between A1 and E1, E2 and E3, E3 
and A1, as shown in Fig. 6. It is easier to decide whether 
the curve should be minimized if the cut point and the 
end point of the line segment chain are moved from Rj 
counterclockwise with a short volume distance (Δ), and 
the lengths are compared with each other as follows:

 ∑( ) ( )′ + ′ − ′ + ′ < ⇒
≥ ⇒











+∆ +∆
C E C EIf 0 min

0 endK K K K

k

1

 (9)

Only just those curves where the movement causes shorter 
length are significant. In this example, these curves are 
between (R1 and R2), (R2 and R3) and (R9 and R10). Each of 
these curves should be minimized but memorized only if the 
evaluated cut point is located between Rj and Rj+1 (Fig. 3).

In this example, there were none like this, so the 
lowest solution of all counted equations for all relevant 
points is the global minimum of the total delivery dis-
tance. In this case, the optimal allocation of the depots 
belongs to the cut point of R10=R11=A10=A11, as presented in 
Tab. 2 and shown in Fig. 7.

4  Accuracy of the results
The architect drawing of this example was given to profes-
sional bricklayer experts. The experts were asked to mark 
the best arrangement of the three depots and the parts of 
the structure that they would serve from each depot for 
minimizing the total delivery path. The solution provided 
by one of the experts is shown in Fig. 8, which is the closest 
solution to the optimal arrangement. This expert’s layout 
is shown in Fig. 8(a), where the surfaces of the walls are 
tilted onto the XY plane. Each color represents the surface 
of the structure part that the expert would serve from a 
certain depot. It is seen in Fig. 8(b) that from the first depot 
(S1), the expert would serve a bigger-volume structure part 
than the depot volume and from the other two depots (S2, 
S3), the expert would serve smaller-volume structure parts. 
Based on the technology itself, the first depot will run out 
of the material before the tiling work is done, so the top 
part of the structure should be served from the other two 
depots that are located farther [shown in Fig. 8(b)].

In this case, according to the expert’s solution, the 
workers would deliver the materials by a >38% longer path 
compared to the optimal arrangement shown in Tab.  2. 
This 38% increment of the total delivery path is significant Fig. 7: The lowest solution of all counted equations.

S1(a;b)

S3(a;b)

S2(a;b)
S1(a;b)

S3(a;b)

S2(a;b)

Served by the first depot (S1) Served by the second depot (S2) Served by the third depot (S3)

(a) (b)

Fig. 8: (a) An expert’s solution on paper. (b) The expert’s solution in real field.
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Tab. 2: The sum of the total delivery path for each Ri.

Rj S Sk

  Ri(x) Ri(y) S S1(a) S1(b) S2(a) S2(b) S3(a) S3(b)
R1 A1 0 0 16.64 4.29 0 9.25 4.125 1.002 4.339
R2 E8,1 0.33 0 16.49 0.811 4.161 4.625 0.001 9.054 4.316
R3 E5,2 1.42 0 16.82 8.384 4.736 0.392 3.521 5.696 0.023
R4 E9,1 1.58 0 16.94 0.357 3.418 5.853 0.033 8.273 4.778
R5 E6,2 1.92 0 17.22 8.033 4.848 0.308 3.199 6.334 0.082
R6 E7,2 4.4 0 18.22 5.71 5 1.043 0.828 9.192 1.103
R7 E10,1 4.58 0 18.2 1.136 0.727 9.278 1.204 5.54 5
R8 A2 6 0 17.21 9.708 2.359 2.91 4.967 2.014 0.209
R9 A3 9 0 16.28 9.672 3.454 1.668 4.75 3.219 0.016
R10 E11,1 9.07 0 16.25 3.292 0.011 9.65 3.505 1.606 4.726
R11 E12,1 same as R10

R12 A4 10 0 16.45 9.293 4.077 1.049 4.379 4.21 0
R13 E1,1 10 0.1 same as R1

R14 E8,2 10 0.4 same as R2

R15 A5 10 1.5 same as R3

R16 E9,2 10 1.8 same as R4

R17 A6 10 2.5 same as R5

R18 A7 10 5 same as R6

R19 E10,2 9.8 5 same as R7

R20 E2,1 8.4 5 same as R8

R21 E3,1 6.9 5 same as R9

R22 E11,2 6.8 5 same as R10

R23 E12,2 same as R10

R24 E4,1 5.9 5 same as R12

R25 E1,2 5.8 5 same as R1

R26 A8 5.5 5 same as R2

R27 E5,1 3.3 5 same as R3

R28 A9 3 5 same as R4

R29 E6,1 2.7 5 same as R5

R30 E7,1 0.2 5 same as R6

R31 A10 0 5 same as R7

R32 E2,2 0 3.6 same as R8

R33 E3,2 0 2.1 same as R9

R34 A11 0 2 same as R10

R35 A12 same as R10

R36 E4,2 0 0.1 same as R12

if we consider that an increase in the total delivery path 
by 7% causes a measureable rise in the total delivery 
time (Pém 2009). There were experts whose results were 
>69.91% worse than the optimal solution. Based on these 
experiments, the search for C to find the optimal arrange-
ment is worth the time because the worst minimal solu-
tion for different cut points (row R6 in Tab. 2) is 12.12% 
worse than the optimal arrangement (row R10 on Tab. 2).

5  Practicability of the model
It is a well-known fact that everybody wants to use the 
least amount of energy to do a job. It means that the 

laborer for each delivery will choose that particular final 
material depot to carry a piece of material that is the 
closest to the destination of that certain piece of mate-
rial. This way of behavior is described in mathematics 
and called Voronoi regions (Voronoi 1908). It is a method 
of dividing an area into a number of regions, where all 
points of the region are closer to the corresponding seed 
(also called host, or here, as location of the final mate-
rial depot) than to any other seed. The model gives the 
optimal arrangement of the final material depots [shown 
in Fig. 9(a)] so that the Voronoi regions can be drawn 
[Fig. 9(b)]. These regions give the boundary of the struc-
ture parts that will be served by the corresponding final 
material depots in terms of laborers’ mentality. It can 
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be observed from Fig. 9(c) that two of the final material 
depots will run out of the material before their structure 
part is complete. When the first final material depot (S1) 
runs out of the material, the worker will choose a new 
host out of the remaining ones based on which is closer 
to the destination (a new set of Voronoi region should be 
drawn). After the second final material depot runs out of 
the material, only the third one can host the entire struc-
ture that is left. In this case, the workers would deliver 
the materials by a 45% longer path than was found as the 
optimal arrangement, shown in Tab. 2.

This example was given to other experts and one of 
the experts proposed a solution that resulted in a 69.91% 
longer path. It is very obvious that the arrangement of the 
final material depots is not adequate for minimizing the 
sum of total delivery paths, and the served structure parts 
need to be identified and unequivocally marked on the 
site for each depot. The next step is to convince the laborer 
that it is the best practice.

6   Generalization of the model and 
conclusion

In this example, the location of each depot was searched 
on the entire XY plane, but it could be localized into a 
certain place as available space (Winch and North 2006). 
This example was solved for a convex-shaped structure, 
and the model counted the lengths of the delivery paths 
by Euclidean distances, but it can deal with obstacles and 
concave structures in exactly the same way as the discrete 
model does by dividing the area up into areas named 
“visible from”, “partly visible from” and “not visible from” 
(Sadeghpour et al. 2006). In this example, the delivery 
cost was left out of consideration because the allocation of 
only one kind of material depots was searched for and the 
delivery paths were horizontal in every direction, but this 

model can be integrated into the model that minimizes 
the total delivery cost as well. It needs less input data 
than the discrete model does because it does not need the 
number and the exact places of the units that build up 
the structure. This model can be an alternative model to 
the discrete model even if the number of units that make 
up the structure is large or unknown because in this case, 
the required time for the calculation can be significantly 
less, and the difference between the solution of these two 
models is negligible.
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