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Some basic algebraic features of quasiparticle transforma-
tions are reviewed. Special nonlinear quasiparticle transformations
are introduced leading to the second quantized counterparts of
gerninal-type (correlated) wave functions. Algebraic representa-'
tions of strong and weak orthogonality are discussed, and these
issues are generalized to the case of non-orthogonal basis sets
leading to the concepts of strong and weak biorthogonaltty.

I. ONE-PARTICLE TRANSFORMATIONS

As introduction, we shall give a brief overview of linear quasiparticle
transformations, a standard tool in quantum chemistry and solid state physics'.

Given a set of orthonormalized orbitals {xl-'}' the corresponding creation
(x/) and annihilation (xl-'-) operators obey the fermion anticommutation rules

[X,L+' Xv+] -I- = [XI-'-' XV-] -I- = O (la)

[XI-'~' XV-] -I- = 0l-'V (1 b)

Operators x,/ (xl-'-) create (annihilate) an electro n on orbital )(w The creation
and annihilation operators are adjoints of each other.

Transformation of the elementary fermion operators x/ and )(1-'- Ieads
to new operators creating and annihilating »quasiparticles«. Such transfor-
mations can be called quasiparticle transformations.

Consider a general linear transformation

v,t = :L (.4.jl-' X/ + Bjl-\ * XI-'-) (2a)
I-'

1f'j
- = :L (Ajl-'* XI-\- + Bjl-' XI-'+) (2b)

p.

the asterisks indicating complex conjugates. Algebraic properties of the trans-
formed operators are defined by their commutation rules which can be
derived by substituting Eqs. (2) into the relevant commutators:

[1f'j+, 1f'k+] + = :L (Aj~,Bkv* + Bj!.1* Ak!.1)
J.l

[V'j-' 1Pk-] + = :L (.4.j/ Bki-' + Bj!.1 Ak/)
I-'

(3a)

(3a)
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[1I't, 1I'k-] + = ~ (Ail-' Akl-'* + Bi/ Bkl-')
IJO

(3a)

Transformation (2) is said to be canonical if the transformed fermion operator"
obey the same commutation properties as the untransformed ones to:

['lf't, V'k+]+ = [ll'i-' 'lf'k-] + = O

[·!pt, 'lf'k-] + = <'lik

(4a)

(4b)

It is seen from Eq. (3) that the general transforrnation (2) is canonical if
certain conditions for thansformation coefficients A and B are satisfied.
Namely, in matrix notations:

(5a)

(5b)

where the dagger indicates the adjoint of the matrix. Eqs. (5) are sufficient
conditions for transformation (2) to be a canonical transformation.

It is to be emphasized that operator cf;/ does not generally create an
electron; it creates a quasiparticle. Such quasiparticles are widely applied
in theoretical physics to describe elementary excitations and similar quantum
phenomena-. Second quantization is essential to describe the mathematical
properties of quasiparticles and to deal with them.

Three important special cases of the general quasiparticle transformation
in Eq. (2) are to be distinguished.

(i) If all the coefficients B are zero, Eq. (2) reduces to a simple line ar
transformation of the orbital space:

v; = ~ Ail-' ZI'+
IJO

(6a)

v: = ~ Ail-'* ZI-'-
IJO

(6b)

This is not really a quasiparticle transformation since cf;/ creates and
electron on the transformed orbital cf;i' The canonical condition of Eq. (5a)
is automatically fulfilled while (5b) reduces to

All.+=l

that is, matrix A should be unitary in order to Eq. (6) to he a canonical trans-
formation preserving the commutation rules.

(ii) If all coefficients A are zero, we have

'lf't = ~Bi~\*ZI'- (7a)
IJO

v; = ~Bil-'XI-'+ (7b)
tJ.

It is seen that the role of creation and annihilation operators is reversed
by transformation (7). One can say that operator cf;j+ (cf;n creates (annihilates)
a hole. Eq. (7) is called a particle - hole transforrnation''.",

(iii) In general, Eq. (2) mixes together particle- and hole-creation ope-
rators. Transformation of this type are called Boguliobov transformations
and are often utilized in the theory of superconductivity and superfluidi ty '.
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IL TWO-PART!CLE TRANSFOJ;lMATIONS

We turn now to a less standard chapter in the theory of quasiparticle
transformations which are non-Iinear in ferrnion.ioperators. The aim of the
present paper is to discuss some formal freatures of., the _'ftwo-electron
transformation of the following form: ,~':

1pt = ~ CiJ.V' ll'+ x: (8a)
>'<v

1pl-= ~ CI'VI lv---7.~~~' (8b)
>'<v

where the summation restriction f-l < v avoids double counting of electron
pairs. Coefficients CIl} are assumed to be real.

Algebraic properties of the transformed operators are quite interesting",
By substitution, the following commutation rules are found:

~~1p~_=~~1p~_=0 ~~
[1pt, 1pk-l;-:= Qik (9b)

where operators Qik are defined as

Qik = ~ Cw/ CI'v" + ~ CIl),.'Cv),'< XI'+ X
V
-

>'<v >'v),.
(10)

'-i

where the convention CilJ = -CVIli is introduced. The first thing we realize
is that we have commutators, instead of anticommutators, in Eqs. (9). This
is quite natural since cf;+ (cf;-) creates (annihilates) a pair of electrons. The
relevant quasiparticles are, therefore, bosons.

Next, operators Qik are to be discussed. If one deals with elementary
bosons, Bik should stand in replacement of Qik. The presence of Qik reflects
the composite nature of the bose quasiparticles+š"!". Operators Qik in the
form of Eq. (10) complicate tremendously the algebra of the quasiparticles.
Since Qik is a matrix of operators, it is hard to find an efficient theory for
dealing with them. Under certain conditions, however, the structure of the
quasiparticle commutators can be simplified leading to a practically appli-
cable theory.

The first simplification aris es if one requires the geminals (two-electron
wave functions) to be orthogonal to each other:

(11)

This equation is the second quantized representant of the so called »weak
orthogonality« condition which is commonly expressed as

(11')

Substituting the quasiparticle transformation from Eqps. (8) into Eq. (11),
one gets the weak orthogonality condition in terms of coefficients

~ CIlV1CfJ.vk = 0ik
>'<v

(12)

By this result, the quasiparticle operators of Eq. (5) under weak orthogo-
nality take the form



582 P. R. SURJAN

Qik = 0ik + ~ CI-\J,.' CvJ,.k XI-\+ x,
[.lvJ,.

(13)

This apparent simplification, as compared to Eq. (10), does not make the
algebra ofquasiparticle operators much simpler, since one still cannot trans-
pose different creation and annihilation opera tors. However, it has the
interesting feature

Qik I vac) = 0ik I vac) (14)

This means that the quasiparticle operator ifJi- is a true annihilator with
respect to ifJt since

'Pi- "pt I vac) = (1 + "pt 1pn i vac) = I vac).

As mentioned above, the main problem consists of transposing ifJi+ and ifJk"
for i or= k. This difficulty can be handled under the so called »strong ortho-
gonality« requirement which is commonly given as

(15)

In terms of coefficients the same condition writes

~ C!J.v' CI-\J,.k = o' for i ,= k
[.l

(16)

Using Eq. (16), the quasiparticle commutators und er strong orthogonality
become

Qik = 0ik [1 + ~ CI-\).' CvJ,." X!J.+ 7)
[.lvJ,.

17)

which is an essential simplification, as compared to Eq. (10) 01' Eq. (13),
since it enables algebraic manipulation e. g.

(18)

where Eq. (14) was also used.
It is to be noted here that commutators Qii at the diagonal cannot be

elimiriated from the theory: they reflect the physical fact that the Bose-type
particles in question are composite quasiparticles.

The essential importance of strong orthogonality resulting in Eq. (17)
lies in the fact that it results in exactly the same algebra as that for
elementary bosons. Operators Qi; do not enter the formalism when calculating
matrix elements, and any standard rules (Wick's theorem, etc.) remain valid.
A natural form of an N-electron wave function can be written as

(19)

which is a straightforward generalization of the Hartree-Fock single deter-
minantal wave function

(20')

while Eq. (20) corresponds to the model of independent electrons, Eq. (19)
specifies the model of independent pairs. (We mention only in passing that
the internal structure of composite particles can be affected by interpair, e. g.
inductive, interactionsš=.)

The formal analogy between one-electron models and geminal-type
schemes was realized a long time ago.11-13 The present discussion based on

l
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the second quantized formalism sheds some more light onto this connection,
emphasizing the algebraic importance of the strong orthogonality condition.

Strong orthogonality can be ensured in two ways. (i) Either as an auxiliary
condition at the variational determination of coefficients CI"'} , 01' (ii) by
expanding the geminals in mutually exclusive orthogonal subspaces. Way
(i) is essentially the method of antisymmetrized product of strongly orthogonaJ
geminals (APSG)14, while (ii) results in strictly localized geminals (SLG).5-8
As it was shown by AraP5, these two ways are mathematically equivalent
since for an APSG-type wave function there exists a transformation of the
underlying one-electron basis set so that the transformed basis functions
obey the condition of point (ii).

III. THE NON-ORTHOGONAL CASE

In practical applications, one is often faced with the problem that the
original basis of one-electron functions {x} is not orthonormalized. The
relevant anticommutation rules for fermion operators are then read1,5,7,tG,17

{X1/,Xv'}+ = SI~V

{X,/ XV'}+ = 0I"V

(21)

where XV- _ (X/)t but the true annihilation operators Xv- are not adjoints
Jf X/. Instead, the following relation holds:

1.,,', = ~ S,,)," 1.):
A.

Using creation operators X/ and annihilation operators X.,- one works in
the same algebra as in the orthogonal case. The non-orthogonality is reflected
by the fact that the adjoin relation does not hold. This leads to certain diffi-
culties in evaluating matrix elements which can be most conveniently solved
by consistent use of the biorthogonal forrnalism." Anyway, since the basic
algebraic rule are preserved, the quasiparticle transformations discussed in
Sect. II. can easily be generalized to the non-orthogonal case mutatis mutandis.
The basic transformation of Eq. (8) becomes

(22)

·!.pi+ = ~ CI"',' 1.1"+ x/
Il<V

(23a)

;Pi' = ~ C,w' :Zv' lI"'
Il<V

(23b;

The transformed quasi-boson operators obey the commutation rules
exactly in the same form as given in Eq. (9), while the quasiparticle commu-
ta tor in the general case is given by

(24\

As a generalization of the weak orthogonality defined in Eq. (11), one can
formulate the requirement of »weak bi-orthogonality« as

(25)
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which, in terms of coefficients C~), leads again to the same expression of
Eq. (12). Consequently, the quasiparticle commutator under weak biorthogo-
nality simplifies to

Qik = 0ik + ~ CI')'" Cv),.k ;(1'+ Xv-
I'v),.

(26)

Further simplification is possible by requiring the »strong bi-orthogo-
~

nality« of ef; and ef;, which results again in Eq. (16) for the coefficients. The
quasiparticle commutator reduces to

Qik = 0ik [1 + ~ CI-'l.' Cv),.k ;(1-'+ Xv-)
I'v),.

(27)

which is the generalization o. Eq. (17).

IV. CONCLUSJONS

In this paper we aimed to review the second quantized representation
of geminal type wave functions, using the langu age of quasiparticle trans-
formations. The formal similarity between the wave functions of idependent
electron models and those of separated pair theories was studied. It was
shown that these two models can be described by the same algebraic stru-
cture provided that strong orthogonality is fulfilled for the geminals in
orthonormalized metrics. If the basis set is overlapping, a biorthogonal for-
mulation turns out to be conveninent and one can define strong and weak
biorthogonality. In this case the algebra of quasiparticles is similar to the
algebra of electrons if the strong biorthogonality condition is fulfilled. The
formal considerations of this paper are useful theoretical backgrounds of the
applications to chemical bond theories" as well as various geminal type
models such as APSG1t-14.
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SAŽETAK

Metoda elektronskih parova vs. približenje nezavisnih čestica:
Kvazičestične transformacije

Peter R. Surjan

Prikazana su neka osnovna svojstva kvazičestičnih transformacija. Uvedene
su nelinearne kvazičestične transformacije koje daju korelirane valne funkcije
gerninalnog tipa. Razmatrana je koncepcija jake i slabe biortogonalnosti.




