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Symmetry adaptation techniques developed in the first papers
of this series are applied to intensity calculations for one- and
two-photon transitions between crystalline or molecular states
arising from a configuration nlN in a symmetry G. To illustrate
the techniques, we begin with one-photon magnetic-dipole tran-
sitions. Then, we give a detailed treatment of the second-order
mechanisms for two-photon electric-dipole transitions; the case of
configuration 4f6 in symmetry C4v serves as an illustration. We also
give indications of the passage from second-order to higher-order
mechanisms. Finally, some general symmetry considerations for
one-photon electric-dipole transitions are briefly investigated.

1. INTRODUCTION AND PRELIMINARIES

In the previous papers (henceforth referred to as I, II, ... , V) of this
series,' we have developed symmetry adaptation methods and crystal-field
models for calculating the energy levels of a partly-filled shells ion situated
in a crystalline or molecular environment. It is the aim of the present paper
to apply the symmetry adaptation techniques described in I-V and in
some related works (reviewed in Ref. 2) to intensity calculations for tran-
sitions between energy levels of an ion with configuration nIl" embedded
in a crystal-field potential with arbitrary symmetry.

We shall deal with one- and two-photon radiative transitions." The
theoretical treatment of two-photon transitions goes back to Gćppert-Mayer+
and the origin of one-photon electric-dipole transition for (dIV orl fN ions
in crystalline field s has been elucidated by Van Vleck" and Broer, Gorter,
and Hoogschagen" via the mechanisms of charge transfert (especially for
covalent systems) and/or parity violation (especially for ionic systems). In
particular, one-photon electric-dipole transitions are forbidden between (ato-
mic) state s of an nIN configuration. However, admixture of the state s of
configurations nIN and nIl'h nT with (_)1+1' = -1 renders possible electric-
-dipole transitions to be induced between the (admixed) states of configuration
nIN. Such admixture may be caused by the non-centrosymmetric part of the
crystal-field potential. (This odd part is dynamic or static depending on whether
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the symmetry group G of the ion site contains or does not contain a center
of inversion.) Following these ideas, intensity calculations for one-photon
electric-dipole transitions have been conducted for dN and flv ions in various
surroundings (see Refs. 7-11 and Refs. 12-18 for a non-exhaustive list of
works concerning dN and fN ions, respectively). In the case of two-photon
electric-dipole transitions, actual intensity calculations have been chiefly
concerned with fN ions.1S-25 The rofe of symmetry adaptation has been touched
upon in Refs. 7-24.

The approach foHowed in this article is mainly, as in parts II-IV,
of a phenomenological nature. In this respect, the intensity parameters to be
introduced here (B [A.kao] for one-photon transitions and C [(ksk,) k] for two-
photon transitions) may be considered as phenomenological parameters like
parameters D [(k)k2) ks (k3k4) kLkaO] introduced in IV and V for describing
the combined action of electrostatic, spin-orbit, and crystal-field interactions.
Emphasis is put here on global properties based on symmetry considerations
rather than on (microscopic) models and on mechanisms from which the
various parameters arise. Most of the formulas given in' this paper are
(modulo the closure approximations) valid for any configuration nIN in any
symmetry and for any strength of the crystal-field potential although they
are developed in the weak-field coupling scheme {aSLJ ary}.

We shall deal with transitions between an initial state i and a final
state farising from a configuration nIN in an arbitrary symmetry G. The
state vectors corresponding to i and f will be in the form

I i) == ! n/viry) (1)and

and will be (partly) characterized by irreducible representation classes (IRC's)
I' and I" of group G (if N is even) or its double group G* (if N is odd). More
precisely, we shall use state vectors of the type

!nlNxry) = ~ I nlNaSLJaTv) C (rtSLJar; x)
aSLJa

(2)

resulting from the diagonalization of the Hamiltonian H describing electro-
static, spin-orbit, and crystal-field interactions. Such state vectors are expres-
sed in terms of the symmetry adapted state vectors I nIN aSLJary), defined
in I-V, for configuration nIlv. The expansion coefficients c (aSLJar; x) in
the linear combination (2) depend on the strength of the different parts of H,
the more general form of which is Hwf (ef., V) and the simpler form
H) + H2 + H3 (ef., I-III).

In order to demonstrate how symmetry adaptation techniques enter inta
intensity calculations, we briefly examine in Sec. II the pedagogical example
of one-photon magnetic-dipole transitions. Section III deals in a detailed
way with two-phcton electric-dipole transitions. Some points concerning one-
photon electric-dipole transitions are considered in Sec. IV in the light of
the formalism described for two-phcton transitions. Finally, three appendices
close this article.

f
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II. ONE-PHOTON MAGNETIC-DIPOLE TRANSITIONS

Magnetic-dipole transitions provide a simple example for which sym-
metry adaptation techniques can be applied in a straightforward manner.
These transitions are parity allowed between certain state vectors of eon-
figuration nlN. More specifically, the transition matrix element M i-+f between
the ini tial state i and a final state i under the action of operator (J (kL + geSlo
J3 is simply given by

Mi-+f = (J ~ ~ ~ ~ c (aSLJ'aT'; W c (aSLJar; i)
r« "SL Ja a'T"y"

J'-,f N r II "N (J J' 1) *
(-) (nL u.SLJ II kL + geS IInI aSLJ) f ary aT'y' a'T"y" (3)

Equation (3) exhibits the typical ingredients of the transition matrix elements
to be discussed in the present paper. First, we have physical constants (like
the electronic Bohr magneton (J here). Second, we have terms which do not
depend on the point symmetry group G (like the reduced matrix elements
( II ... !I ), the values of which are listed in Appendix A). Third, the remaining
quantities in Eq. (3) depend on group G or its double group G*. On the one
hand, we have the expansion coefficients c (... iJ and c (... i) which depend
on G or G* through the strength of the crystal-field part of the total Hamil-
tonian H. On the other hand, coefficient f (... ) is an SU(2) :::J G* symmetry
adapted coupling coefficient that was introduced in I (see also II and III).
The polarization dependence of transition i~ f is indicated by the compo-
nents J3a"r"y" of the unit vector of the magnetic field and the G*-dependent
selection rules for the matrix element M i-+f are the ones inherent to the
existence of coefficient i (...). In particular, in order to have Mi-+f ?Ć O, it is
necessary that at least one of the G irreducible components of r'* 1.29T is
contained in the decomposition of the IRC (lg) of 0(3) into IRC's of G. The
latter property also holds for the oscillator strength

Si_f = ~ IMi-+f 12
y'y

(4)

of transition i -~f. It is to be emphasized that the sum over y' and y in
Eq. (4) can be effectuated by using the factorization property of the i coef-
ficients for the chain of groups SU(2) :::J G* and an orthonormality property
of the Clebsch-Gordan coefficients for group G* (see Appendix B).

Finally, we would like to mention that there is no further difficulty
for one-photon electr ic-quadrupole transitions and the calculation of transition
matrix elements and oscillator strengths for such transitions can be effected
in exactly the same manner as for one-photon magnetic-dipole transitions.

III. TWO-PHOTON ELECTRIC-DIPOLE TRANSITIONS

1. Second-order Mechanism
We now examine in detail a second-order mechanism for two-photon

electric-dipole transitions between the initial state i and a final state f.
The matrix element Mi-+f for such transitions is given by

1 --> --> --> --> 1 --> --> I --> --+
Mi-+f = ~ --;: (f I D . E21 v) (v ! D . el i i) + ~~ (f I D . Ej Iv) (v I D . E21 i) (5)

v j v 2
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where the sums over v extend on virtual intermediate states of parity oppo-
site to the parity of states i and f. In Eq. (5), we have

(6)

which involves the energies El' and E, of states v and i as well as energies El
-> ->

and E2 of photons no. 1 and 2. Further, El and E2 are the polarization vectors
-> ->

of the two photons. Finally, the dipole moment D = - e ~jrj for the involved
electrons may be developed as

-> 1 ->
D = ~ (_)0 D_q(l) eq

q= -1
(7)

-> ->->
in the standard spherical basis (e-b eo, e+J).

Equation (5) can be rewritten as
1 1

Mi-+f = ~ ~ (-)p+q (EILp (E2Lq
q=-lp=-l

1 1
~ ---;:- (f I DqW Iv) (v I DpW I i) + ~~ (f I D/l) Iv) (v I Dql1l I i) (8)
v 1 ti L.l2

where

(E))-q = EJ,. . e_q for ).= 1, 2 and q = -1, O, 1 (9)
Note that for linearly polarized photons, we have (in spherical polar coor-
dinates)

(10)

while
(11)

-> ->

for circularly polarized photons with EJ,.= e±l .

The initial and final state vectors I i) and I f) are taken in the form
given by Eqs. (1) and (2). The virtual "ta te vectors I v) are given by expres-
sions similar to Eq. (2), except that the (ground) configuration nLN is replaced
by (excited) configurations nlN-1 nT with (_)1+1' = - l. (For the sake of
simplicity, we do not consider here the case of core excitations involving
configurations of type nT(41'+1) nL,v·l. Such configurations are taken into acount
as far as parameters Ck to be defined below are considered as phenomeno-
logical parameters.) As amatter of fact, the quasi-closure procedure used
in what follows makes it possible to take I v) in the non-symmetry-adapted
form I nlN-1 nT al! Sl! LI! JI! M").

We now continue with the crude approximation that the energy El' in
Eq. (6) may be replaced by E (nT), so that A). is replaced by

t..J,.' = EJ..- [E (nT) - EJ for J. = 1, 2 (12)

independently of the particular state v arising from the configuration nz1'h nT.
In fact, such an approximation (ef., Refs. 5 and 7) has proven very successful
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in the study of one-photon electric-dipole transitions for transition-metal!'
and rare-earth 13.14 ions in crystalline fields. (A relation similar to Eq. (12)
is at the root of the derivation of Eq. (45) in Sec. IV for one-photon transitions.)
By using Eq. (12), Eq. (8) becomes

1 1
Mi-->f = ~ ~

p=-lq=-l
(13)

where the (symmetry-adapted) quantity Spq is defined as

Spq = ~ ~ ~ ~ c (a'S'L'J'aT'; f)* c (aSLJaf; i)
a'S'U r« aSLJa M' At

(J'M' I J'aT'y')* (JM I Jary) Rpq

in terms of the SU(2) ~ U(l) corresponding quantity

(14)

Rpq= ~ (nlNa'S'L'J'M' I DP") I n!N-ln'l'a"S"L"J"M")
a"S"L" rAt"

(nlN-1nTa"S"L"J"M" I Dq<tll nlNaSLJM) (15)

Expressions of the Rpq type are familiar in intensity calculations (ef., Refs. 1:3,
14, and 19). The summation over a"S"L" J"M" in Eq. (15) can be evaluated
by (quasi-closure) procedures based on the use of the Racah methods and
of the Wigner-Racah calculus for the chain SU(2) ~ U(l). This leads to

(16)

with
Rkpq = e2 (nll r InT)2 (lli C,) IIn2

(_)"-11>+0+1 [k] (1 k 1) {I k
-p p+q -q l l'

1
l

(17)

where u~k1q stands for the (p + q)-th spherical component of a many-electron
Racah unit tensor U~k) of orbital rank k: The various quantities in Eq. (17)
bear their usual meaning.

The next step is to express the products (EI)_p (~2)-q occurring in Eq. (13)
in a symmetry adapted form. This may be done as follows. First, we use
the product

(e.) (e,) = ~ (_)K-Q [K],;' ( 1
1 P - q P

KQ .

K
-Q

1 ) {e e } (K)q I 2 Q (18)

where K = 0, 1 and 2 corresponds to a scalar form, an axial-vector form,
and a (second-rank) tensor form, respectively. Second, we introduce in Eq.
(18) the O (3) ~ G symmetry adapted tensor product

{EjE2}~K~y = ~ {EjE2}Q(K) (KQ IKafy)
Q

where (KQ [Kary) is a reduction coefficient for the chain O (3) ~ G to pass
from the {JM} scheme to the {Jary} scheme. (Formulas for the various com-
ponents of {EIE2 }(K) are given in Appendix C for the chain O (3) ~ C4v.)

(19)
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We are now able to find an interesting expression for the right-hand
side of Eq. (13). By eombining Eqs. (14)-(19) with Eq. (13), we obtain after
some straightforward ealculations

~ c (a'S'L' TaT'; f)" c (aSLJar; i)
a'S'L'J'a' aSLJa k =0,1,2 a'T"y"

Ck {ele2}~~~''y''(nlNa'S'L'J'aT'y' I [U~~~"y,,]tI nlNaSLJary) (20)

where the three eoeffieients Ck (k = O,1, 2) are defined by

Ck = - ~ lk]'!' (I II CW II nz {1 k 1
n'l' 1 v l

e2 (nl I r I nT)2 t--r (81T1 + (82'fl] (21)

Exeept for Rayleigh seattering, the scalar term (corresponding to k = O) does
not contribute to Eq. (20) owing to the orthogonality of the initial and final
state vectors I i) and I f). Therefore, as a general result, we have the closed-
-forrn expression

Mi-+f ~ ~ c (a'S'L'J'aT'; f)* c (aSLJoT; i)
a'S'L'J'a' aSLJa

~ Ck (nlNaSLJ II U(I') 'I nlNa'S'L'J')*
1<=1,2

~ (J J' k) * } (k)
a'T"y" f ary a'r'y' a'T"y" {ele2 a"r"y"

(22)

and the strength S i-o] of transition i -+ f is obtained by inserting Eq. (22) into
Eq. (4) and by evaluating the summations over y' and y with the help of a
decomposition of the f coefficient in terms of the Clebsch-Gordan coefficients
for group G* (cf., Appendix B).

Some comments on the master formula (22) are called for. The SUHl

over a'T"y" in Eq. (22) concerns symmetry dependent quantities: coefficient
f (... ) is an SU (2) :J G* coupling coefficient.tv similar to the one occurring
in Eq.· (3), and factor {... } depends on the polarization of the two photons.
The factor (II U(k) !I) and coefficient Ck (for k: = 1 ar 2) do not depend on the
point symmetry group G: (Ii U(k) Il) is an (atomic) reduced matrix element
for the ground configuration nlN and Ck depends solely on configuration
nlN and the excited configurations nlN-1 nT. It is to be pointed out that the
axial-vector terms (corresponding to k = 1) vanish both in Eq. (22) and in
Eq. (20) if the two involved photons have either the same energy (sinee
Cl = O in that case in view of Eq. (21)) ar the same polarization (since the

-'> -'>

vector product {ElE2 }(1) is zero for El= E2)' In other words, a non-zero eontri-
bution of the k = 1 terms requires two photons of different energies and
different polarizations. In a general case, it should be noted that coefficients
Cl and C2 may be considered as phenomenological parameters. In most cases,
the parameter Cl is certainly negligible but it may be important for Raman
and Rayleigh seattering. Finally, products c ( ... f)* c (. .. i) depend on the
strength of the different components of the total Hamiltonian Hunder consi-
deration; as a consequence, they generally depend on group G*. (The sole
good quantum numbers in Eq (22) are I' and y for the initial state and I"
and y' for the final state.)
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Equations (20) and (22) can be given asimpier form in the special case
where the J-mixing is negligible, a situation frequently encountered for
lanthanide ions, at least as a first approximation. We thus take J (for the
initial state) and J' (for final state) as good quantum numbers and further
assume that I', I" and I'" occur only once in the decomposition of the IRC's
(J), (J'), and (k) of SU(2), respectively. (The latter assumption is quite reaso-
nable for low values of J and J' and high symmetry groups G.) Thus, for
a linear polarization of the two photons, Eq. (20) specializes to

IVI,....•, = ~ (-)', Ck (nI" [a'S'L'] J' ii U('·' II nI' [CISL] J)
k~ 1,2

~ f ( J' J k) « }(k»*r- r r"" 101102 f"y"
f'y Y Y Y

where the notation [aSLjJ refers (in the intermediate coupling scheme) to
the state vector whose principal component corresponds to the «-th multiplet
2S+1LJ. Here, in order to have a non-zero contributi.on to Mi ....•' of the k = 1
terms, it is necessary for the selection rule /:;.J= O, ± 1 (with O _ O excluded)
to be satisfied in addition to the fact that the two photons must have diffcrent
energies and different polarizations. Similarly, the tensor terms (corres-
ponding to k = 2) do not contribute to Mi ....•' if the selection rule /:;.J= O,
± 1, ± 2 (with O _ O, 1/2 _ 1/2, and O _ 1 excluded) is not satisfied. Equation
(23) can be further specialized if the photons have either the same energy
or the same polarization. In both cases, and for /:;.J= O, ± 1, ± 2 (with
O _ O, 1/2, 1 excluded), Eq. (23) contains only one working parameter, viz.,
the parameter C2. Then, by introducing Eq. (23) into Eq. (4) and by applying
Racah's lemma'" to the involved f coefficients, we end up with

(23)

Si ....•' = [J'r1 [r'] I C2 (nIN [a'S'V]J' II U(2) II nIN [aSL]J) 12
~ [TTll (Jr + 2r" I J'(Jr'l 12 ~ i {e!c2J?!y" 12
pr" r:

where the (+ I) coefficient is an isoscalar factor for the chain SU(2) :=) G*
(see Appendix B).

(24)

2. Higher-order Mechanisms

Equation (22) suggests defining the operator
(k) (k)

Heff = ~ ~ Ck {e\c2}a"I-'Y [U"'T"y,,]t
te ~ 1,2 a"r"y"

(25)

which can be east in the form

where the metric tensor (f..lh.J.2) is defined in I and II (see also Ref. 2).
Operator Heli is independent of the particular chain SU(2) :=) G* chosen since

Heff= ~ Ck({I'\e2}(k)'U(k,)
k~1,2

(27)
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where (.) indicates a scalar product (cf., II). Clearly, the operator HelI is an
effective operator because Eq. (22) can be written in the compact form

(28)

Hence, to obtain the transition matrix element M i-s-] resulting from second-
-order mechanisms, it is sufficient to calculate the matrix element of H~fI
between the ini tial and final state vectors. This result is in agreement with
the corresponding result, originally obtained by Axe,19 for two-photon pro-
cesses in complex atoms. In the particular case of two identical photons
issued from asingle beam, Heff reduces to the operator (involving only one
parameter) derived by Judd and Pooler'" in the framework of the second
quantization formalism and further discussed by Downer and Bivas.P

Equation (26) shows that Heli is a linear combination of components of
irreducible tensor operators T(r,) for group G. Then, by introducing Eq. (28)
into Eq. (4) and applying the Wigner-Eckart theorem for the chain SU(2) ~ G",
we obtain the following selection rule for the two-photon transition i~ f
induced by second-order mechanisms: to have Si--+t 7ć O, it is necessary that
at least one of the G irreducible components of r'" ® I' is contained in the
decomposition of the IRC (kg), with k = 1 or 2, of 0(3) into IRC's of G.

We now give a form to ReI! which turns out to be appropriate for an
extension to other mechanisms than the second-order mechanisms described
by expressions of type .6.-1 (f I ... 1 v) (v I ... 1 i). By introducing

(
2 )'/,

U'") = 2k + 1 w= ")k (29)

where W(ksk,)k denotes a double tensor of spin rank ks, orbital rank kz: and
total rank k; Eq. (27) can be rewritten as

Heff = ~ C [(Ok)k] ({I'/1'2}(") . W(Ok)") (30)
k = 1,2

with coefficient C [(Ok) k] replacing Ck. An immediate generalization of Eq.
(30) reads

Heff = ~ C [(k,kz)k] ({ 1'/1'2}(k) • W(ksk,)k)
ksk,k

(31)

Thus, Eq. (28) is amenable to the very general form

Mi--+f = ~ ~ c (a'S'L' J'aT'; f)* c (aSLJar; i)
a'S'L'J'u.' aSLJa

~ (--) k,+k,-k (rJ] [J'] lk])'!> ( ~
k,k,k J

L' ks 1.kz (nLN aSL li W(k,k,) II nLN a'S'L'J*
le

S'

J'

}; f (J J' k) *
a"r"y" ary a'r'y' a"r"y"

(32)

which is an extension of Eq. (22). Therefore, the aforementioned selection
rule for second-order mechanisms can be applied to higher-order mechanisms
by extending the range of values of k:
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In the case J and J' are good quantum numbers, we can calculate the

oscillator strength for the transition between the J manifold and the J'
manifold. We get

S[aSL]J-+[a'S'L']J' = L L I{ ele2}t) 12 [kr1 C[(k/k/)kl C[(k$kl)k]
k,'k,'ksk,k q

(n!N [a'S'L'l J' II W(k,'k,)k jlnlN [aSLl '.J)* (n!N [a'S'L'l J' II W (k,k,)k II nl" [aSLl J) (33)

The latter sum rule generalizes the one derived by Axe19 for two-photon
processes in complex atoms and is valid for circular and line ar polarizations.

-> -> ->

(Note that for two identical photons (El = E2 = E), the sum ~q I {Ed/'O 12in
Eq. (33) is equal to [1 - 8 (k, 1)] 8 (k, 2) or [1 - 8 (k, 1)] [1 + 8 (k, 2)]/3 depen-
ding on whether the polarization is circular or linear.)

Parameters C [(kskl) k] in Eqs. (32) and (33) can be considered as pheno-
menological parameters. Alternatively, they can be interpreted as originating
from higher-order mechanisms, for instance the third-order mechanisms
described by expressions of the type (AA'fl (f ! ... 1 u') (v' I ... ! v) (v I ... 1 i). In
this connection, mechanisms of the third- and fourth-order have been used
in Refs. 22 and 23 for interpreting the anomalous strength of the twc-pho-
ton transitions of Gd3+ in LaF3.

3. The Case of 4f6 in C4v

As a typical example, let us consider the 7FJ=o -+ "Dj' two-photon tran-
sitions for an ion of configuration 4f6 embedded in an environment of sym-
metry C4v• We shall assume that the J-mixing is negligible. Then, we have
r = AI and J = ° for the ini tial state. For the first three final states 5D/,
we have I" = Al for J' = 0, I" = A2 or E for J' = 1, and I" = Al. B[,B2, or
E for J' = 2. By using the general relation'"

(OJ' k ) (k) *f AI aT'r' a"r"r" = s (k, J') [J'r'/' aT'r' a"r"r" (34)

we get, from Eq. (22), the transition matrix element

Mi-+f = [J'l''' L s (k, J') Ck (4f6 [7Foll! U'k) 114f6 (5Dkl)*
k =1,2

L ( k ){e e }(k) (35)
f"y' I"r' r"r" I 2 r-v-

where we employ the notation [2S+1LjJ for [nSLJ J.
Some conclusions immediately emerge from Eq. (35). In the case where

the J-mixing can be neglected, the sole 7FO -+ 5Dj, two-photon transitions
allowed by second-order mechanisms correspond to .r = 1 and J' = 2. In
other words, the observation of the other 7FO -+ 5Dj, two-photon transitions
should give information on the importance of the J-mixing and/or of higher-
order mechanism contributions. In particular, the observation of the 7FO -+ 5Do
two-photon transition would result from the contribution of tensors W(Ok)k

arising from the second-order mechanism (which turns out to be operative
here only if the J-mixing is taken into consideration) and/or of the scalar
term W(l1)O aris ing from the third-order correction involving matrix elements
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of the spin-orbit interaction with in the intermediate states of the 4f5 nT
configurations.

We continue with the cases J' = 1 and J' = 2 separately in the situation
where the two photons are linearly pclarized. For J,' = 1, the introduction of
Eq. (35) into Eq. (4) yields the line strengths

3
SA,...,.A, = -4- S 0...,.1 [sin 81 sin 82 sin (epl - '1'2)]2

3
S A,...,.E = S' S 0...,.1 [2 (cos 111 sin 82)2 + 2 (sin 81 cos 82)2 - sin 281 sin 282 cos (epl - (P2)]

(36)

with

(3'/)

Similarly for J' = 2, we obt.ain

1
S .'1,...,..1, = 4 S 0...,.2 [2 COS 81 COS 82 - sin 81 sin 82 COS (Pl - ep2)F

3

4

(38)

with

(39)

The line strengths (36) and (38) are expressed in terms of the directions

(8)", rp),,) of the polarization vectors E), (A = 1, 2). They all depend on asingle
multiplicative parameter (.5'0...,.1 for J' = 1 and .5'0...,.2 for J' = 2). It should be
observed that for identical photons (the same energy, the same wave vector,
and the same polarization), we have .5' 0...,.1 = O and

(40)

so that the latter sum is independent of the common polarization, a property
that does not hold if the two photons have different polarizations.

Parameter .5'O-+k is proportional to the square of parameter Ck given
by Eq. (21). Since configuration 4f55d is the first (opposite parity) excited
configuration above the ground configuration 4f6, the sum on n'l' in Eq, (21)
can be restricted to nT = 5d. Such an approximation gives
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[1 k 1}2 I (4f6 [5D lli vri') 114f6 [7F )) 12\3 2 3 k I , o, (41)

and parameters s' O->-k (k = 1, 2) can be calculated from the first principles.
Alternatively, they can be taken as phenomenological parameters. This line
of thought has been recently followed in Ref. 25 for the analysis of the
intensities and the polarization dependence of the Stark components arising
from the 7FO ~ 5D2 two-photon transitions observed, in the case of two
identical photons (single-beam arrangement), for the ion Sm2> in a BaClF
single-crystal.

IV. ONE-PHOTON ELECTRIC-DIPOLE TRANSITIONS

The basic formula giving the transition matrix element M i->-f for a
one-photon electric-dipole transition between the ini ti al state i and a final
state f can be, in the last analysis, formally deduced from the one cor-
responding to a two-photon electric-dipole transition. It is enough in Eq. (5)

~---? -?-? -?-?

to replace D . Ej by D . E and D . E2 by the Hamiltonian Hwf defined in V or,
in amore realistic way, by a part of Hwf and to make the necessary modi-
fications in the denominators (see also Refs. 18, 19, and 23). We are thus
left with

where, in evident notation, Llxv = Et - E; for x = i or f. Here, the state
vectors I i), I f), and! v) are the same as is Sec. III and the sums over v can
be achieved by means of the quasi--closure procedure based on the approxi-
mation that Llxv can be replaced by the difference Ll(nT) between the bary-
centers of the ground configuration nlN and the excited configuration
nUV-l nT with (_)1+1' = -1.

Equation (42) describes various second-order mechanisms and, as in
Refs. 11 and 13-15 (see also II), we may restrict Hwf to the non-centro-
symmetric part of the crystal-field Hamiltonian H3 defined by

H3 = ~ D [kaol Vlk) (43)
ka. a.r.r.

where ro (= Aj in Mulliken's notation) stands for the identity IRC of G.
In Eq. (43), the' crystal-field parameters D [kao] with k even do not contribute
to Mi-'rf and we shall denote O [kao] the parameters D [kao] with k odd. Para-
meters O [kao] (and their 0(3) :=J 0(2) counterparts O [kg]) are connected to
the commoner (Rajnak-Wybourne) parameters Bl by the relationship

O [kaol = ~ O[kql (kq ! kaoroyo)* = W II C(I,) !Il) ~ »: (kq I kaoroyo)* (44)
q q

(Equation (44) gives back the relation derived in III for l' = L and keven.)
Then, the calculation of Mi->-f amounts to a simple symmetry-adapted ver-
sion of the one in Refs. 13-15. As anet result, we obtain



794 M. KIBLE.R AND J..C. CACON

M,->-f= ~ ~ c(a'S'UJ'aT';f)*c(aSLJar;i)
a'S'UJ'a' aSLJa

~ ~~_ (nLNe/S'UJ' II u<) II nLNaSLJ)
.I. ka. a'T"y" ary

~ (J' JA) (aoroyo ary a"r"y") *
B p,kao] C~ry f aT'y' ary a'T"y" f k 1 A

Under the hypothesis of the simple parity violation mechanism considered
here, the intensity parameters B [}okao] in Eq. (45) are given by

B [Akao] = 2 e O [kao] [A]

~ (-)' ([LJ [L'])'/, ( L
wr O

(45)

1
O

A
L'

(46)~ } (nL I r I nT) I ~ (nT)

Parameters O [kao] can be calculated in the framework of the electrostatic
model involving point-charge, dipolar, and quadrupolar contributions. There-
fore, parameters B [Akao] are calculable from the first principles. However,
the fact of treating these parameters as adjustable parameters to be deter-
mined from experimental data may account for other mechanisms, such
as, for example, core excitations, pseudo-multipolar field or ligand pola-
rizations, and vibronic interactions.

Equation (45) shows that to have M i-s-] 7"= O, it is necessary for at least
one of the G irreducible components of r'* ® r to be contained simulta-
neously in the IRC (lu) and in one of the IRC's (Ag), with A= 2(2)2l, of 0(3).

In the case where J and J' remain good quantum numbers, we obtain
from Eq. (45) the sum rule

S [aSLjJ-+[a'S'L'jJ' = ~ Q)..I (nIN [a'S'U]J' II un) II nLN [aSL]J) 12
.I.=2(2)2L

where the intensity parameter .12).. reads in our notation

(47)

Q).. = [Arl ~ [kr! IB p,kao] !2
kao

(48)

Relation (47) was first derived by Judd!" (see also ReI. 15) for 4fN configu-
rations.

Following the approach in Ref. 18, we may introduce an effective ope-
rator Heff which produces the transition matrix element Mi-+f when sand-
whiched between the state vectors (f I and I i), ef., Eq. (28). Indeed, from Eq.
(45), we find

Heff = ~ ~ B [(lk) J,] ({e<1) O(/')}(.I.) . U(.I.))

k odd A=2(2)2L

where the q-th spherical component of Otk) is (-)g O lk, -q]. Operator H,'ff

is responsible for the second-order mechanisms. Extensions of Heff, involving
for instance contributions of the type ({10(1) Otk) }(~) . W(k, k,)~), are useful for
describing higher-order mechanisms and can be found in Ref. 18.

(49)
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APPENDIX A

The reduced matrix elements

(nZN a'S'L'J' II kL + gcS II nZNaSLJ) = b (a',a) b (S',S) Č (V,L)

(nZNaSLJ' li kL + geS II nZNaSLJ)
which occur in Eq. (3) and in the treatment of the Zeeman term (see II and III)
can be calculated very easily. By putting

a = ge + k, b = ge - k, 9 (J',J) = (nZN aSLJ' II kL + geS II nZNaSLJ)

we obtain

9 (J,J) = (1/2) {(2J + 1) / [J (J + ])]YI, [aj (J + 1) + bS (S + 1) - bL (L + 1)]

9 (J,J -1) = - 9 (J ·-l,J) = (b/2) {[(S + L + 1)2 - P] [J2 - (L- S)2] / J}I/'

which, in the limiting case k = '1 and g, = 2, are in agreement with the formulas
in Ref. 16 except for the sign of 9 (J - 1,J).

APPENDIX B

The coupling coefficient

f (r
jt

r
j2

ark)') = (_)21,' [jIrI" (j2ka2r2)'2ar), I j2kjlalrIYI)*'al 1)'1 a2 2)'2

defined in I (see also Refs. 27 and 28) for the chain SU(2) => G* can be developed
as a sum of products involving the Clebsch-Gordan coefficients (r2rY2)' I r2rpr1)'1)
for group G*. (Here fi is a multiplicity label to be used if the IRC r1 is contained
several times in the Kronecker product r2 l8l r.) This may be achieved by applyirig
the Racah factori.zation Iernma'" to the Clebsch-Gordan coefficients of SU(2) in
an SU(2) => G* basis. We thus obtain the factorization relation'"

(
jI j2 k) __ 2k • -Ij,

f ar)' ar)' ar)' - ( ) [11]I I I 2 2 2

~ (j"a2r2 + kar I jlalfirl)* (r2rY2)' ! r2rt1rl)'])*
fJ

where the (+ I) coefficients are isoscalar factors for the chain SU(2) => G*, the
properties of which have been studied in Ref. 27.

Most of the transition matrix elements in this paper appear in the general
form

'J' J k)
Mf1' ..•.f'1" = ~R (... J'aT' Jarka'T" ... ) 1 (aT')" ar)' a'T")'''

where the sum run s on all the involved quantum numbers except r, )" I", and y'.
The calculation of the corresponding oscillator strength

Sf ..•.r- = ~ I M f1'-+f'1" 12
1"1'

can be done by using the just mentioned factorization relation of the f coefficients
and the following (unusual) unitary-completeness relation'" of the Clebsch-Gordan
coefficients for G*

~ (r]r2)'1)'21 pryy (r1r2')'1J'z' I fiT)')
1'11'
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Thus, we obtain

M. KIBLER AND J.··C. GACON

Sr-+r' = ~ [... ] R (... J'aT'Jarka'T" ... )R (... J'aT'Jarka'T" ... )*

~ (Jar + ka'T" I J'a'j3r')*(Jar + ka'T" I J'a'j3r')
{J

where [... ] stands for some dimensionality factors. The latter sum rule can be easily
transcribed for the various transitions studied in this work.

APPENDIX C

A simple development of the inverse of Eq. (18) gives the expressions

{CteJ&l) = (1/y2) [(101)1 (c2LI- (ctLI (102)1]

{clc2}~i = ± (1/y2) [(cl) ±l (c2)O-(Ct)0(c2) ±1]

{EJ22}~2) = (1/y6) [2 (I't)o (c2)O+ (cI)j (c2Ll + (EILj (E2)1]

{CIC2}%)1= (1/Y2l [(cl)O (e2) ±1 + (et) ±1 (c2)0]

{I'IC2}%)2 = (cI)±l (e2)±1

valid for circular and linear polarizations.
By way of illustration, let us consider Eq. (19) in the special case where the

point symmetry group is G == C4v' In this case, we may use the chain of groups
0(3) :::J Ccov :::J C4v :::J C2v for replacing the label ary by r (Cco) r (C.) r (C2v)' see
Refs. 28 and 29. Then, we have

= (_)1 (1/Y2[{eI1'2}~1) - (_)1 {CJC2}(~)1]

{n} (2) {} (2)elG2 A,A,A, = elc2 O

for j = 1, 2

for j = 1, 2

for j = 1, 2

where the Mulliken notation is used for the IRC's of Ccov :::J C<v:::J C2v'
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SAŽETAK

Energ ijske razine paramagnetnih iona: Algebra. VI. Račun intenziteta prijelaza

Maurice Kibler i Jean-Claude Gacon

Primjenom teorije grupa razvijena je metoda računanja intenziteta jedno- i
dvo-fotonskih prijelaza za konfiguraciju nlN. Posebno se razmatraju jednofotonski
prijelazi magnetskog dipola i dvofotonski prijelazi električnog dipola. Kao ilustra-
cija dana je konfiguracija 4f6 u simetriji C4v.




