CROATICA CHEMICA ACTA CCACAA 62 (4) 799—812 (1989)

YU ISSN 0011-1643
CCA-1908 UDC 541
Conference Paper

Polarizability in Excited States
Jacek Rychlewski

Department of Chemistry, A. Mickiewicz University, ul. Grunwaldzka 6,
60—780 Poznan, Poland

Received February 6, 1989

A linear response of a molecule in exvited state to an
external electric field is discussed in terms of frequency depen-
dent polarizabilities. Results of accurate calculations of polari-
zabilities of the hydrogen molecule in its b 3=, and B 1X," states
are presented. The results are compared with other ab initio and -
model calculations. It is shown that there is no contribution to
the polarizability from the interaction of the b and B states with
the states in which configuration 1lo¢.3do. or lo,3dn predominates.

INTRODUCTION

The electric polarizability of a molecule is a measure of its ability to
respond to an external electric field. Theoretically, this property is well
defined in the sense that it is a measure of the additional dipole moment
induced in a molecule by the field. For relatively weak fields the response
of a molecular system to external perturbation is primarily linear. Nonlinear
phenomena become more important for strong fields such as those produced
by laser sources. The interaction of a molecule with relatively weak electric
fields is well-described by perturbation theory. Calculations of the second
order properties, such as polarizability, formally require knowledge of an
infinite number of excited states (including the continuum), and therefore
present formidable theoretical difficulties. These can be avoided by using
the variation-perturbation technique.

The static polarizability of diatomic molecules in their ground states is
one of the most frequently calculated molecular properties. Especially in the
case of the hydrogen molecule a variety of different methods and wave-
functions were fused to evaluate this property (see for example ref.! and
references therein). In contrast, very little is known on the polarizability of
a molecule in its excited states, mostly because molecules in excited states
usually have very short lifetimes. Consequently, the concentration of mole-
cules in these states is very small and even the well-developed experimental
methods cannot be applied. An exception are molecules in metastable excited
states with sufficiently long lifetimes, where some of the methods may be
used successfully. A possibility of determining polarizabilities in excited ele-
ctronic states is based mostly on the effect of an electric field on electronic
spectra, a phenomenon usually called the Stark effect. A review of the expe-
rimental methods determining polarizabilities of molecules in electronically
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excited states was given by Liptay.? The first experimental determination
of excited state polarizability was carried out by Labhart on crocetindime-
thylester and bixindimethylester® from electrochromic absorption in solution.
This type of investigation is limited mainly to the =-electron systems. For
the hydrogen molecule, the only measurement of the excited state polariza-
bility was performed by English and Kagann.* They used the molecular-beam
magnetic-resonance to measure the Stark effect of the metastable ¢II, ele-
ctronic state and found the polarizability to be about 10* times greater that
for the ground state.

The lack of experimental data on polarizabilities of molecules in ele-
ctronically excited states causes small interest in the theoretical investigations
of these properties. For conjugctced hydrocarbons, calculations of excited
state polarizabilities based on semiempirical methods were performed,>”
but the agreement of these theoretical results with the experimental data
is only qualitative and in some cases there is no agreement at all.

The most straightforward and the most reliable technique for calculating
polarizabilities is direct ab initio computation. However, at present, the area
of application of this technique is limited to small molecules, among which
the hydrogen molecule is the best known example. The hydrogen molecule
is a particularly important molecule since it has been used for testing new
methods and it can serve as a model for other systems. For this molecule,
very accurate theoretical results concerning the energy and molecular pro-
perties have been obtained, using explicitily correlated wavefunctions. For
example the theoretical results of polarizability of the hydrogen molecule
in its ground state agree with the experimental data within 0.19/0.5°

This work is essentially an extension of previous works concerned with
the polarizability of the hydrogen molecule in ground state.®'%!* We consider
here the polarizability for the b*XZ,” and B 'X,* states of H,.

THEORY

When a molecule is exposed to an external electric field, the interaction
between the molecule and the field can be expanded in the form

1
H :—“aFa__'E* QaBFuB—"' (1)

where 1, = Ze; 7, is a component of the dipole moment operator, Q.3 =

1
= 1/2 X e; (31, 755 — 71 0,p) iS a component of the quadrupole moment operator,

1
F, and F,5 are components of the electric field and the electric field gradient,
respectively. The dipole moment of a molecule in the presence of the field
iz defined as a derivative of the average value of the energy with respect
to the field
oE

1 .
ty, = _FF: = ‘uao + aaﬁFB +E~ /))C‘-.BYF,GFY + ... (2)

where ©” is the permanent dipole moment and the other terms in (2)
describe the changes in the dipole moment induced by the field. For H,
the permanent eleciric dipole moment 2° is absent. The leading term des-



POLARIZABILITY IN EXCITED STATES 801

cribing the interaction with the electric field is the linear polarizability
a. Higher terms, called hyperpolarizabilities, are important only in the case
when a strong field is applied. We shall concentrate here on the linear
polarizability. Therefore, we can neglect higher terms in expansion (1) and
we start with the Hamiltonian in which the perturbation is limited to the
term containing the dipole moment operator. In the laboratory fixed reference
system this Hamiltonian has the form

11 o

H=H°—3X Ser. F (3)

o 1

H° stands for the Hamiltonian of a molecule in the absence of the field, ¢;
is the charge of the i-th particle, r; stands for its vector. The rigous tran-
sformation from the laboratory system to the molecular internal system
leads in this case to separation of the translation motion without any appro-
ximation, i. e. there is no coupling term!*!® and the internal Hamiltonian has
the form

H= Hmol + Hnad + Hint {4)

The first term in (4) is the internal molecular Hamiltonian of familiar form
and the second term appears as a result of separation of the translational
motion for the isolated molecule.!* This term is responsible for the so-called
nonadiabatic effects. The perturbation term, the dipole moment operator in
the internal reference system, is defined as'?

q

i 1 q
He = [—— M,—M,)— — (Z,—Z)]R — HEr]F 5
S [ oM [( a b) 2 ( a b)] + ( M + 1) : r,] (5)

1

where M,, My, Z,, Z, are the masses and charges of the nuclei and g and M
are the total charge and mass of a molecule. R stands for the internuclear
vector and r; is the radius vector of the i-th electron measured from the
geometrical centre of the nuclei. It is seen from (5) that the correction terms
to the dipole moment operator are of the order of M and exist only for
charged molecules.

In the presence of time-dependent perturbation, i.e. an oscillatory ele-
ctromagnetic field with angular frequency w, the perturbation term is of
the form

H,, = (eivt + e-ivt) Fu (6)
and to determine the frequency-dependent polarizability o (w), the time-
dependent Schrédinger equation (7) must be used

. 0¥ (r, 1)
; U

s = E T Hy) ¥ (1)

(N

By expanding ¥ (r,t) in powers of F, the first-order correction to the wave-
function, ¥!(r, w,t) can be shown to have the form

Y(r,w,t) = ¥, 1(r, ) ei@-Et + W _1(r, w) e-ilw-E) ®
and ‘I’li {r, w) must satisfy the first order equation

H°—E° £ o) ¥, (r, ) = —up ¥° (1) (9
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¥°(r) and E° stand for, respectively, the eigenfunction and the eigenvalue
of the unperturbed Schrodinger equation

(H°—E) W () =0 (10)

and up = uF/F. The frequency dependent polarizability is then determined
as an integral of the form

1 -
@5 oy —— (Wi (r,0)|pup| ¥ @) an

METHOD OF COMPUTATION

The calculation of the polarizability tensor has been the subject of much
theoretical research and variety of methods have been proposed (see for
example refs. [1, 15, 16] and references therein). In this work we use the
variation-perturbation method, i. e. we calculate the polarizability by applying
variation procedure to the first-order equation (9) in order to obtain the
first-order function. The unperturbed and the first-order functions have been
assumed to be linear expansion

WO =Sc @0 (12)
n
Wi=3b, ot 13)
n
The variation condition for the first-order equation leads to the inhomo-
geneous set of linear equations for coefficient b,
S[H,”—(S

1

L E° & )] bn = —"<(pﬂ1 ‘ “r G 1]»”"‘) L

m

where
Hin = <(pi1 l H° 1 anll\'

Sin = <q0i1 l (Pn1> (15)

Having coefficients b,, the values of polarizability can be obtained from the
formula
a(w) = Zb;{pt | up | ¥°) (16)
1
For the hydrogen molecule there are only two nonzero independent
components of the polarizability tensor wiz. ¢ = a = a,, the perpendicular
component and o, = a,, the parallel component. The average polarizability
is then defined as

1
a(w) = 3 Loy (@) + 2a | ()] am

and its anisotropy as
y (w) = o) () A (w) (18)

The basis functions in egs. (12 and (13) for both unperturbed ¥° and
perturbed Y¥!' functions were expressed in terms of the elliptic coordinates

& n,9)
Py = (L,2) £ @, (2, 1) 19)
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and
@, (1,2) = e~ 08 -abe £ ka9 1n£omn 97,00 [eBna+ Bz

+ (—Dhi+pa+le-Bn-Bne] [({2—1) 1 —5,D)] el@1-92)s/2 pun (20)

where @, f, @ and f are variational parameters, p = 2r,/R with 7, and R
the interelectronic and internuclear distances, respectively, k., 1, m,, pa
and u, are integers greater than or equal to zero. The sign in (19) is positive
for the singlet state and negative for the triplet state. For s =0 and p =0
Eq. (20) represents the X, state, s =0 and p = 1 the X,* state and for s =1
and p =1 Eq. (20) represents the I, state.

Computations were performed separately for the perpendicular and pa-
rallel components of the polarizability tensor. The Born-Oppenheimer appro-
ximation bas been assumed in this paper and the resulting polarizabilities
have been given as functions of the internuclear distance.

POLARIZABILITY FOR THE b 3%X,* STATE

The hydrogen molecule in its lowest triplet state is the simplest non-
bonded molecular system for which, in contrast to larger systems, very
accurate calculations can be carried out. Therefore, it can serve as a model
when studying the collision-induced phenomena for lightly bound dimers
or van der Waals’ molecules.

Polarizabilities for atoms and molecules are modified by collisions and
this effect is accessible to measurements of some optical properties of com-
pressed inert gases. For two interacting atoms this effect is described by

the polarizability anisotropy v, v (R) = @ (R)—a; (R) and the trace of the
pair contribution to the polarizability defined as

TrAa(R) = Aq(R) +2Aa; (R) (1)

where
A a, (R) = a; (R) —2a,

Ao (R)=a; (R)—2a, (22)

and 2 a, is the polarizability of the two noninteracting atoms. The polari-
zability anisotropy 7y causes depolarization and is related to field-induced
birefringence (Kerr effect). An extensive review of the subject of collision
induced polarizability of diatomic systems is given by Frommhold.!”

The trace of the pair contribution to the polarizability Tr Aa (R) is
obtained as the difference of two quantities which are very nearly equal for
intermediate and large values of R. Therefore, numerical precision is impor-
tant in calculations of this property. For example, in the finite field calcu-
lations, with field strengths of 0.001 a.u., convergence of the density matrix
to one part in 10° or 107 is required.!® This accuracy can be achieved, however,
only for small molecular systems and accurate ab initio calculations of pair
polarizabilities of noble gas diatomics have thus been limited to He,!® Several
models have been, therefore, developed for this type of calculations. The
simplest model is the dipole-induced-dipole (DID) model introduced by
Silberstein® in which
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a R)=2a,=402R3+8a 3R+ ... (23)
(z_L(R):2a0—2a02R’3+2a03R"‘+... (24)

A number of other models incorporating overlap effects and exchange con-
tribution have been developed.?'™3

The first calculation of the polarizability of the hydrogen molecule in
the lowest triplet state was performed by DuPre and McTague.** They
calculated @ and a; from the approximate formulas obtained by the
variation-perturbation method

ay = 8 [z + (z,2y)]*
T 8 [<x12> o <x1332>]2 (25)

and using the Hirschfelder-Linnett wavefunction. In (25), z; and x; are
coordinates of the i-th electron with z coordinates along the internuclear
axis. Tt has been shown® that, in the case of polarizability for the ground
state of H,, formulas (25) lead to an error of about 10° when correlated
wavefunctions of type (20) are used to evaluate the expectation values. I'or
the triplet state, DuPre and McTague found o) to be less than o for inter-
nuciear distances R of 7 to 10 a.u. whereas the true result is opposite. More-
over, they obtained the asymptotic value of polarizability to be 8 a.u., as
opposed to the exact value of 9 a.u.

More recently, the electron gas model was applied by Cina and Harris?
to evaluate the polarizabilities for the triplet state in the region of internuclear
distance R, 1.0 = R = 10.0 a.u. For larger values of R, between 4.0 and 12.0
a.u. Hunt and Buckingham!® performed ab initio calculations using a large
basis set and the finite field method. They calculated A o, and Aa; using
restricted Hatree-Fock (RHF) and configuration interaction (CI) methods
and compared the results with predictions of several models. The above
mentioned calculations concerned the static polarizability, i.e. for w = 0.
Recently, the dynamic polarizabilities have been calculated.?®:?” In these cal-
culations, the variation-perturbation method and explicitly correlated wave-
functions of type (20) were used. The unperturbed wavefunction ¥’ con-
sisted of 60 terms in expansion.'? This wavefunction gives the energy for
the triplet state only by about 0.02 cm™ higher than than the best values
calculated by Kotos and Wolniewicz*® for intermediate and large internuclear
distances. The first order functions of the 3%, symmetry, used to derive the
parallel component, and those of the ®Ii, symmetry, used for the calculations
of perpendicular component, consisted of 45 terms in the expansion (13). In
Figure 1, the components of the static polarizability tensor as functions of
R for the b 3%," state are displayed and compared with the corresponding
curves for the ground state.!’ It is seen that these curves are considerably
different for these two states in the region of small R. This difference is
caused by different united atom limits for these states. The b state tends
to the *P(1s2p) state of helium whereas the ground state tends to the 1S(1sls)
state of helium. For R = oo, the compenents of polarizability for the b state
approach the same limits as those for the ground state; the parallel com-
ponents approach the asymptotic iimit from above whereas the perpendicular
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ones from below. The inflection point on the 2« curve for the b state is
clearly due to contraction of the electronic cloud near R = 2.5 a.u. along
the z axis in contrast to the ground state where expansion of the electronic
cloud is observed with a maximum near 3.3 a.u.2%3

fas}

ala.u.l

Rla.u.]

Figure 1. The components of the static polarizability «)| and « T for the b 3%,
state (curves 1 and 2) as compared with the corresponding quantities for the ground
state (3 and 4).

In Table I, a comparison is made with the previous results for the com-
ponents of static polarizability for the b state. We compare here the results
of the electron gas model (EGA) of Cina and Harris,* first-order DID (DID-1)
and second-order DID (DID-2) values, results of restricted Hartree-Fock (RHF)
and the configuration interaction (CI) methods of Hunt and Buckingham,'®
of the long-range model (I — 7)1%3! and the results obtained with the explicitly
correlated wavefunction.?6:?” It is clear that the electron gas model results
represent very poorly the behaviour of the polarizability components as
functions of R. There are significant differences between our values and
RHF and CI results. They differ for R near the van der Waals minimum
by 22% (CI) and 18 (RHF) for perpendicular component. These differences
become much larger for smaller R. For R = 4.0 a.u. the differences are
6% (CI), 45°% (RHF), and 27°0(CI), 23%¢ (RHF) for @, and o, , respectively.
For «| , these differences increase slightly for increasing R. As a resulf,
the trace of the pair polarizability, which is sensitive to the quality of
function used in the calculations, is negative for large R when calculated
with the explicitly correlated wavefunction (TrAa (R = 12) = —0.0129 a.u.)
whereas the CI result is positive (TrAa (R = 12) = 0.0024 2. u.).

The model values of a| differ from our values by 8% (I—7) and 20
(DID) near the van der Waals minimum and by 5% (I—7) and 11% (DID)
for R = 10.0 a. u. respectively, while the agreement for the parallel component
is slightly better. It is worth noting that the « | values obtained from the
iong-range model approximate accurate values (corr) much better than those
calculated from CI. Consequently, the polarizability anisotropy obtained from
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TABLE I

The components of polarizability tensors Ace; and Au| for Hs in the triplet state.

Results from the electron gas model (EGA). correlated wavefunction calculations

(corr), CI and RHF calculations and from the first-order DID (DIDI1), second-order
DID (DID2) and long-range (I—r) models

Aa ]
R EGA corr CI RHF l—r DID1 DID2
1.0 —0.888 —6.11353
2.0 —0.476 —2.37984
3.0 —0.699 —1.86718
4.0 —0.520 —1.14867 —0.8362 -—0.8826 —0.6328 —0.5884
4.5 —0.85535 —0.6034 —0.6381 —0.4444 —0.4225
5.0 —0.380 —0.58341 —0.4264 —0.4523 —0.3240 —0.3123
5.5 —0.39579 —0.3016 —0.3207 —0.2434 —0.2368
6.0 —0.27918 —0.2170 —0.2308 —0.1875 —0.1836
6.7 -—0.20582 —0.1604 —0.1703 —0.1474 —0.1450
7.0 —(.15811 —0.1223 —0.1293 —0.1479 —~0.1181 —0.1166
7.5 —0.12382 —0.0962 —0.1011 —0.1147 —0.06960 —0.0950
7.85 —~0.10556 —0.0826 —0.0865 —0.0975 —0.0837 —0.0829
8.0 —0.09684 —0.0777 —0.0812 —0.0913 —0.0791 —0.0734
8.5 —0.07572 —~0.0660 —0.0855
9.0 —0.06180 —0.0537 —0.0555 —0.0611 —0.0556 —0.0553
10.0 —0.04571 —0.0393 —0.0401 —0.0433 —0.0405 —0.0463
12.0 —0.03030 —0.0227 —0.0230 —0.0241 —0.0234 —0.0233
R EGA corr (31§ RHF l—r DID1 DID2
Aay
1.0 —0.864  5454.07
2.0 0.489 15.7325
3.0 0.290 1.8392
4.0 0.328 0.25894 0.2762 0.1409 1.2656 1.4436
4.5 0.17016 0.1802 6.0790 0.8389 0.9767
5.0 0.371 0.16902 0.1829 0.1067 0.6480 0.6847
5.5 0.19469 0.2029 0.1461 0.4868 0.5131
6.0 0.20773 0.2127 0.1713 0.3750 0.3906
6.0 0.20529 0.2080 0.178% 0.2948 0.3045
7.0 0.19136 0.1928 0.1722 0.2292 0.2362 0.2423
7.5 0.17165 0.1723 0.1582 0.1874 0.1920 0.1961
7.85 0.15680 0.1570 0.1464 0.1639 0.1674 0.1705
8.0 0.15038 0.1505 0.1311 0.1550 0.1582 0.1610
8.5 0.13064 0.1319 0.1338
9.0 0.11238 0.1119 0.1077 0.1096 0.1111 0.1125
10.0 0.08322 0.0828 0.0810 0.0802 0.0810 0.0817
12.0 0.04767 0.0478 0.0473 0.0468 0.0469 0.0471

the long-range model gives the best agreement with the anisotropy calculated
from explicite correlated wavefunctions (see Table II), which can be con-
sidered the most accurate result so far.

In Table II, we compare the polarizability anisotropy obtained from dif-
ferent methods as the function of internuclear distance R. It is well establi-
shed from the studies of collision induced polarizabilities for light inert
gases®> that at SCF (or RHF) level the long-range polarizability anisotropy
y approaches the DID value calculated with the SCF polarizability, as
expected. Electron correlation increases the anisotropy and at the van der
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TABLE II

The polarizability anisotropy (in a.w.) for Hs in the triplet state

R VREF Yer Ycorr panivt Vpip2 Vi

6.0 0.4021 0.4297 0.48691 6.5625 0.5742

6.5 0.3428 0.3684 0.41111 0.4424 0.4495

7.0 0.3015 0.3151 0.34947 0.3542 0.3589 0.3771

7.5 0.2593 0.2685 0.29547 0.2880 0.2911 0.3021

7.85 0.2329 0.2396 0.26236 0.2512 0.2534 0.2614

8.0 0.2223 0.2282 0.24722 0.2373 0.2394 0.2463

9.0 0.1632 0.1656 0.17418 0.1667 0.1678 0.1707
10.0 0.1211 0.1220 0.12893 0.1215 0.1220 0.1235
12.0 0.0703 0.0705 0.67800 0.0703 0.0704 0.0709

Waals minimum the polarizability anisotropy falls below the DID value
calculated with a® by 6% for H...H,® 10% for He...He! and 20° for
Ne...Ne.3*3 This conclusion is in contrast to our finding. The anisotropies
with explicitly correlated wavefunction are larger than DID values for R > 17
a.u. and for R = 12.0 a.u. the anisotropy is larger by about 10° than the
anisotropy obtained from all other methods listed in Table II. This conclusion
together with the obtained positive value of the trace of the collision induced
polarizability for large R may be useful for a better understanding of the
collision induced phenomena.

The components of dynamic polarizability as functions of frequency w,
calculated using the explicitly correlated wavefunctions,?*?” are shown graphi-
cally in Figures 2 and 3 for two internuclear distances R = 2.0 and R = 6.0
a. u. The dynamic polarizabilities a; (R) possess singularity points, which simi-
larly to the ground state, are clearly due to the interaction of the b state
with the states of the 3%, symmeiry in the presence of an electric field. The
singularity point appears when w is equal to the difference of the adiabatic
energy between the b state and the given state which can be mixed in by
the field. For a| (R =1.5) and ¢« (R = 2.0), the first pole appears in the
region w = 0.0834 — 0.1 a.u. and @ = 0.1535 —0.1655 a. u.,*>” respectively, and
the energy gap between the b and the closest a 3X," state is 0.0855 a.u. for
R =15 and 0.1610 a.u. for R = 2.0 a.u., respectively.?®:36:37 The second pole
appears as a result of interaction of the b state with higher states of the 3X,*
symmetry. The next states, above the a state, viz. the h and g states, lie above
the b state by, respectively, 0.1675 and 0.1710 a.u. for R = 1.5 a. u. and 0.2369
and 0.2378 for R = 2.0 a. u.??3® However, the region of w, where the second pole
appears, is w = 0.225—0.2354 a.u. for R = 1.5 a. u. and @ = 0.3—0.325 a. u. for
R = 2.0 a.u.>?7 respectively, i.e. much larger than the corresponding energy
gaps. This means that there is no contribution to the polarizability form the
interaction of the b state with the h and g states. It is worth noting that
in the vicinity of the equilibrium the h and g states can be described as a
mixture of 1so, 3s0, and 1s0, 3dg, configurations.

For the perpendicular component there are no peles although the b state
can be mixed in by the field with the i °IL, state. The lack of pole in this
case can be explained by the character of the i state for small and inter-
mediate values of R. For this region of internuclear distances the i state can
be described as 1o,3dz with a promoted outer orbital. This configuration is
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Figure 2. The parallel component of « (w, R) for the b state at R = 2.0 a.u. (1) and
R = 6.0 a.u. (2) plotted as functions of field frequency . Broken lines denote the
positions of the poles.

0 : : . ; . "
000 006 0.0 015 02 02 03 03% 0.4

omega(a.u.]

Figure 3. The perpendicular component of « (w,R) for the b state at R = 2.0 a.u.
(1) and R = 6.0 a.u. (2) plotted as functions of field frequency w.

predominant for R <6.0 a. u.*’ Therefore, we can conclude that configurations
3dmw and 3do are responsible for the lack of interaction between the b state
and the h and g 3%, states (in the case of o, (w)) and the i I, state (in
the case of a| (w)).

POLARIZABILITY FOR THE B 1X,* STATE

In this section the results of calculations of @ (w) and @ (w) for the
B 1T,* state of H, for its equilibrium geometry, similar to that for the b 3%,
state, are presented. Calculations were performed using functions of the type
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of eq. (20) consisting of 70 terms in expansion (12) for the unperturbed func-
tion, and 60 terms in expansion (13) for the perturbed unction of the !X,
symmetry for the calculations of parallel component and of the I, symmetry
for the calculations of perpendicular component. The results are listed in
Table IIT and displayed graphically in Figures 4 and 5. The value of static
polarizability for the B state is much larger than that obtained for the ground
state, being almost 40 times larger for the parallel component and 10 times
larger in the case of the perpendicular component. It mirrors the difference
in discplacements of electrons from the internuclear axis which are much
bigger in the B state.!’*> The dominant contribution tc the polarizability
a of the B state comes from the interaction with the E, F 13," state in the
presence of the field. The first pole that appears in Figure 4 is clearly
due to the above mentioned interaction. The energy difference between the
B and the E, F states for R = 2.43 a. u. is 0.04897 a. u.*>** whereas the region
of w where the pole appears is between 0.045 and 0.05 a.u. The higher
singularity points appear for @ = 0.11 —0.115 and for w = 0.12—0.14 a.u.
The energy gaps between the B state and the posible interacting higher
states, i.e. the G, K and H, H, are 0.1010 and 0.1097 a. u., respectively. The
G, K state can be described for small R as predominantly a 1so, 3do, state
and, therefore, according to the conclusion from the former section does
not contribute to the polarizability. Accordingly, the second pole can be
attributed to the interaction with the H, H state, which for small R is
described as 1so, 3s0,.

For the perpendicular component the singularity point appears at w =
= 0.12—0.14 a.u. whereas the energy gap between the B state and the
lowest state of I, symmetry, i.e. the I state, amounts to 0.1032 a.u.t:3
The I state can be described similarly as the i state by the 1so,3dw confi-
guration and, therefore, does not contribute to the polarizability of the B state.

600

ala.u.]

-0+

-0}

/

E%.DC 0.2 0.04 0.08 0.08 0.1 ez 0.!

nmanz {a 1 1
ia bd s

Tigure 4. The parallel component of « (w, R) for the B state at R = 2.43 a.u. plotted
as function of w. The broken lines denote the positions of the poles.
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Figure 5. The perpendicular component of a (w, R) for the B state at R = 2.43 a.u.
plotted as function of w.

TABLE III

Paralell « || and perpendicular o« compornents of dynamic polarizability for the
B 13" state at selected field frequencies o (all values in a.u.)

1) all ol
0.0 249.7 42.80
0.6004 249.8 42.80
0.001 249.8 42.80
0.005 250.5 42.85
0.01 258.0 43.00
0.02 287.3 43.60
0.03 361.0 44.64
0.04 614.1 46.20
0.045 1219.0 47.21
0.05 —4321.0 48.39
0.655 —602.0 49.78
0.06 -—266.3 51.40
0.665 —137.9 53.30
0.07 —67.54 55.54
0.075 —20.35 58.18
0.08 16.58 61.32
0.085 49.98 65.09
0.69 85.10 69.69
0.095 128.8 75.37
0.1 195.5 82.55
0.105 335.8 91.86
0.11 1026.0 104.4
0.115 —1707.0 122.0
0.12 37.32 148.6
0.14 —96.19 —12280
0.16 —20.53 —115.3

The only previous calculation of polarizability for the B state was per-
formed by Grimes et al.*> using the Hartree-Fock and configuration inter-
action wavefunctions and the finite-field methods. They calculated both the
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parallel and the perpendicular components of static polarizability for a single
internuclear distance R = 2.43 a.u. which is the equilibrium distance for the
B state. In Table IV we compare their values with the results reported here
in this paper. The differences between these values are similar to those
found for the b state and it is clear from these differences that the perpendi-
cular component is more difficult to calculate accurately.

TABLE IV

The parallel and perpendicular components of polarizability tensor (in a.u.) for the
B state of Hs (R = 2.43 a.u.)

Function ol A% all A%
SCF 338 35+ 67 56
CI 257 3 50 T
corr 249.7 42.80

The hydrogen molecule in its B state is of particular interest since, as
it was found by Farantos et al.,* it forms a chemically bonded system
with helium atom in its ground state. The minimum at 0.0558 a.u. of the
potential energy curve corresponds to an angle of 45° between the H—H
bond vector R and the vector r locating He relative to the centre of mass
of H, for R =4.0 a.u. and r = 1.5 a.u. The existence of the bound excited
state for this system near an avoided crossing with the ground state of the
same symmetry can explain the strong electronic quenching of HD (B'X,,
v =3, J =2) in collision with He (‘S) observed by Fink et al.!” The nature
of bonding in the H, (B 1X,") + He (1S) system has been discussed by Nicolaides
and Zdetsis*® in terms of simple electrostatic interactions. The results pre-
sented here can give an insight into the nature of long-range interactions
since the polarizability of the B state contributes to these interactions in
terms R® and R%. It was shown that the quadrupole moment of the B state
vanishes for the equilibrium geometry of the (H,He)* system?*? and thus it
reduces the attraction part of the long-range potential. Also, the parallel
component of polarizability decreases when the internuclear distance R
increases in the vicinity of equilibrium for the B state.! These factors favour
the charge transfer leading to the formation of the H~ (1s2s) + HeH* system.
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Polarizabilnost u pobudenim stanjima
Jacek Rychlewski

Razmatran je linearni odziv molekule u pobudenom stanju, izloZzene djelovanju

vanjskoga elektri¢nog polja. Izracunana je frekvencijski ovisna polarizabilnost Hs
molekule u pobudenim stanjima b3¥," i B!Z," i usporedena s drugim ab initio i
modelnim prorac¢unima.





