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In order to interprete vibrational spectra of crystals (IR-ab-
sorption, IR-reflection, Raman- and Hyper-Raman-scattering, sti--
mulated Raman scattering, and CARS) irreducible tensors of rank
1 to 3 are needed for the 32 classical crystallographic point groups.
The detection of quasi-crystals suggested it as useful to calculate
these irreducible tensors also for the point groups with fivefold
rotational axes. The form of irreducible tensors of rank 1 to 4 wit-
hout intrinsic symmetries are given in tables for all irreducible

representations of pentagonal point groups 5, 5, 10, 10m2, 52, 5m,
52m and for two icosahedron point groups 235 and (2/m) 35.

The notation of property tensors is in accordance with Birss'. In detailed
tables the components of property tensors which have to vanish because of
symmetry reasons are marked by small dots. On the other hand, components
which — due to symmetry — may not vanish are symbolized by free black
circles. When two or more components are equal, they are connected with
a line. When two or more components have different signs but the same mo-
dulus they are also connected with a line but one or more circles are not filled.
When two components are equal in one representation, they must differ in
sign in another representation. For the sake of clarity, letters instead of circles
are used for the non-vanishing components of property tensors which are
more complicated. When dealing with one-dimensional representations, the
same letter refers to the same value only within this representation. In the
case of representations which are degenerate to each other the same letter
always refers to the same value. Degenerate representations are marked by a
long straight horizontal line in the first line of the detailed tables of pro-
perty tensors.

1. THE PROPERTY TENSORS

Most physical properties of crystals are described by tensors. From the
mathematical point of view, a tensor is primarily characterizad by its rank.
Furthermore, it can be polar or axial, a characteristic which, taking into
account the rank, describes the parity behaviour. With regard to time reversal,
this can be invariant (i-tensor) or changed (c-tensor). Finally, the mathema-
tical relations defining a particular effect or, under certain conditions, also
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experimental conditions may determine intrinsic symmetries of the ten-
1,2,3,4,5
SOYS =29r%

2. THE NEUMANN-MINNIGERODE-CURIE-PRINCIPLE AND ITS EXTENSION

Already F. E. Neumann (1798—1895) imagined a close inter-relation
between the structure of a crystal and its physical properties®. Minnigerode?
stated as an ’empirical principle’: 'The structural group of a crystal is con-
tained in every group of its physical properties’. Nowadays, this would be
written shortly

G c:.G 1)

object — “property?

see Shubnikov and Koptsik® Finally, P. Curie? expressed this principle more
precisely, essentially by pointing out the role of dissymmetries, i. e. disturbed
symmetry. Later on Birss' developed a quantitative formula allowing calcu-
lation of the structure of property tensors for every point group, see also
Cracknell®. In this context, an interrelation was given between the compo-
nents of the property tensors dg.. (the number of cartesian coordinates
0,0,7,... =%,vy,z of the index defines the tensor rank) and the symmetry
operation R of the crystal point group.
For non-magnetic point groups it holds for polar i- and c-tensors

dP,QG": = Rag Rba Rcr... dp,abc... )

and for axial i- and c-tensors

a =detR - Rag va Rcc... dax,abc...‘ 3)

ax,Qo7T...

According to Einstein’s convention, summation has to be taken over all
indices apprearing multiple. R,, etc. are elements of the matrices describing
the generating symmetry operations of different point groups. Their values
can be seen directly from Jones’ exact representation symbols!® of crystallo-
graphic point groups. Birss!' has worked out a numerical calculation for the
total symmetric irreducible representations of all crystallographic point groups
and tensors up to rank 4.

Property tensors of non-total symmetric representations of the point
groups, however, are also needed, in particular for the evaluation of crystal
vibrational spectra. In the case of linear, non-resonant Raman scattering they
are known as 'Raman tensors’ and are polar, symmetric i-tensors of rank 2.1
In order to calculate the components of these irreducible tensors, equations (2)
and (3) have to be slightly modified. Following a suggestion of Bross!?, we
write for polar tensors

Aij_l (R)'d = Rag Ry, R, 1dp,abc... 4)

p,o0T. ..
and for axial tensors

At (R)'d = et R Ry Ry R Wor i, ®)

ax,Q07T...

A;; are the components of irreducible representation matrices for the
generating symmetry operations R of a point group. i and j run from 1 up to
the dimension of the irreducible representation in question. The description
oi a physical property requires as many irreducible partial tensors in every
representation as is the dimension of this representation. These partial ten-
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sors are denoted by id and id, respectively. Again, summation has to be taken
over twofold indices, in this case also on the left hand side over j.

Brandmiiller and Winter!® calculated the sets of cartesian irreducible
tensors without intrinsic symmetry for the 32 classical crystallographic point
groups up to rank 4. These include not only the usual Raman tensors but,
since calculated without intrinsic symmetry, also those for the resonance
Raman effect and because of the higher ranks the hyper Raman tensors too.

The limitation to the 32 classical crystallographic point groups is caused
by the fact that crystals are solids with periodically arrangend units, i.e.
with translational symmetry. Conformity of the point symmetry of a crystal
with translational symmetry requires the point symmetry operations to ful-
fil a condition: Only those rotations or rotational inversions around an angle @
are allowed for which holds

2cospe{—2 —1,0, 1, 2}. (6)

This condition is fulfilled only for angles ¢ = 0°, 360°, 60°, 90°, 120°, and 180°.
If a rotation is n-fold, this implies:

@ = 2a/n. O]

The compatibility between translational symmetry and the point symmetry
of a crystal thus reduces n to the values n = 1, 2, 3, 4, and 6, the consequence
being the existence of exactly 32 so called classical crystallographic point
groups. This seems to have been obvious first to Hessel* in 1830. So far,
our discussion has concerned three dimensional crystals. Brown et al.'® have
given the corresponding data for dimensions 1, 2, and 4.

The term ’classical’ indicates that there are also modern developments.
An example are the 58 magnetic crystallographic point groups.? In the fol-
lowing text, however, we are referring to another extension of the crystal
concept, such as given e.g. by Mackay'®.

3. THE PENTAGONAL POINT GROUPS OF MOLECULES

When regarding the structure of single molecules, the requirement of
translational symmetry is omitted and hence the restriction of n to certain
values. There are molecules with fivefold rotations or rotational inversions,
even if not numerous. Some corresponding molecules are listed in Table TI.

Examples of the two point groups 5 and 52m seem not to have been known
hitherto. Character tables of the 7 pentagonal point groups are given in seve-
ral standard books, such as e.g. Wilson, Decius, and Cross* and Salthouse
and Ware?. In molecular vibrational spectroscopy these character tables have
been used for a longer time in order to deduce the selection rules for IR-ab-
sorption- and Raman-spectroscopy and for normal coordinate analysis. Chec-
king these tables shows that for the abelian pentagonal point groups a quan-
tity € = exp (27i/5) plays an important role and for non-abelian point groups
a quantity usually denoted by 7. 7 is the well known Fibonacci number

= (V5 + 1)/2 ®
with
cos (2 #/5) = (v —1)/2, 9
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TABLE I

The 7 Pentagonal Point Groups and Molecular Examples

Notation of point group Type Examples for molecules References

Schonflies Hermann-

Mauguin
Cs 5 abelian (CH3)5Cs, Pentamethyl cyclopentadienyl radical 17
St 5 abelian —
C5h -rsr_l =10 abelian (CH3)5F21, Pentamethyldifluoridine 17, 18
D 52 — o :
5h Eﬁl—=1 m2 non- PaCls, Protactiniumpentachloride 17, 19
abelian CsHjg, Cyclopentane 20
(CsHs)yFe, Ferrocene ( prismatic form) : 67
Dy 32 abelian (CsHs),Fe, Bis(cyclopentadienyl)iron (II) 17,21, 22
Cs, 5m abelian (B11H13)™, Tridecahydroundecaborate 17,23
Dy 52m abelian (C5Hs) Fe, Ferrocene ( antiprismatic form) 67

which number is of great importance for the theory of numbers. 7 is regarded
as the main characterizing quantity of a fivefold symmetry and it appears
also in the context of the golden section.

4. THE ICOSAHEDRON POINT GROUPS AND MOLECULAR EXAMPLES

Also for the icosahedron point groups which contain fivefold rotational
axes 7 appears as the character of irreducible representations.?*** Still, in
1961 Matossi®® stated that no molecules exist for the icosahedron groups and
in 1962 Hamermesh?” wrote in his standard work on group theory: 'The ico-
sahedron group... has no physical interest, since in crystals fivefold axes
cannot occur, and no examples of molecules with this symmetry are known'.
Nevertheless, the character tables also for the icosahedron groups have
been given in books on molecular spectroscopy for some time. Accidentally,
however, an error appears in this context. For the five dimensional irreducible
representation H the character in the class of 15 twofold rotational axes does
not vanish?4?® but is 1. Cohan?® has pointed this out already in 1958. It is
easy to verify it by means of the orthogonality relations for the characters!®r-2.,
Cotton?® (1963) and Harris and Bertolucci®® (1978) pointed out the By Hip -
-anion as an example of a molecule with a regular icosahedron structure. In
1981, E. v. Cointet?! calculated the summetry coordinates for a dodecaedral
molecule which was still hypothetical at the time but Ternansky, Balogh
and Paquette’? discovered the dodecahedran CyHy as ’the molecule of the
year 1982’. It shows the structure of a regular pentagondodecahedron. Further-
more, Kroto, et al.?® in 1985. found a cluster Cg, the Buckminsterfullerene,
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showing the structure of a truncated icosahedron with 32 surfaces, 12 of
which are pentagonal and 20 hexagonal and with 60 vertices. This is a so
called semiregular, or archimedian body.

5. SOLIDS WITH LOCAL ICOSAHEDRAL SYMMETRY

In the meantime icosahedral units have been found with this local sym-
metry also in solids. In a series of papers concerning clathrasiles, Gies and
Gerke3* describe pentagondodecahedral cages in synthetic dodecasile, which
they could identify by structure refinement. Wells*® reports that the three
boronstructures @ — By, f— By and tetragonal Bs, contain icosahedral units.
In @ — By, e. g. the icosahedron groups are located in all points of a rhombo-
hedral lattice. There also exist icosahedral coordination groups in complex
o-phase which are formed by a number of transition metals. The 12-ico-
sahedron coordination appears in Mn with Fe, Co, or Ni, not, however, in
Mn with V, Cr, and Mo. A case of particular interest is the structure of
Mgz (Al, Zn)y. One atom is surrounded by a icosahedron formed by 12 others.
Further, 20 atoms are arranged at the corners of a pentagondodecahedron.
Another 12 atoms are located over its 12 surfaces and they, in turn, form
another larger icosahedron.

6. CONSIDERATIONS CONCERNING NON-CRYSTALLOGRAPHIC LONG RANGE
STRUCTURES

The experimental results reported so far pointed to the existence of
icosahedral and dodecahedral units as local symmetries in solids. The exi-
stence of a corresponding long range symmetry seemed impossible because
of equ. (6) There have been, however, speculations since some time ago
whether so called non-crystallographic long range arrangements might exist
in solids. In 1962, Mackay®¢ considered whether a non-crystallographic close
packing of identical spheres with icosahedral symmetry might exist. Mackay
and Finney? published some very general considerations concerning structu-
rization in 1973. Their aim was tc present the statistics of regular (crystal-)
structures and the regularities of statistical structures (liquids and gases)
from a unifying point of view. In a particular work, 'The generalized inverse
and inverse structure®® (1977), Mackay also discussed the icosahedron. Refer-
ring to a work of Kepler® from 1611, Mackay*® (1981) considered ’de nive
quinquangula’ and showed that also infinite non-periodic patterns are
possible with partial structures exhibiting a fivefold rotational axis. He pri-
marily focused his attention on the two-dimensional Penrose-patterns*-** and
made, in this work, the first attempts to generalize the Penrose-pattern to
three dimensions, an idea which became concrete®® in 1982. Work by de
Bruijn®, Kramer* and Neri*¢ is dedicated to the same subject.

7. ALLOYS WITH LONG RANGE ICOSAHEDRON SYMMETRY

All the relevant publications cited so far were purely theoretical until
in 1984 the definite experimental verification was published by Shechtman,
Blech, Gratias, and Cahn.*” If a melt of Al with 10—14 atom % Mn, Fe, or
Cr is cooled quickly, a metallic metastable alloy of corn, up to 2 p size, is
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formed by a phase transition of the first order. Electron diffraction studies
on the corn showed the icosahedral point group (2/m) 35 not only locally
but also for the complete corn, so that a long range orientational order
must exist. The diffraction spots are as sharp as those of crystals but cannot
be indicated by any Bravais lattice. Twin structures incidentally showing
also icosahedral symmetry could be excluded. The icosahedral phase is remar-
kably resistant to crystallization. Heating the sample up to 300 °C for 6 hours
or to 350 °C for one hour does not induce any crystallization. Only one hour
heating to 400 °C causes a conversion to the stable Al{Mn-phase. The symmetry
of the icosahedral phase is some where between that of a crystal (one of the
32 crystallographic point groups) and that of an isotropic liquid (three-dimen-
sional rotation group).

Some time later another important theoretical work was published by
Levine and Steinhardt!® the title of which »Quasi-crystals: a new class of
ordered structures« became of great interest to many solid-state physicists.
The idea of a crystal with periodical translational order is systematically
extended to the ’quasi-crystal’ with ’quasi-periodic’ order by replacing the
translation by a long-range-bond orientational order (BOO). This is consi-
dered a new phase of matter. The electron diffraction diagrams recorded by
Shechtman et al.#?” were simulated by Levine and Steinhardt on a computer
and the structure thus identified as a ’quasi-crystal’. The authors show the
interrelation with the Fibonacci-number of the golden section and point out
also that the icosahedral structure will cause new structural and electronic
properties of solids. In the meantime, a further number of papers on this
subject have been published, e.g.49%, Bak® in particular studied the sym-
metry, stability and elastic properties. He mentions that the critical para-
meter for the phase transition from the isotropic to the icosahedral phase
(also known as T-phase) is contained in the irreducible representation I's = H
of the icosahedron group. Urban, Moser, and Kronmiiller®>5¢ showed that the
transition from the quasi-crystalline phase to the amorphous state can be
activated by irradiation of 1 MeV-electrons at 130 K. Bancel and Heiny?®®
were able to find further Aluminium transition element alloys with a quasi-
-crystalline phase. Biham, Mukamel and Shtrikman®® concluded from general
considerations that icosahedral and pentagonal structures may exist as thermo-
dynamically stable phases and they state that their analysis can be extended
also to other plane quasi-crystals with rotational axes more than 6-fold.
However, there is no lack of critical voices regarding long-range icosahedral
symmetry either®®. In a recent work by Pauling® with the title »So-called
icosahedral and decagonal quasicrystals are twins of an 820-atom cubic
crystal« he writs: 'The icosahedral nature of the clusters in the cubic crystal
explains the appearance of the Fibonacci numbers and the golden ration. I
conclude that the evidence in support of the proposal that the so-called
icosahedral and decahedral quasicrystals are icosatwins and decatwins of cubic
crystals is now convincingly strong. I point out that there is no reason to
expect these alloys to have unusual physical properties’.
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8. THE IRREDUCIBLE TENSORS OF THE GROUPS WITH FIVEFOLD
ROTATION AXESG6!

In order to calculate the components of these tensors, equations (4) and
(5) were used. The generating symmetry operations for the different point
groups and their irreducible representation matrices are listed in Table II.
The corresponding matrices for the pentagonal point groups were listed in
analogy to the values for the crystallographic point groups'®. The matrices
for the icosahedron group 235 originate from Matossi’s book.? In this context
we have to note that on p. 153 an error appears in the last line. The equation

should be read correctly cos2¢ = (/5 —1)/(5— V/5) = 1/V/5. In the present
work we denote Matossi’s angle ¢ by ¢ and his ¢ by a. We, furthermore,
note that the matrices are given for the so-called ’passive symmetry operat-
ions’ by Matossil®.

Table III gives a survey of the abelian point groups 5 (= Cs) and 5 (= Sy).
The form of the corresponding irreducible tensors has been abbreviated by
capital letters for the different irreducible representations in analogy to and
as an extension of the nomenclature used by Birss.! Table IV summarizes
these forms for tensors of ranks 0 (scalar), 1 (vector), 2 and 3. All components
which have to vanish by symmetry arguments are denoted by small dots.
The components of a vector in cartesian coordinates are written by a columm-

TABLE II

The Generating Symmetry Operations and Their Irreducible Representations for the
7 Pentagonal and the 2 Icosahedral Point Groups

e
%=3

cosa. -sinat O

5=0C;s Cé, =| sino cosa 0

0 0 1
A A=1
cosyo. -sinyo
Ey, (1=12) A=[‘ ]
sinyo. cosyo
cose -sino 0 100
10 = Cq Cs, =| sino cosa 0 o=[{0 1 0
0 050 0 0 -1
A' Azl A= 1
A" A=1 A=-1
cosyo, -sinyo 10
Ey y=12) A= A=[ J
sinyot cosyo 01

sinyo, cosyo

cosyo -sinyo -1 0
it A:[ ; ‘YJ A=(o 1)
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Table II continued

coso, -sinat O 1430 50
10m2=Dg, S, =1 sina cose 0 Cx=|0 -1 0
0 0 -1 0 0 -1
A} A= 1 A= 1
A A= 1 A= -1
Ap A=-1 A= 1
Ay A=-1 A= -1
osyo. -sinyor 10
E; (=12 A= CoSYe =siny A=( )
sinye. cosyo. 0 -1
-cosyo. sinyo -1 0
Ey ((=12) A=(. J A=(0 1)
-sinyot -cosyo
coso. -sinot O 10 0
52=Ds Ci =| sino cosa 0 Cu=|0-1 0
\ 0 0 1 0 0 -1
cosow -sino 0 1 00
S5m=Cs, C;=| sina coso 0 oy=[0 -1 0
0 0 -1e 0 0 1
Ay A= 1 A= 1
A A=1 A= -1
coso. -sina 10
E; A= A= ( ]
sinot coso 0 -1
cos2o -sin2o 10
il 2o )
sin20t cos2a 0 -1

Table II to be continued

vector. The form N, (i) implies that only the z-component of a vector does
not vanish by symmetry arguments in the total symmetric representation.
For such non-vanishing components we use either a black full circle or, if
clearer or more convenient, small Latin letters. Full circles connected with
a straight line, as e. g. in the form N,, indicate that the two components have
to be identical for symmetry reasons, i.e. dy = dy. Identical small Latin
letters for different components of a tensor in one irreducible representation
or degenerate tensors such as for @,” do also mean that the corresponding
components must be identical by symmetry arguments holds e. g. 'dy, = —?dy,
.or @,”. A tensor component symbolized by an open circle connected with
another full circle means that e. g. dy, = —dy, holds (as for N,). Special sym-
metry conditions such as e.g. dux + dyy + dyyx for Q7 are abbreviated by
A =a+ b +c. Index numbers on the right hand side outside the brackets
denote the number of independent components which do not wvanish for
symmetry reasons.
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cosa -sina 0 -1 0 0
235=1 C4, =| sino cosa 0 i;‘;f;: 0 -cos2¥ -sin2®
‘ 0 0 1 ‘ 0 -sin29® cos2d
A A=1 A=1
cosat -sinct 0 -1 0 0
F A= | sina cosa 0 A=| 0 -cos2® -sin2®”
0 041 0 -sin29 cos29
cos20. -sin2a. 0 -0 0 T
Fy A= | sin2a cos2o, O A=| 0 -cos2d' -sin2d'
0 0 1 0 -sin29' cos2d’
gt & O ey sin2®" cos2®’ 0 0
G PR T ik A cos29 sin20' 0 0
0 sin2a cos2a 0 0 0 01
sine 0 0  cosa 0 0 10
1 0 0 0 0 B l o . T3 . i
5 5 5
0 cosa O 0 -sina 12 0
N5 5
. 2 1
H 0 0 cos2a -sin2ac 0 0 ———— 0 0
V5 V5
) BRIFI 3 2
0 0 sin2a cos2a 0 3 0 3 ==
dZ o, o, 2 3
0 sina 0 0  cosa S -3 5
cosa = %(\IE_ D= l(t— 1) cos29 = —% __ -1__ .
2n 2 T—cosot ~ y5  2t-1
o=z .
5 sino. = e sin20 . = 2.__2_
2 V5 2t-1
=720 cosZa:——l-(\/§+ y) A 0520 = _cos2a 1
4 2 T 1-cos2a. 3  1-2t
; 1 . 2 2
sin2o, = 3= 29 = B
= 2 e N5 2t-1
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Table V correspondingly shows the forms of 4th rank irreducible tensors.

Table VI summarizes the abelian point group 10 (= csp). Table VII pre-

sents the tensor forms of rank 0 to 3 and Tab. VIII those of rank 4.

In Tables IX to XIV the forms of the irreducible tensors are given for the
non-abelian pentagonal point groups.

The irreducible tensor forms for the two icosahedron point groups are
listed in Table XV to XVIIL For the 4-fold and 5-fold degenerated irreducible
representations, respectively, fairly complicated interrelations exist between
degenerated tensors.



276 J. BRANDMULLER AND R. CLAUS

TABLE III

Survey of the Abelian Point Groups 5 and 5

system quasi- point group genera- Teps tensor of tensor of
Laue ting even rank odd rank
class Hermann- Schon- abstract elements
Mauguin flies polar axial polar axial
g u u g
pentagonal 5 5 Cs Gs! Cs,* A Nm Nn Np Np
DEL Qu' Q" Q" Q"
5Ey Ry Ry R, R,"
5 S10 Gpo! S1o." Ag Ny - : N,
=5x1 oder Ay Nm Np
C51.+’ 1 ] Elg Qm” - - Q"
HEpy i Q" Q" &
DEyy  Rp" - - Ry"
i) EZU - Rm” Rn” -
TABLE IV

The Irreducible Tensor Forms of Rank 0 to 3 for the Point Groups 5 and 5

quasi- Y] @ Y] @
Laue
class No(e)o (o Q" ©) (o Ry" ©

R < R, B A |

N; A £ Q" (B —
e a -b d
1 3 m
b -a e
B f -A
m . -1
© P q n o o -n
q -p o -n -n —o
- ek ros i s - SRR S

A=a+b+c B=d+e+f
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TABLE V

The Irreducible Tensor Forms of Rank 4 for the Point Groups 5 and 5

asi-
»guel Ny £
class e a

e Ji\a B - )y B —a - R

A=a+b+c C=a+b+c

1 1
B=d+e+f D=d+e+f A=sC+n+0+x) =7mﬁg_y+@
N B=2(-L4n+9-x) J=(a-pry+o
F=k+1+m
C=l@-n+ﬂ—w K=1Ga+ﬁ+y+9
G=n+o0+p % 12
H=q+r1+s D=EGC—n+ﬁ+w L=50a—5—7+a
O=A+p+v

P=E+m+p
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TABLE VI
Survey of the Abelian Group 10
system quasi- point group genera- reps tensor of tensor of
Laue tng even rank odd rank
class Hermann- Schon- abstract elements
Mauguin flies polar axial polar axial
g u u g
pentagonal 0 Cen Gio! Ssz* A Np - - Np
=5@m oder A" . Nm Np -
Cs;to, D Ey' Ry’ Q' Qn’ Ry™
YE Qu Rp" Ry Qp
i E;' Ry@ Oy o, R,@
»Ep" Omm Rm(4) Rn(4) Ol'l"'
TABLE VII

_’{‘he Irreducible Tensor Forms of Rank 0 to 3 for the Point Group 10

10 = CS)\

Ny(e),

9. DISCUSSION OF THE FORMS OF IRREDUCIBLE TENSORS

More than 50 years ago Hermann® deduced the influence of crystal sym-
metry on those material constants which can be described by tensors. In
analogy to but also in extension of his considerations, the following discussion
will be given. There are no peculiarities with fivefold rotations and point
groups in contrast to space groups. We are first going to discuss the totally

[

o

12) [ )
Ry" ) O Qo ©)
Ry fe [‘) Q' b
L' bJ -a
Ry™ (-1 (- ¢y Q@ (- f
(O lgh)y h-g -
Ry (A f Q' (B < -
} e a -5 d -
j = 1 s m
f d b -a e -
[c B - £ -A -
| ©m !
S| | e
| P q
L. | 4 £
0 - \r s */p $ -p \
A=a+b+c B=d+e+f

1) @)
©e RP ©

"0
=

£ R?) > i
< h S
ik ke = -
h g

ON THE PHYSICAL PROPERTIES

symmetric irreducible representations.

m @
(o Oy )

0

AND THEIR INFLUENCE
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TABLE VIII

The Irreducible Tensor Forms of Rank 4 for the Point Group 10

10 =Cs,
@ 1@
L (i Q- - H)
e a - % i
. . 1 D = .
d b - i
c B 3 . . q
N b d -
L 7 4
AR il - k-
g h - R
-B ¢ e v
b —d : . “.. r
iy -2 e °
a -e ° . ol
£ A : v Loy
" £ -C -
ot v = o
o, i = el
“h g - i
. . . . . . . . o p Py P _v s
o & A S ... 2 - 2 E 1=
W s & e I A Al
o g e ¥ v, % Ep - a ! =
° ° . ° . v P . p —.0 .
. . . . . . . - gt = '—E'
. . . . . - . .Yl % = 6‘
o e . . . . . - 5! . = —’Y’
& @ y o .« o' Bl . J32 B- - - )
A=a+b+c C=a+b+c G=n+o+p
B=d+e+f D=d+e+f H4=q+r+s
E=g+h+i O=A+p+v
F=k+1+m P=E+m+p

Table VIII to be continued
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Table VIII continued
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=W

20
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Ry

L.
-~

o x|
A

Wl W

T

=X

=9
®
=V

A

B =-§-(—C+n+1‘)—1<)
(8 =%(C—n+1?—1c)

=%(—C-n+ﬁ+x)

1@

~ |

sl a |

-y

X

v

|

=Y.
-w

%(§+n+13+1c)

P P

8

I = %(a+l3—y_+s)

J =%(a—[3+y+e)
K =%(—a+[i+'y+s)

1
L=5a-B-y+¢
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TABLE IX o
Survey of the Non-Abelian Point Group 10m2

system quasi- point group genera-  reps tensor of tensor of
Laue ting even rank odd rank
class Hermann- Schon-  abstract 1
Mauguin flies polar axial polar axial
g u u g
pentagonal TOm2 Da G S5, Cax Ay Pn = - P,
=52©m Ay - Py Py =
=0E2 A7 Qm - . Q
Ay : Qn Q *
E, Up™ Ty T, U
E;" Tw' Un®@ U@ Ty
Ey Um(s) Sm" Sa Un(s)
Ey" Sp" Um(6) Un(s) Sy
TABLE X

The Irreducible Tensor Forms of Rank .0 to 3 for the Point Group 10m2
TABLE Xa

_— ) 12) L[] e 1c2)
10m2= DSh P, (o) Qo) e S O o So 0

o 4te ut
EHN

Ss"fo s ) '

a) Abelian Point Groups with Pure Rotations Only

Point group 5(=Cs) is cyelic and thus an abelian point group with
fivefold rotation (n = 5) as the generating element, see Table II and IIIL
This group has 5 irreducible representations in all, two pairs of which,"
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TABLE X6
10 m 2 = D, U, and U =0forv=0123. - -
m @ M ) ) Te) o o
@ Bk T iy O P o) G U o (ORI V1 O

G I e O ¢
™) LY ELTET) LT )

A ) T3 (7 < - - f -} T (B - - ~~-U(35)--h "BU(36)

o a7t 0 o &N e - d - : e R e e e -
“1 « e m -k - kK -+ ¢ i = S

- b - —a ¢ - d - - - e . « « h . e . o we e
c - - B « B - f - - « .o « « -h - g

respectiv€ly, show complex' conjugate characters i.e. ’irreducible represen-
tations of the third kind’ (ref. 10, p. 20) denoted by ’'i’. Group 5 appears in
the sequence of abelian pure rotation groups 1, 2, 3, 4, 5, 6, ..., co. Any
distinction between polar and axial tensors is superfluous since it always
holds that R = +1,, i.e. tensors with even (g-) and odd (u-) parity exhibt
the same form. The results of extensive calculations inf! allow a comparison
of the tensor forms of different rank v in the total symmetric representations
of point groups 1, 2, 3,..., co. We find the following characteristics: Up to
rank'v n—1," the tensor forms "are identical to those with n = infinity.
From.rank v =n on, the. number of 1ndependent tensor components is larger
than for n = co. Additional components which don’t have to vanish by sym-

metry arguments thus appear for n = co.

b) Abelian Point Groups with Rotational Inversions’
' ' Point groups 5 and 10 show identical forms to those of 5. Only all odd

tensors of the totally symmetric representations A, and A’ vanish for parity
reasons.

¢) The Non-Abelian Point Group 10 m2 (= Ds)

The results fit the sequence D,, without any problems. Again we find
that up to rank v = n—1 the irreducible tensor forms are identical to those
for the continuous point group Duoh.5! Now, because of the rotational inversion,
however, even and odd tensors differ: all odd tensors vanish in the total
symmetric. irreducible representation -A4; for parity reasons.
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TABLE XI

The Irreducible Tensor Forms of Rank 4 for the Point Group 10m2
TABLE XIa

10m2-= DSh
[6)) )
P4 A ¢ & (24 ? f . ! S4" ° -k
i o »
1 .
b d [
cih B
© m
n
; . o
g ho
ci - B -
b3 - =d
- -m
al - : —e
A - —f
. 1 .
s . ;
g - ~h : 7% @
® /i 2 f 9 42 42

A=a+b+c B=d+e+f
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TABLE XIb
10m2=D5h
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B' - J1g2 \B' a' 162 -a'
C=a+b+c G=n+o+p
D=d+e+f H=q+T+s
E=g+h+i O=A+p+v
F=k+1+m P=E+m+p
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P
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Table XIb to be continued
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Table XIb continued
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1
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TABLE XII

Survey of the Non-Abelian Point Groups 52, 5m, and 52m

system (iljaasi- point group genera- Teps tensor of tensor of
ue tin; even rank
class Hermann- Schén-  abstract cleme%lts = .
Mauguin flies polar axial polar axial
g u u g
pentagonal 52m 52 Ds Cs;+, Cox  Ap Py P P, P;
=5@2 A @ @ & &
E Tp" Ty T, Ty
E, U™ UM u,M u,M
Sm Csy Cs;*, oy Ay Pm Qnm Q P,
=5@m A2 Qu Py Py Q
E;  Tp® Tn® T, T,®
E; Up®  U,® U,® U,®
52m Dgy Cs;t Cox, I Ay Py > P
=52@1 A " Py P, .

TABLE XIIla

S2m

ENON Qo (o (o To"

B < A

™) ) G

Py - - Q- - A= Y\ T3

TABLE XIII
The Irreducible Tensor Forms of Rank 0 to 3 for the Point Groups 52, 5m, and 52m

s =A
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(1) 1) (1) 2)
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d) The Non-Abelian Point Groups 52, 5m, and 52m

These groups also fit the sequences D,, C,, and D,4. In the pure rotat-
ional group 52 there are no differences between polar and axial tensors.
Point group 5m also contains rotational inversions, the consequence being

that the forms of polar and axial tensors differ. For 52 m, all components
of the odd tensors vanish in the total symmetric representation. Again, it
holds (which proved to be the rule) that up to rank v = n—1 the irreducible
tensors in the total symmetric representation already exhibit the same form
as for the existence of an infinite-fold rotation axis. From v = n on, the point
groups discussed so far have more independent components than the cor-
responding Curie-limiting groups® with infinite-fold rotations.

e) The Two Icosahedral Point Groups

The icosahedron group 235 is located between the crystallographic cubic
point group 432 (= O) and the pure three dimensional rotation group 0% (3).
Comparing the forms of the total symmetric irreducible tensors of these 3
point groups listed in Table XVIa and XVII or in®, respectively, provides
the following result:

(i) Comparison of 235 with 432

Up to rank v = 3 the tensor formes are identical. The 4th rank tensor
shows in the cubic point group 432 an additional independent component relative
to the icosahedron group 235. Comparing the two forms, one finds that they
are quite similar: only the linear interrelation dyyx = dyxxx — Qxxyy — Oxyxy 1S
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TABLE XIV

The Irreducible Tensor Forms of Rank 4 for the Point Groups 52, 5m, and 52m

TABLE XIVa
52m
PiA - ) Qi f
S @ -
L |
b d *
¢ s B
i m
n
» o
g h -
e @ _B.
b - - © o
© —m
a - S
A - =
.] . .
-0 K 2 1
n B - F m |
g ~h B < e
. np P"
s T - CE .
. o e
4 «® e
P. p. L
[ 2
. . e e . .51
o/'.- . 5
< - el Lo o) < B 172 B - o)
A=a+b+c B=d+e+f D=d+e+f
F=k+I1+m
H=q+r1+s

P=E+n+p
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h -g ki= 1
i . s SRS « R o m + -
. . . . -z' . . z“ . z . .

5 @ . e oy « o B o L
AR R R AR, \* B' <Jiz2a \B' ° °J

C=a+b+c D=d+e+f
E=g+h+i F=k+l+m
G=n+o+p H=q+r+s
O=A+un+V P=E+xm+p
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TABLE XIVb

52m
I @ 1 (

.o UT)' T o
J

“‘4/;' » R I R ' —y o - e - - ¢
ST 5) S B ot T2 =g A e o N
. 5 B > 1
Jy_=-%-(a+[}—y+s) : Iﬁ%(a+[3—y+e) A=5C+n+9+x)
; 1 : 1 Bi=d
J=sla-Bry+e) J=5-p+y+o =5-04en+9-%)
1 1 c=1¢_
=5la+B+y+e) =5(a+B+y+e) sE-n+8-%
’ 1
Lx%(—a—ﬁ—yw) =%(—a—p—7+£) o D=z-n+84+0)

lost in the cubic point group 432. We have abbreviated it in Table XVIIa
I by dyyx = ¢ — b —rc. This difference might be of importance for an expe-
rimental check of Pauling’s® opinicn which refers to a cubic fundamental
structure with regard to the ’so-called quasicrystals’. Measuring the elastic
constants should provide 3 independent components for a cubic structure, but
2 for an icosahedral structure. These constants are described by a 4th rank
tensor with the intrinsic symmetry
po TV

[N —

[E—1
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TABLE XV
Survey of the Icosahedron Point Groups 235 and (2/m) 35

1 i- int grou; enera- Teps tensor of tensor of
L qlf:; g £ ting even rank odd rank
class Hermann- Schon- abstract elements _ _
Mauguin flies polar axial polar axial
g u u g
icosahedral 235  § Ag Cs,* Cy A InA InA IA I,A
F, I F1 InF1 IF1 I,F1
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=235 1 Ay - inA LA -
Fig Inf - - T LR
Era = I, F1 IF1 #
FZg Im}:2 B - Ian
Foy - InF2 Ian -
.
TABLE XVI

The Irreducible Tensor Forms of Rank 0 to 3 for the Point Groups 235 and (2/m) 35

TABLE XVIa
ol e
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Table XVI to be continued
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Table XVI continued
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TABLE XVII
The Irreducible Tensor Forms of Rank 4 for the Point Groups 235 and (2/m) 35

TABLE XVIla
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Table XVIIa to be continued

where square brackets indicate the exchangeability of indices. A possible
influence of the twin-structure, however, has to be considered.

(ii) Comparision of 235 with 0% (3)

In this case we find, up to rank v = 5, for the total symmetric irreducible
tensors an equal number of independent components, namely 6, up to rank
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Table XVIIa continued
TABLE XVIIa
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TABLE XVIIb
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Table XVIIb to be continued

5 an icosahedral quasicrystal thus behaves as completely isotropic. Ripa-
monti® supposed this to be only up to rank 5. Group theory allows calculation
of the number of independent components for finite as well as for continuous
point groups in a fairly easy manner. A 6th rank tensor shows 16 independent
components in the icosahedron group whereas there are only 15 in the pure
rotation group. From the 6th rank tensor on, an icosahedral quasicrystal thus
does not behave as isotropic any longer. Ripamonti® points out that phonon-
-phason-coupling is described by a 6th rank tensor and the phason-phason-
coupling by a tensor of rank 8.50,54,66
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Table XVIIb continued

o= +(8a-3b-4c+d) A = 24a-3b+d)
B= %(—8a+7b+4c+3d) B= %(zfa+b—4c+d)
Y= —l4a+2b+4c—d T = %(2a+b—4c+d)
8= —da+3b+3c—d A =52a-3b+d)
e= 4a-b-4c E = 3a-2b-2c
{= 4a-db-—c Z = —4at+2bt2c

n = H(8a+3b-120-3)
= 2 (8a-13b+40-d)
1
1= Z(4a—b—d)
k= 7(-202+13b+16c-3)

A= 4a-3b-4c+d
p= 21-(12a+b—16c+d)

v=7(12-15b+d)
e %(—6a+3b+4c—d)
o= -;—(~2a+b+d)

T =2(2a-b—c)
o= %(16a—9b—120+3d)

X = 5(-bt4e-d)
y=50b-d)

W= %(4a—3b—3d)

f) The Non-Total Symmetric Irreducible Representations

There are remarkably larger differences of the tensor forms of non-total
symmetric irreducible representations for the classical, and pentagonal and
icosahedral point groups, respectively. This originates in particular from the
very much differentiated degeneracies. There are 4- and 5-fold degenerated
representations in the icosahedron point groups e.g. which do not occur in
classical point groups. This has also a severe influence on the number of
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TABLE XVIIc
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Table XVIIc to be continued

independent tensor components. All physical effects originating from non-total
symmetric irreducible representations should, therefore, show characteristic
differences in the pentagonal and icosahedral point groups. Phonon induced
properties might play a role here. Phonons —when not totally symmetric —
cause a breakdown of symmetry so that properties may become allowed
which do not exist in the ’static’ crystal. New developments can be expected
with vibrational spectroscopy in this context. The tables presented can be
used a basis for further discussion.
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Table XVIIc continued
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SAZETAK
Ireducibilni fenzori tockinih grupa s peterokratnim rotacijskim osima

J. Brandmiiller i R. Claus

““'Ursvrhu interpretacije vibracijskih spektara kristala (IR-apsorpcija, IR-reflek-
sija, Ramanovo i hiper-Ramanovo rasprienje, stimulirano Ramanovo rasprSenje i
CARS) potrebm su ireducibilni tenzori ranga 1 do 3 za 32 klasi¢ne kr1stalografske
toékitie grupe. Otkrice kvazi-kristala navelo je na potrebu proraduna ovakvih
ireducibilnih tenzora i za -tockine grupe s peterokratnim rotacijskim osima. Oblik
ifeducibilnih tenzora ranga 1 do 4 bez intrinzi¢nih simetrija prlkazan je t tabli¢no

za

sve. -ireducibilne reprezentacije pentagonskih tockinih grupa: 5, 5, 10 10m2

52 5m, 52m ‘te za dvx]e ikozaedarske tocCkine grupe: 235 i (2/m)35





