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Classic thermodynamic equilibrium considerations, supported
by simple molecular models, may lead to useful predictions about
phase relationships in partially miscible systems that contain poly-
mers. How quantitative the prediction is depends on the amount
of experimental information, as well as, on the complexity of the
system. The solubility parameter and group contribution appro-
aches present the first LeveL and allow a qualitative judgement
whether a system is miscible or not. On this level, the entropy
of mixing is not considered though it is higly important.

A second, higher level of prediction is supplied by the Flory-
-Huggins-Staverman equation which permits estimations of the
temperature and chain length dependence on the location of
miscibility gaps. On this level the concentration ranges of partial
miscibility are not well covered.

Taking account of the ever present disparity in size and shape
between molecules and repeat units improves the situation consi-
derably and represents a third level of prediction. On this level
the influence of pressure can reasonably accurately b~ dealt with.

If predictions of a high precision are required, the present-
-day theory fails, even in the simple case of a linear, apolar
homopolymer solution. Extensive measurements then remain ne-
eded to determine the many empirical and theoretical parameters.
Predictions on such a high level have amore than academic
val ue, since they may supply better mathematical frameworks to
be applied in less demanding calculations.

INTRODUCTION

Though the contrary is often thought, equilibrium thermodynamics is
an indispensable tool for the understanding and, thereby, the control of
important steps in polymer production and processing. Polymerisations fre-
quently take place in solution, and demixing is not a rare phenomenon,
not even if the monomer serves as the solvent. Such liquid-liquid phase
separations are to be avoided since they disturb the production process by
the segregation of highly viscous phases, i. e. impeding transfer of the heat
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of polymerisation. Examples can be found in the bulk polymerisation of
ethylene, either at pressures of around 2000 bar, or in solution under milder
conditions. The cause of the relatively small resistance to demixing shown
by polymer solutions is to be found in the long-chain structure of macro-
molecules. Therefore, this sensitivity reveals itself still more emphatically
when polymers are blended.

Knowledge of the dependence of f.. G, the Gibbs free energy of mixing,
on molecular parameters and macroscopic variables, is essen ti al to understand
phase relationships, With polymer mixtures the value of f.. G is not seldom
the sum of a number of terms, each larger than f.. G its elf. Since liquid-liquid
phase relations are sensitively determined by the composition dependence
of f.. G, every single contribution mu st be scrutinized. The situation is further
complicated by the eleva ted pressures and considerable shear rates applied
in the processing of blends.

Theoretical models, as well as experimental techniques, have been and
are still being developed. The simplest model, that of Flory, Huggins, and
Staverman permits a qualitative ordering of part of the observed phenomena
only. More advanced theories exist but still have to rely on empirical adap-
tation. We shall first discuss homopolymer solutions from the standpoint of
the three levels of increasing accuracy of prediction mentioned in the sum-
mary, and then proceed with discussions of more complicated mixtures, like
those containing copolymers.

Polymers consist of long-chain molecules in which the covalently bonded
basic repe at unit (monomer) occurs many times. When the chemical structure
of all repeat units is identical we have homopolymers, when two or three
different monomers occur one speaks of co- or terpolymers. The number
of monomer groups (or segments) in the chains is usually very large and
differs between the various chains in the polymer, no matter how careful
their synthesis may have been. Virtually all synthetic polymers have a chain
length distribution.

Polymers have a negligible vapour pressure but this does not mean we
would have to deal with condensed phases only. Many polymerisation processes
take place in solution, at elevated temperatures and/er pressures and vapour
phases appeal' frequently. Monomers are often relatively volatile and may
cause sizeable vapour pressures that have to be accounted for. Removal of
traces of monomer from a polymer is a related problem. Polymer solutions
thus play an important role in both polymer research and engineering. Much
effort has been devoted to partial miscibility, a frequently occurring pheno-
menon in polymer solutions and mixtures. Very complex phase relations
appear in systems containing co- OI' terpolymers. The paint and lacquer
industry is faced with problems related herewith (i. e. stability of solutions)
and largely uses the first level approximations mentioned in the summary.
Higher levels are at present practically unattainable because of the corn-
plexity of the systems.

The term 'level of prediction' might need some explanation. Prediction
means calculation of data not (yet) known from the known data on a system.
Obviously, to be able to calculate liquid-liquid phase relations (phase diagrams)
on the basis of a minimum of experimental information would be the ultimate
aim. Success along such lines is not merely amatter of developing a suitable
expression for f.. G although it certainly is of primary importance to know
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its correct mathematical form. It further depends on the number of parameters
in !!. G, the determination of which calls for experimental data, either direct
(i. e. equilibrium phase compositions) or indirect (i. e. heats of evaporation).
It is inevitable that the increasing complexity of the system in hand will
enlarge the number of parameters needed. In the present state of development
of molecular models one sees not only that many parameters are necessary
to cover the system quantitatively, but that a large part of these parameters
are purely empirical. This indicates that the underlying theory has not yet
grasped the situation entirely and the fourth, highest level of prediction can
thus be characterized.

MOLECULAR MODEL

We use the rigid lattice model as the starting point. The relevant !!. G
expression was published in 1941 independently by Staverman and Van
Santen-.", Hugginss-! and Floryv". Summarizing their equations we have for
a binary system

(1)

where N = the total number of moles of lattice sites, N = nlml + n2m2,
nj = number of moles of component i, (/)j= njm;!N, mj = V;!VL = vjM;!VL =
= number of sites occupied by chain molecule i, 9 = inter action parameter,
RT has its usual meaning, Vj, Vj, Mj are molar and specific volume and molar
mass of component i, VL stands for the mol ar volume of the lattice sites. If
we are dealing with a polymer solution, V L can be set equal to the molar
volume of the solvent, in polymer mixtures the choice of V L is arbitrary
or can. be avoided to some extent as shown below.

With in the framework of this model (/)j is the volume fraction of com-
ponent i, If we set ml = 1, eq. (1) represents solutions of a polymer (2) in a
small-molecule solvent (1). If ml> 1 polymer mixtures or blends are repre-
sented. It is worth noting in passing that eq. (1) can be express ed in terms
of m = mz/ml and thus is the same for polymer solutions and mixtures but
for a scaling of the interaction function 9 and !!. G by ml (g' = gml):

(2)

Since absolute values of !!. G are inconsequential for phase relations we may
regard eq. (2) as a general expression for polymeric systems which has two
parameters, the ratio of mol ar volumes m, and the interaction function g'.

It is well known that a partially miscible system is characterized by
a !!. G ((/)2) function with a plait, i, e. it contains positively and negatively
curved parts". The curve mu st also change its shape upon a variation of
temperature T or pressure p in such away that the plait disappears. In
other words, the system becomes more (or less) miscible when T is changed.
Figure 1 shows the relationship between !!. G ((/)2) and the phase diagram.
The equilibrium between two phases at constant p and T implies that a
double tangent can be drawn to !!. G ((/)2), the tangent points indicating the
coexisting phase compositions.
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The equilibrium condition of equality of chemical potentials is seen in
the intercepts of the double tangent at tP2 = Oand tP2 = 1, representing 11 .ul/RT
and 11 f.l2/RT, respectively (f.l = chemical potential). From eq. (2) we de rive"?

l'1.nl/RT = In <PI + (l-l/m) <P2 + <P2" (g' + <PIO g'lo <PI) (3)

{4)

Further, we see that the two points of inflexion in 11 G (tP2) are determined
by the spinodal conditionš-'':

or, with eq. (2),
[02 (1'1 G/NR.T)lo <P2

21p.T = O

1/<p1 + lim <P2 + 02 (g' <PI <P2)lo <P22= O

(5)

(5a)

The critical ar consolute state is reached when, by a change in T or p, points
of inflexion and tangent points have come to coincide. The critical state is
characterized by8,9

(6)

or
(6a)

In eqs. (3)-(6a) we have assumed the inter action function g' to depend
on the composition tP2 of the mixture. This already represents the third level
of description and prediction, to be discussed below. The Flory-Huggins-
-Staverrnan (FHS) equation with g' independent of concentration is represen-
tative for the second level and we investigate its implications first.

In the usual notation5,6,10 the symbol X is used for the term (g' +tPlog'lo<pj)

in eq. (3). If g' does not depend on tP2 we see in eqs. (3) and (4) that the
coefficients of the last terms are identical and equal to X. If g' depends on
tP2, the two coefficients are not identical and confusion mayarise when the
symbol X is used for both!'. Thus, in this paper we indicate concentration
independence when we use X. In the FHS case we have

1'1.uI/RT = In <Pl + (1 - lim) <P2 + X <P22

m-1 1'1fL2/RT = m-1 In <P2 + (l/m - 1) <Pl + X <pj
2

(7)

(8)

Spinodal:
(9)

Critical Point:
(10)

Since a spinodal passes through the critical point we can derive the critical
value of X by introducing eq. (10) into eq. (9). The result is

(11)

Binodals are loci of compositions of coexisting phases in the T (tP2) phase
diagram. They can be calculated with eqs. (7) and (8) and the conditions for
equilibrium between phases (1) and (2):
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In order to calculate phase diagrams with eqs. (7)-(12) we must specify
the temperature dependence of X. Experiment often points to a simple linear
dependence on T-l being adequate'!

(13)

where Xs and Xh are the entropic and enthalpic contributions to X. To calculate
examples we can choose arbitrary, albeit physically reasonable values, we
set Xs = 0 and Xh = 200 K. Figure 2 shows some examples so calculated and
illustrates the effect a disparity in molecular size has on location and shape
of the miscibility gap. Whether we have a polymer solution or a polymer
mixture, the shape of the gap is determined only by m. However, the sepa-
ration temperature differs and is determined by 7111. We note that, at constant
7112, miscibility decreases with increasing mi. The division in the first two
combinatorial (entropic) terms in eq. (1) by large numbers 711] and 7112, repre-
sentative for polymers, makes the system less stable than a comparable small-
-molecule mixture with 711] = 1 and 7112 = 1. The asymmetry of the miscibility
gap and its tendency to shift towards the axis of the smaller component was
already understood by Van der Waals", .

The interaction parameter g (or X) is the key for predicting whether a
system will be partially miscible. In the next section we shall discuss the
Shultz-Flory method which provides a practical way of determining X· Once
its T dependence is known, we can calculate concentration and molar mass
ranges of limited miscibility in binary systems with the FHS equation. We
should remember that the Shultz-Flory method calls for some experimental
effort, and also that it only deals with simple systems, binary homopolymer
solutions. In industrial practice, the systems of interest are usually more
complex and they vary frequently so that the collection of experimental
data cannot normally be considered.

In such cases there is at present virtually no alternative to the theory of
the solubility parameter-" or the recent group contribution approach'<. The
former can be seen as a method to calculate Xh from literature data, like
the heat of vaporization of the pure components. One has

(14)
where

(15)

and 11 E, = the energy of vaporisation of component i to a gas at zero pressure,
Vi = its molar volume. The theory postulates that only a small difference
between the solubility parameters 01 and O2 can be permitted for a binary
mixture to remain miscible. In the application of the method Xs is usually set
equal to zero or to some arbitrary value.

APPLICATION OF FHS EQUATION

Literature mentions demixing experiments of solutions (7111 = 1) of anio-
nically prepared polymers, characterized by an extremely narrow chain
length distribution. Such solutions can, to a good approximation, be considered
as binary mixtures that should obey the equations discussed so far.
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Shultz and Flory-" reported a method that facilitates the determination
of Xs and Xh. Eqs (9), (10) and (13) can be transformed into

l/Te = (0.5 - Xs)!xh + (m-I/, + 2/m)!xh = 1/8 + Im-II, + 2/m)l1.h (16)

where Te stand s for the critical temperature. The reciprocal of the first term
on the right-hand side is known as the Flory temperature e.

We investigate the binodals reported by Hashizume et ap5 and the light
scattering measurements by Scholte'" and Derham et al.!? on the system
cyclohexane/polystyrene (Figures 3 and 4). The theory of light scattering-" "
relates the intensity I (O) of the light scattered :torward by a homogeneous
liquid mixture to the second derivative of /";.G to concentration:

I (O) ac (F (6. G/NRT)/C) iJ>l (17)

Hence, a plot of I (0)-1 vs T or T:! at constant iJ>2 allows determination of the
spinodal temperature Ts for that value of iJ>2' In a binary system the maximum
of the 'I'; (iJ>2) curve is the critical point.

299

TIK

/.~i;O,&. , ....

294

289

2131

103
• -O,. - -a::o.o.

00·...

u.i Dj

Figure 3. Cloud points for the cyclohexane/polystyrene system for the indicated
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M/100. Curves calculated on the basis of the Shultz-Flory analysis (---), the
third (---) and fourth level (_._._) approximauons=-?'. Data by Hashizume
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Figure 5 shows the Shultz-Flory plot for cyclohexane/polystyrene which
yields the values Xs = -0.27 and Xh = 236 K20,21. We are now able to calculate
binodal and spinodal curves with eqs. (7), (8), (12) and (9) and compare them
with the data (Figures 3 and 4). It is seen that the critical tempe;ratures are
obviously described well but the critical concentrations and coexisting phase
compositions are not. Yet, a rough idea of the location and shape of miscibility
gaps is obtained and we consider this result as an example of a second level
prediction.

The predictive power of the solubility parameter theory is still inferior
with the present system. Taking the o values for cyclohexane and polystyrene
from ref. 22 (8.2 and 9.1 (cal/cm3)'/z at 25 DC) we note these values hardly to
differ significantly and the system must therefore be expected to be miscible.
In Figure 3 and 4 we see that the prediction is valid only for chain lengths
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Figuće 5. Shulz-Flory plot for cyclohexane/polystyrene (eq, 16)).

smaller than ca 2000 at any concentration, and for any chain length only at
high polymer concentration. This is an example of a first level prediction
and we note that the FHS approximation gives a much better, more detailed
second level approximation, if only at the cost of some experimental effort.
The latter not always being feasible, the first level treatment keeps its
place in the field.

REFINEMENT MOLECULAR MODEL'

Staverman has already in 1937 pointed out that an essential improvement
in the description of heats of mixing small molecule compounds can be
obtained if the ever present disparity in size and shape between the molecules
is taken into account'". As a consequence, the numbers of nearest-neighbour
contacts will differ. These numbers determine the internal energy of a mixture
and, hence, the heat of mixing. Staverman suggested to set the number of the
nearest neighbours of a molecule proportional to its surface area, as a first
approximation.

Aplication to polymer solutions and mixtures is straightforward and yields
a: concentration dependent interaction parameter g20,21:

9 = go + gd(1- y <P2) (18)

where y = 1- (Ji(Jj, (Ji = surface area molecule or repeat unit and gl may
depend on T, for instance

gl = glO + gl1/7" (19)

Spinodal and critical conditions are now given by

(20)
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and
l/ml iPI2 -1/m2 iPl-- 6 gl I' (1- 1')/(1 - I' iP2)4 = O

Elimination of gl from eqs. (20) and (21) yields'"

Js + JeiP2 = go + JJI'

(21)

(22)

where Js = (limi iPI + 1/m2 iP2)/2 and Je = (limi iPI2 - 1/m2 <I>i)/6. Eq. (22) re-
presents a linear function between the left-hand side and Je that allows
determination of go and y from a series of experimental critical points.
Eq. (20) then serves to calculate glO and gl1. Application to the data on cyclo-
hexane/polystyrene mentioned above leads to predicted binodals and spinodals
that fit much better into the experimental concentration regions than the
second level FHS equation did. This is not surprising since in this third level
approach both critical temperatures and concentrations have been used in the
determination of the parameters'v-".

Still, the calculated binodals and spinodals cover a narrower concen-
tration range than the experimental points. This shortcoming can be remedied
with a further refinement of the model. Before proceeding, we draw 'attention
to an interesting aspect of this third level treatment. The value found for
y (0.22) implies that a2/ah the ratio of molecular surface areas, equals 0.78.
The latter number is quite close to the value estimated with Bondi's essentially
different procedure (0.87F5.

The parameters go and glO cannot be dispensed with and have been thrown
in to make the equations fit the data. Their molecular origin can be guessed
if we follow a reasoning suggested long ago by Staverman'". This author
pointed out that it does not suffice to consider only the internal energy of
mixing on the basis of numbers of the nearest neighbours. The combinatorial
entropy should also be ca1culated for numbers of contacts rather than numbers
of molecules, as is the usual practice.

When we introduced the surface-area ratio az/al we allowed the various
species to differ in coordination number Zij' The latter stands for the number
of nearest neighbours j to molecule or segment i. If the two component mole-
cules or repeat units differ in size but not much in shape we might assume
Z1l = Z22. For a lattice on which all Zij are identical the total number of
arrangements is well known,t-6,10 we denote this number by 120. If Za = Z22 r=
r= ZI2 r= Z21 we need to correct 120 for over- and underestimations referring to
ZI2 and Z21. Following a procedure suggested by Huggins'" and Silberberg=,
we approximate the actual number of arrangements by

(23)

where P12_ P21 is the number of contact pairs between unlike species, and
Z is an average coordination number of contact pairs between unlike species,
depending on the composition of the mixture, i. e.

Z ex: al iPI + C!2iP2

Using the regular solution approximation'" for P12 one obtaines

go = 2 Z22 (In Q)/Q'; g10 = -z22ln (Z12 Z2tfZ112)

where Q = 1-YiP2.

(24)

(25)
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It is seen that eq. (25) thus supplies an after the fact explanation for
the empirical parameters go and glO,though in a qualitative sense. It should
be noted that Staverman has recently developed a rigorous treatment of
contact statistics",

Fourth Leoei Predictions

In order to obtain a quantitative agreement between the calculated and
measured binodals and spinodals we have to further improve the model. Two
aspects that can be included in the rigid lattice model have not yet been
considered, viz. the polymer coils being isolated at high dilution and the chains
bending back on themselves.

The first aspect has been dealt with by Stockmayer et al.31,32.In polymer
solutions there are (at least) two concentration regimes. At moderate and
high concentration the system can be looked upon as a highly interwined
assembly of chains and the segment distribution is essentially uniform. Owing
to the connectivity of the segments within the chains they can no longer
distribute evenly in the total volume when the polymer concentration drops
below a given value determined by the chain length. Then we have isolated
coils separated by regions of pure solvent.1o,33

Stockmayer et al. have suggested to write the interaction function 9 as
the sum of two terms, one for each concentration range:

(23)

where gC,representing the concentrated regime, may be expressed by eq. (18).
The term g* (T, m2) expresses the differences relevant to the dilute regime
as compared with the uniform segment density region. This term is attenuated
by a probability factor P, the probability that a given volume element in the
solution does not fall within any of the polymer coils. We can write

(27)

where Ao can be expressed in molecular parameters, obtainable from inde-
pendent measurements=r".

This merely theoretical treatment of g* later appeared not to lead to
quantitative agreement with experiment20,21,34,,35but the form of eqs. (26) and
(27) appears to be correct or, at least, useful. A detailed analysis has revealed
that the following empirical expression yields a satisfactory framework to
.accommodate the binodal and spinodal data at a low polymer concentration'".".

g* = {(31+ (32(T - G)} (T - G) (l-1/mNm2 (28)

The analysis mentioned above also led to the conclusion that the para-
meter go in gC(eqs (18) and (26)) must depend on temperature and molar mass,
the data leave no doubt about that. A suitable expression, again empirical,
to deal with such effects reads

(29)

If eqs (26)-(29) are used in a simultaneous fit of binodal, critical point,
.spinodal and other light scattering data we obtain the descriptions shown in
.Figure 3 and 4. Now the binodal and spinodal points are covered in a sati-
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sfactory manner. It is seen that this, the fourth level of description, can at
present only be achieved at the cost of a large number of empirical para-
meters. Recently, the same conclusion was reached by Einaga et aP5. It
should be mentioned, however, that the trend expressed in eq. (29) was
predicted by Staverman's calculation of the effect backbending of the chain
on itself has on the combinatorial entropy of mixing, in particular in poor
solvents20,21,30,36.It is only the same trend, though, there is an order of magni-
tude difference between Staverman's calculation and the effect derived from
the experimental data20,21.We believe that the cause of the discrepancy must
at least partly be sought in effects outside the scope of the rigid lattice
model employed so faro It is amatter of the current study to investigate
whether free volume might be held responsible.

Although the molecular origin of the many parameters can thus be
indicated roughly, their number is still excessive and the procedure resembles
curve fitting of a primitive kind. Yet it deserves the qualification fourth level
because of its power of quantitative prediction. Examples are shown in
Figures 6 and 7. Figure 6 shows osmotic pressures calculated on the basis
of eqs (26)-(29) and their agreement with Krigbaum's experimental results'".
In Figure 7 we showa ternary binodal measured by Hashizume et aP5, and
the curves calculated with the present fourth level approximation. The
relevant 6. G expression is obtained from eq. (1) upon replacement of the
second term on the righ-hand side by38,39

while QJ2 = QJ21 + QJ22. We note a good agreement between experiment and
prediction. The same result was obtained by Einaga et aP5 which indicates
that polymolecularity might not present an unsurmountable problem, once
the bin ary systems have been adequately described.

CHAIN LENGTH DISTRIBUTION

Virtually all synthetic polymers possess molar mass distributions, wide
or narrow. In the preceding section we have already indicated that the
theory can deal with polymolecularity simply by writing as many combi-
natorial terms in 6. G as there are components in the polymeric consti-
tuen ts38,39:

(30)

where
<Pl = ~ <Pw <P2 = ~ <P2j and N = ~ Thli mli + ~Th2jm2j·

The equilibrium conditions (12) now contain as many equalities as there
are components in the system. Such sets of equations can be solved nume-
rically40,41.Spinodal and critical conditions can be expressed in closed form42-44:

(31)

and
(32)

where mw and mz are the mass- and z-average relative chain lengths.
We note that discussions of spinodals and critical points are similar to
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those for hin ary systems provided the single chain lengths mare replaced by
mw in the spinodal and by mw2/mzin the critical condition. The shape of the,
now quasi-binary, twodimensional phase diagram may become quite complex
we refer to the literature for detailed analyses11,20,21,40,41,43-46.Distribution
effects are not negligible as is often assumed, in particular, they cause the
extreme (precipitation threshold'") of a cloudpoint curve (binodal in a bin ary
system) generally not to be identifiable with a critical pointl1,42-48.Figure 8
gives two examples showing the magnitude of the effect the distribution may

t1N = 50.5

• • •

Il/C

1 2
C 19/1OD mi]

•

•

Figure 6. Reduced osmotic pressures (IIjC) for the cyclohexanejpolystyrene system
for the indicated values of the number average molar mass (in kg/mol) as a function
of concentration C and temperature (top, middle and bottom curves for 50, 40 and
30 =c, resp.). Data by Krtgbaum'", fourth level prediction represented by curvesw".
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0.2
Figure 7. Ternary phase relations in the cyclohexane/polystyrene system. Molar
masses of polymer constituents: 45 and 103 kg/mol. Data by Hashizume et al,15:
(e---.). Curve represents fourth level prediction of binodal (---) , tie lines

(---) and critical point (0)20.21.

have on the difference between critical and threshold temperatures and eon-
centrations. Identification of threshold and critical concentrations and tem-
peratures in quasi-binary systems is allowed in the first level of approximation
only.

PRESSURE

The influence of pressure (expansion or contraction upon mixing) cannot
be dealt with in rigid lattice considerations unless the 9 function is adapted in
a semi-empirical way." There are important polymerisation processes that
are carried out at elevated and high pressures, such as the bulk polymerisation
of ethylene at pressures of around two kilobars. The influence pressure has on
thermodynamic properties reveals itself also under ambient conditions in
the excess volume ~VE (= (a~G/aph). With a rigid lattice, one has ~VE = O
and here is an obvious shortcoming of the fourth level approach discussed
ahove.

The mean-field lattice-gas (MFLG) model provides a simple remedy for
any level of approximation and permits dealing with the influence of pres-
sure51-55. We represent asingle component by a mixture of occupied (1) and
vacant (2) sites on the lattice and write for ~A, the Helmholtz free energy

(33)

where </;0 (= 1- </;1) and </;1 represent the site fractions of vacant and occupied
sites, related to density PI and molar mass MI of the substance described, and
to the molar volume Vo of the lattice unit:
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a) Polyethylene (Mw/MD = 27; M,/Mw = 7), solvent: n-hexane. Dashed curve indicates
the location of the spinodal.

b) Polystyrene (Mw/MD = 1.07; M,/Mw = 1.4), solvent: cyclohexane.

where ml = the number of lattice sites occupied by one molecule 1. With
small molecules one usually finds that introduction of a value slightly deviating
from unity improves the description. If eq. (33) is used to describe a polymer,
ml is a measure of its molar mass, similar to the examples in the preceding
sections.

The inter action function in the MFLG model has the same form as eq. (18):

(35)
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with y = 1- adao. The expressions for spinodal and critical point in this
pseudo-bin ary representation of asingle component have the same form as
those for a binary third level FHS mixture (eqs (20) and (21)): .

INfo + I/ml P 1-- 2 go- 2 gl (1- y)/Q3 = O (36)

I/Po' -"lImi lJ? - 6 gl 'I (1 - y)IQ4 = O (37)
where

Q = 1-'1 PI'

The equation of state, derived with p = - (a~A/aYh. n" reads

- pvolRT = ln Po + (I-lim,) PI -I 'P,2 {go + gl (1- y)/Q2} (38)

and the total volume V is given by

(39)

where no and n, are the amounts of vacant and occupied sites in moles.
This procedure has been shown to supply adequate descriptions and pre-

dictions of the influence of pressure on thermodynamic properties· of pure
compounds, with small as well as large molecules, polar and nonpolarw=.

Where asingle component system is treated as a bin ary mixture of vacant
and occupied sites, a system containing tho types of molecules will call for a
ternary representation. The pseudo-ternary site fractions are related to the
binary volume fractions by

(40)

We refer to the literature52-56 for details on equations and procedure for
bin ary systems and only present below some results obtained with the model.

n-ALKANE!POLYETHYLENE

In the ~A expression relevant to n-alkane/polyethylene we have an inter-
action term for the repe at units with in the alkane and within the polyethy-
lene. We assume the similarity between these repeat units to allow setting
the inter action terms equal to each other. As a consequence, the interchange
energy between the units in alkane and polyethylene can be set equal to zero,
which implies that phase diagrams for binary n-alkane/polyethylene systems
should be predictable with the parameters for the single constituents=.e.

Various authors have published cloudpoint curves for this system using
different n-alkanes57-59. Such systems exhibit the so called lower critical
demixing, they separate into two phases upon an increase of T. The authors
performed the experiments in closed tubes and the pressure varied along the
cloudpoint curve since it was that of the vapour in equilibrium with the liquid
mixture.

We neglect this small change of pressure and calculate spinodals, making
use of the fact that spinodal and cloudpoint curves have a common tangent at
the critical point (see e. g. ref. 11).Since the mass-average molar masses have
been specified by various authors, we can calculate spinodals with the MFLG
model and compare their location with the experimental cloudpoints. It is
seen in Figure 9 that the predictions agree rather well with the observed
two-phase regions.
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(---) predicted with the mean-field lattice-gas model for constant pressure

(in bars).

As a further test of the MFLG model we compare the dependence of
c1oudpoint curves in n-heptane on mass average molar mass of the polyethy-
lene. In Figure 10 we see that the caIculated spinodals predict the location
of the miscibility gap quite well and do not deviate more than a few degrees C.
The pressure dependence of c1oudpoints also appears to be predictable in the
correct order of magnitude (Figure 11).
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These examples could be extended to the system ethylene/polyethyleneš--s''
with similar results. We restrict ourselves here to the observation that the
third level predictions for practical systems are well with in the scope of the
MFLG model in the present version, i. e., accounting for Staverman's sugge-
stions about disparity in size and shape of the basic units in a mixture. Pres-
sure dependence iscovered well and predictions of 6.VE come into the right
order of magnitude".

POLYMER MIXTURES

Bulk thermodynamic properties of polymer mixtures frequently fall out-
side the scope of the second level approximation provided by the FHS equation.
It seems probable that the combinatory entropic contributions to 6.G being
very small (first two terms on the right-hand side in eq. (1); division by
relatively large numbers ml and m2) may have to do with the sensitivity phase
diagrams of blends show to small changes in molecular parameters. Impro-
vements are necessary if the available observations are to be dealt with. Yet,
the third level does not yet seem to be achievable with polymer mixtures in
the present state of theoretical development.

Liquid-Iiquid phase diagrams in polymer mixtures show a wide variety
in shape and detail'", examples are shown in Figure 12. We shall develop a
model, concentrating on the system polymethylmethacrylate/polystyrene-co-
-acrylonitrile (PMMA/PSAN) reported by Schmitt et a1.62,63which is an illu-
minating example of the sensitivity mentioned above. A minute change in
the chemical composition of the statistical copolymer splits the single lower
consolute miscibility gap into two and adds an upper consolute cloudpoint
curve. If the measurements could have been extended to higher T it would
probably have been found that the two inner branches of the cloudpoint
curves intersect, and asingle two-phase region would be found above the
temperature of insection. Such behaviour is not at all rare as shown by upper
critical miscibility (UCH) systems b and c in Figure 12. These examples Iurther
point to a great sensitivity to chain length and indicate that the bimodal shape
may change into a dented cloudpoint curve if the chain length(s) are varied.
System d is of the lower critical miscibility (LCM) type and illustrates that
shoulders may develop in LCM miscibility gaps as well. Very recently, Shi-
bayama et a1.64 reported a dented LCM cloudpoint curve for a polyvinyl-
methylether/deutereous polystyrene system (case f in Figure 12).

Obviously, bimodal and dented shapes may occur in UCM and LCM poly-
mer blends alike and cannot be attributed to the UCM examples referring
to relatively short chains only. Admittedly, there are good arguments indi-
cating UCM behaviour to be limited to oligomeric homopolymer mixtures'",
but they are besides this very point.

The FHS equation is sometimes believed not to be able to deal with LCM
behaviour, let alone the occurrence of LCM and UCM in the same system.
We believe this opinion to be wrong for the following reasons.

In its original strictly regular meaning-", the parameter X in eq. (13) is
purely enthalpic, and Xs = o. Defining Xh by eq. (14) we see that it can only be
positive. Consequently, only UCM can fall within this scope because it goes
with aXlaT < O. However, the strictly regular approximation defines Xh as
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related to the interchange energy which can be either positive or negative,
depending on the energy chang es involved in the breaking of contacts between
identical molecules and replacing them by contacts between different species.
Hence, the model allows Xh to be negative as well and thus accommodates the
LCM behaviour.

These conclusions are based on the particular T dependence expressed by
eq. (13) or (19) which deserves a closer scrutiny. Splitting D.-Ginto enthalpic
and entropic terms D.-Hand D.-Swe have

tJ. G/NRT = (tJ. H - T tJ. S)/NRT (41)
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Figure 12. Various shapes of miscibility gaps in polymer mixture. a) Polybuta-
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Polyvinylmethylether/polystyrene; e) Polymethylmethacrylate/polyacrylonitrile-co-
-styrene at 27.60/0 AN (top) and 28.70/0 AN (bottom) ; f) Polyvinylmethylether/deute-
rous polystyrene'". Mass average molar masses indicated, further particulars in

ref. 61.

Also, flH and flS are rel at ed by means of !'1Cp, the specific he at 'of mixing'
at constant p by

(42)
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Specific heats of liquids and their mixtures are known to depend on tempe-
rature'". For the present purpose it suffices to account for this influence, and
that of concentration, to write

I'l Cp = (Co + Cl T) <Pl <P2 (43)

Eqs. (41)-(43), together with eq. (1), can be understood to define the
interaction function g(T). One finds

g = go + gljT + g2 T + g31nT (44)

where the various coefficients gi will depend on concentration and also contain
the integration constants of eq. (42). In fact, go and gl depend on these eon-
stants only so that eqs (13) or (19) refer to the rather improbable condition
I1Cp = O. The terms Co and Cl merely occur in g2 and g3. Delmas et a1.67 sup-
plied a theoretical basis for the coefficients gl and g2 with Prigogine's cell
model'" but thus stepped beyond the rigid lattice. The two terms to which
these coefficients relate in eq. (44) suffice to describe LCM and UCM in the
same system.

The inter action function being not well specified in the usual applications
of the FHS equation (the well-accepted Xs term is purely empirical) we now
see that the equation is not to be criticised as to its capability of dealing with
UCM and LCM in the same system. Viewed in the present light it is perfectly
capable to do so and the second level of approximation covers such behaviour.

With respect to the concentration dependence of I1G the FHS expression
definitely fails. Bimodal cloudpoint curves cannot be covered unless g is made
concentration dependent40,41,43-46,61,69,70. It can be shown that bimodal or dented

t
1.5

2

2.5

0.5 _ ~T2
Figure 13. Cloudpoint curves (--) , spinodal (---) and critical points (O) for
polymer mixtures calculated by the multicomponent versions of eqs (7)-(12). The

ratio m,jmw for polymer k is indicated by ak; mw2 = 5mwl.
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cloudpoint curves in binary systems are accompanied by a bimodal spinodal
curve?", and the FHS framework does not have that possibility. This is seen
in eq. (9) which is quadratic in 112• Hence, at a given T (or X), there can only
be two spinodal values of 112• Polymolecularity does not change that conclusion
since the spinodal equation only replaces mi for miw. Figure 13. illustrates
this point and shows that miscibility gaps of the usual shape may be expected,
whatever the width of the chain length distribution.

ENTROPY CORRECTIONS

From a molecular point of view a number of reasons can be advanced
for g to depend on concentration. We have already seen that disparity in size
and shape of the basis units in the system introduces a 112 dependence expres-
sed in eq. (18). However, with reasonable values for gl this equation does not
produce bimodal spinodals'". For alternative reasons behind g (112) we rather
explore the entropy of mixing and its combinatorial and non-combinatorial
(free volume) aspects.

1) Contact Statistics
A rigorous way of dealing with the entropic aspects of different contact

numbers was given recently by Staverman'". Here we use amore prirnitive
approach and slightly refine the analysis leading to eq. (25). The latter did
not distinguish the change in the nearest neighbour contact numbers of say
species 1 when the composition of the mixture changes from pure 1 to pure 2.
In a rough approximation the number of nearest neighbours might be expres-
sed as

(45)

(45)

which equations express that, at 11i ~ 1, unit ihas Zii neighbours and Zij at
11j -+ lo

,
In the spirit of Staverman's suggestion (see eq. (18)) we might assume Zij

to be proportional to r;Jr;j. Proceeding in the usual manner (regular solution
approach) and following the reasoning used in eq. (23), one obtains the fol-
lowing expression for the interaction function g72:

9 = QJ Q2 {g, - Z22 (In z - 2 In Q*) }/Q* (47)

where Z = Z12 Z21/Z112, Q1 = ifJ1 + S12 ifJ2, Q2 = ifJl + S21 ep" Sij = Zi/Zii> Q* = ep, Q1 +
+ Z ifJ2 Q2. For S12 = S21 = 1, Q* reduces to Q.

Equations for chemical potentials, spinodal and critical point now become
quite complex. Here we only give an example of the shape a spinodal curve
may assume within the framework of this version of a contact statistical
approach. Sets of parameters can be found that lead to the appearance of two
spinodal curves, one of the UCM and the other of the LCM type (Figure 14).
This is an interesting finding suggesting that the combinatory entropy might
play a not negligible role in the occurrence of LCM and UCM in the same
system. These aspects are subject of the current study'",
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Figure 14. Spinodal calculated by eqs. (1) and (47) for ml = 1500, m2 = 3000,
(J1!(J2 = 2, Z22 = 6, Z = 0.8.

2) Chain Flexibility
Huggins has suggested amending the combinatory entropy of mixing by

making allowance for the influence of the immediate surroundings of a repeat
unit on its 'average randomness of orientation' with respect to the preceding
unit in the chain.73-75 We have shown elsewhere"." that an application of
this principle to polymer blends can produce bimodal spinodals, provided the
interacting surface areas are included in the description. Examples b and c
in Figure 12 may be seen as possibly representative since a change in ran-
domness of orientation may be translated into the influence a stiffer chain
(PS) has on the flexibility of the molecules in the rubbery constituent, and
visa versa.

3) Nonuniform Segment Density
Another entropic reason might be provided by the situation mentioned in

one of the preceding sections, the dilute solutian effect. In polymer mixtures
we might expect such an effect on both sides of the concentration axis. Exten-
ding Stockmayer et al.'s approach=-" for polymer solutions to mixtures we
might write

(48)

where gld and g2d refer to dilute solutions of polymers 1 and 2, dissolved in an
excess 2 and 1, respectively, and gO to the concentratian range of uniform
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segment density. The damping factors Pi are defined in an analogous way as
in eq. (27). It has been shown that eq. (48) produees bimodal spinodals for
reasonable values of the parameters'". Renee, eoil sizes and their dependenee
on temperature, molar mass and eoneentration may be expected to represent
important parameters. Figure 15 demonstrates the various eontributions to
I1G and shows that I1G itself may be relatively small eompared to the term s
it eonsists of.

t.G/NRT

+ 0.00'1 .•...... <, -, -,
\
\
\
\
\
\
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- 0.004

Figure 15. Free enthalpy of mixmg 11G ealeulated by eqs. (1), (27) and (48) for
ml = m2 = 64, gld = 0.05, g2d = 0.0535, cl = O, C2 = 0.1, AOl = J'Ol = 0.258, gC = 0.0185.
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4) Free Volume
Noncombinatorial ('equation of state') contributions to ~G have been

advanced by several authors65,77-83. The cited references give ample examples
to the relevance of the introduction of free volume parameters. Olabisi has
shown that Flory's equation of state theory can produce a bimodal spinodal
of the LCM type." Walsh et al. have demonstrated that Flory's theory can
be used with systems containing copolymers albeit the parameters have to
be made functions of the copolymer compositionw". We acknowledge the
importance of these papers but shall rely on the simpler MFLG model to deal
with the more complex situation in hand, viz. the system PMMA/PSAN.

STATISTICAL COPOLYMERS

In the system PMMA/PSAN there are three kinds of units. The internal
interchange energy in such systems has originally been derived by Simha
and Branson'", was later discussed by Stockmayer et al.8' and experimentally
verified by G16ckner and Lohmann'". The extensive and systematic investiga-
tions of copolymer phase behaviour carried out by Karasz and MacKnight and
coworkers (see ref. 89-91) have demonstrated the importance of Simha and
Branson's equation most convincingly. The latter reads

(49)

where g,~ and g,p are the inter action functions for homopolymer (PMMA)
repeat units and copolymer (PSAN) units o: and {J, and g~p is the styrene-
-acrylonitrile inter action function. The composition of the copolymer is repre-
sented by the volume fraction of a units <P~ (= 1- rfJp). The peculiarity of
eq. (49) is the minus sign of the last term. This may bring about a value for
the effective interaction parameter g, favourable for miscibility, while glu.)

g,p and g~p could all by themselves be unfavourable. Much of the subtlety
of copolymer phase behaviour can be attributed to this peculiarity90-92. It can
be demonstrated, for instance, that at this (second) level of approximation a
minute variation of the composition of the copolymer alone may change the
phase diagram drastically from showing one LCM gap to having two gaps,
an UCM and an LCM cloudpoint curve. The system PMMA/PSAN can thus
be represented in a qualitative manner'".

The skewness of the curves (see Figure 12e) needs a better approximation,
however. Applying Staverman's concept of interacting molecular surface areas
to the system in hand we obtain

9 = [g,~ <p(J. + glP <Pp- g~P <p~ <PpS~ sp/(s~ <Pp+ s~<Pp)l/Q**(50)

where S~ = oj(J\, sp = (J~/(J], Q** = <PI + (s~ <Pa; + S~ <Pp) <P2. Spinodal curves can
thus be obtained that tilt in the same manner as the experimental cloudpoint
curves. To estimate values for (Ji one might use Bondi's method=. Bimodality
of the LCM curve could not be achieved in this way.

The rigid lattice model offers frameworks within which bimodal cloud-
point curves can be described; we have mentioned possible approaches in the
preceding section. Combinatory entropy corrections of various sources could
be introduced and possibly help to produce bimodality. However, it is then
not immediately ·obvious that a small variation in <P~ would let the bimodality

l
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vanish and for the moment we turn to other molecular aspects. Whatever the
reason, a very peculiar concentration dependence of g is to be formulated for
the observed phenomena to be covered. Though polymolecularity cannot he
dismissed altogether, complex shapes of miscibility gaps are more likely to
be caused by special forms of g (<P2PO.

Free volume offers a feature that causes g to depend so strongly on eon-
centration that two extrema in spinodals may occur easily. In the MFLG
approach the system PMMA/PSAN can be represented by the folIowing
expressions'" :

(51)

where

r = 'lfJ0 In v«+ (gOl 1jJO "P!+ g02 'lfJ0 'lfJ2+ gl2 v. 'lfJ2)/Q***

Q*** = v« + SI v, + 152'lfJ2; SI = 01/00; 152= S"o (p ry. + S~o <P~;

S"o = 0,,/00; S~o = O~/OO;

g02 = go" <P" + go~ <P~ - g,,~ S"o S~o <P" <P~/152;

g12 = SI(gl" (P" + gl~ (p~.-g"B So.o S~o <P" (P~!152)

We shall not consider the values chosen for the many parameters to be
very significant but merely observe that a set of values can easily be found
that produces three spinodal curves, two LCM and one UCM spinodal (Figure
16), A slight change of the copolymer composition <P", while all the other
parameters are kept constant, then causes one of the LCM, as well as the
UCM spinodal, to vanish, in qualitative agreement with the data (Figure 12e).

The calculated LCM spinodals are much narrower than the measured
miscibility gaps if all s are set equal to unity. Though spinodal curves must
be narrower than their cloudpoint curves, the difference here seems to he
too large. However, it needs a value for Sa.o only a little less than 1 to
markedly broaden the LCM spinodal range.

It should be mentioned that the application of pressure to a polymer
mixture has been demonstrated experimentally to cause cloudpoint curves
to become bimodal'". This phenomenon might be related to the subtleties
mentioned above and is being investigated theoretically at the moment",

(52)

BLOCK COPOLYMERS

Phase diagrams on polymer blends containing block copolymers have
been extensively studied by Riess et aP5 with the emphasis on the compati-
bilizing effect copolymer admixtures have in polymer mixtures. Here we
turn to the simpler case of mixtures of a block copolymer with either of its
homopolymers. Roe and Zin have studied the systems polystyrene-co-buta-
diene/polystyrene and polystyrene-co-butadiene/polybutadiene quantitatively
and reported the interesting feature that addition of polystyrene to the block
increases the temperature of mesophase formation while polybutadiene pro-
duces the opposite effect'" (see Figure 17.).

Free volume models of polymers invariably have the interesting, though
unrealistic, feature that they include a critical state and coexistence between
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Figure 16. Spinodal curves for polymethylmethacrylate/polyacrylonitrile-co-styrene,
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phases differing in density. In the MFLG model, for instance, asingle homo-
polymer shows such a critical state the condition for which is similar to that
in a rigid- lattice FHS polymer solutian (see eq. (10)):

1fJlc = 1/(1+ ml-II,) (53)

which implies improbable densities as far as polymers are concerned. Also,
Iarge numbers arise for 'critical' pressures and temperatures. Remarkably
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enough, however, the MFLG model includes a quite different situation if the
polymer is a copolymer in which the two types of repeat units differ in the
nearest neighbour contact numbers (fJ./fJo < 1; fJB/fJo> 1). Then, reasonable
vacancy concentrations are calculated for the 'critical' state (POe = 0.1) and
Te comes down to an acceptable value (450 K)97. The model, in its present
form not distinguishing between statistical and block copolymers, thus predicts
separation into two disordered phases of slighly different density. We are
not aware of any experimental indication as far as statistical copolymers
are concerned, but it is known that block copolymers often shown transitions
from a homogeneous melt into mesophases containing microdomains rich in
one of the blocks95,96. Such transitions may be expected to go with small
differences in density.

In such cases eqs (51) and (52) must be amended for the limited dimensions
of the domains, as well as for the restrictions in conformation undergone
by the block copolymer chains. Several authors have addressed the problem
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and suggested approaches of various levels of sophistication'<t'". Their treat-
ments have one aspect in common, viz. the bulk phase is considered to be
well enough described by the FHS equation in its simplest form. Here, we
propose going an opposite way, improving the latter aspect with the third
level MFLG approximation developed above and using the simplest approach
for the special features that domain formation calls for, i. e. that of Bianchi
et al,98.

Combining the latter treatment with eqs (51) and (52) for the bulk we
obtain for the Helmholtz free energy AAm of a system containing a meso-
phase'"

(54)

where (I) = the average amount in moles of chains in the domains and B
is related to the free energy change accompanying the creation of the domain
surfaces. Using the values estimated from experimental data on the system
polystyrene/polybutadiene we can calculate spinodals at ambient pressure
showing the trend observed by Roe and Zin96 (Figure 18). The addition of
polystyrene moves the transition temperature upwards, while polybutadiene

200

Tle
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o

block

0.5

truis s [r act.icm Pil

Figure 17. Phase relations in mixtures of a styrene-butadiene black copolymer
with polystyrene(PS) (top) and with polybutadiene (PE) (bottom). L1 and L2 refer
to homogeneous Iiquid phases, M to a microphase-separated state. Data by Roe

and Zin96•
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phases differing slightly in density (_). Stability of the homogeneous Iiquid phase
is affected by addition of homopolymer P•• (a.jao (1; .... ) or P,~ (a,jao) 1; ---);

ct'Pi\ = volume fraction of homopolymer Pii.
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has the opposite effect, except for an initial increase, not found in the
experiment.

We do not claim this treatment to be unique, it is based solely on an
interplay between contact numbers, packing (free volume), restricted confor-
mations and free energy contributions for the domain surface area. Other
approaches are eonceivable, one might think of the different flexibility of
the polystyrene and polybutadiene chains and use Huggins' orientational
entropy terms. Alternatively, or in addition, loeal deviations from the overall
concentrations of the three types of repeat units might affect the energy of
mixing, as was very recently suggested by Balazs et al.91. Also, the entropy
of mixing might need further adjustment, partieularly with the extremely
non-random sequence distribution encounter ed in block copolymers'".

~1"'..;
i~~- ..

SHEAR

Polymer blends are produeed in processes involving considerable shear
rates. It is, therefore, very important to know the effect shearing forces
have on the thermodynamic stability of a polymer mixture. This is an aspect
of the topic that has so far not received the attention it deserves but has
neither been altogether neglected. We refer to studies by a number of
authorsl03-109and specifically draw attention to Wolf's treatment of flowing
polymer solutions'P''. This author combined an expression for the energy
stored by the solution in stationary flow with the FHS equation representing
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zero shear behaviour. Then, equilibrium conditions are applied to the stat-
ionary system under the assumption that such a procedure is permitted i.n
view of the very small valu es of the stored energy involved. The model
indicates that tl G (<P2) curves show ing a plait (two-phase system at rest)
easily develop a second plait at moderate shear rates. Hence, shear would
induce bimodality in a cloudpoint curve that has only one extreme if the
system is at rest. Experiments on the system decalin!polystyrene have shown
that this surprising prediction can be verified and also that shear may either
increase or decrease miscibility'!",

DISCUSSION

We are fully aware of the fact that the present paper offers only a
highly simplified picture of an extremely complex set of problems. Much
more advanced treatments, albeit mostly on single aspects, exist and have
demonstrated their viability. Yet, to bring out all the relevant aspects in thei.r
interrelation we feel that simplification is called for if a balanced approach
to all features is to be set up. There is no point in improving asingle one
of them and leaving the others in amore primitive stage of development.
How far one wishes to go depends entirely on the accuracy of description
and prediction required for the problem in hand. In that sense it might
help to arbitrarily and roughly classify the problem into four levels of
approximation:

lst Level: Solubility parameter theory predicts whether the system is miscible
or not. No answers as to molar mass or concentration dependence.

2nd Level: The Flory-Huggins-Staverman model can deal with temperature
and molar mass, but has concentrations wrong, excess volumes equal to
zero, and thus predicts pressure to have no influence on thermodynamic
properties.

3rd Level: FHS model extended by contact statistics and equation of state
terms (MFLG) gives a better prediction of phase concentrations and
makes the influence of pressure manageable.

4th Level: Extended FHS model amended for nonuniform segment density
and chain back-bending gives quantitative descriptions and predictions.

Passing from the first to higher levels the number of parameters increases
and, consequently, the amount of experimental information required to
establish their values. With polymer mixtures in particular the total tl G
is small over the whole composition range and yet composed of a number
of contributions having either sign and magnitudes not seldom exceeding
that of tl G its elf. Yet, liquid-liquid phase relationships are governed by
minute details in tl G (<P2) so that every single contribution has to be studied
in depth to reach the maximum accuracy of description. In view of the
resulting small values of tl G we cannot expect theory to provide more
than a usefu 1 mathematical framework that will always have to be 'calibrated'
against actual measurements at any level of approximation. It should be
remembered that the availability of such a framework effectively reduces
the amount of experimental work needed.

Acknowledgement. - The authors thank Dr. R. Van der Haegen (University
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SAŽETAK

Polimeri i termodinamika

RonaLd KoningsveLd, Ludo A. KLeintjens i Erik Nies

Klasična termodinamička razmatranja ravnoteže, potvrđena na modelima jedno-
stavnih molekula, mogu da dovedu do korisnih predviđanja li pogledu odnosa
faaz u delimično mešljivim sistemima koji sadrže polimere. U kojoj su meri ta
predviđanja kvantitativna zavisi kako od količine eksperimentalnih informacija
tako i od kompleksnosti sistema. Pristupi tome problemu razmatranjem para-
metara rastvorljivosti i doprinosa grupa predstavljaju prvi nivo i dozvoljavaju
da se kvantitativno proceni da li je sistem mešljiv ili ne. Na tome nivou ne
razmatra se entropija mešanja mada je veoma značajna.

Drugi, viši nivo predviđanja postiže se primenom Flot-y-Huggtns-Staverman-
ove jednačine, koja omogućava da se proceni kako temperatura i duljina lanca
polimera utiču na lokaciju oblasti nemešljivosti. Na tom nivou intervali koncen-
tracija pri kojima je sistem delimično mešljiv nisu dobro obuhvaćeni.

Ako se uzmu u obzir uvek prisutne nejednakosti u veličini i obliku molekula
i monomernih jedinki znatno se poboljšava moć predviđanja. Na tome trećem
nivou predviđenj a može se dosta tačno tretirati uticaj pritiska.

Ako se zahtevaju veoma precizna predviđanja, postojeće teorije ne zadovo-
ljavaju, čak ni za jednostavan slučaj rastvora linearnog apolarnog homopolimera.
U tome slučaju neophodno je izvršiti velik broj merenja da bi se odredili mnogi
empirijski i teorijski parametri. Predviđanja na tako visokom nivou nemaju samo
akademski značaj, budući da ona mogu da pruže bolji matematički aparat koji
bi se mogao primenjivati za grublja izračunavanja.




