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In this paper it is described how a recent theoretical model
can be applied to a system of two colloidal particles in the
presence of adsorbing and nonadsorbing polymer. It turns out'
that in the case of adsorption the most suitable boundary eon-
dition is restricted equilibrium, in which a constant amount of
polymer is in local equilibrium inside the gap between two
particles. At a low polymer dose the formation of bridges gives
rise to bridgmg flocculation, at higher amounts of polymer steric
stabilization occurs due to the mutual repulsion of two extended
polymer layers. If the polymer does not adsorb on the particles,
full equilibrium applies in which the chemical potentials of solvent
and polymer in the gap are the same as in the equilibrium bulk
solution, The depletion of polymer near the surface may lead to
depletion flocculation in not too concentrated polymer solutions.
In very concentrated systems the thickness of the depletion zone
is relatively small, and the attraction between the particles
becomes too weak to overcome the particle entropy, Then the
system is restabilized.

INTRODUCTION

Polymers are widely used to modify the stability of hydrophobic colloids.
In many cases the polymer adsorbs on the surface of the particles. At a
(very) low dose of polymer, destabilization of the colloidal system may
occur whereby long tails protruding from one particle attach to another
particle and form bridges. By progressive adsorption of polymer segments
the free energy of interaction between the particles may become lower with
decreasing particle separation, leading to aggregation. This so called bridging
flocculation is very important in, e. g., the mining industry and in waste
water treatment. Destabilization by bridging takes usually place at polymer
concentrations in or below the ppm-r ange.

At higher polymer dosages, at concentrations of the order of 10/0, all
the particles are covered by a relatively extended polymer layer. Upon
approach of two covered particles, the protruding loops and tails hinder
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each other by osmotic forces and entropic restrictions occur due to the
confinement of the available space. This situation is generally known as
steric stabilization and finds many applications in the stabilization of paints,
of magnetic suspensions, of food emulsions, etc. Now the protective polymer
coatings prevent partic1e aggregation.

In the past, several attempts have been made to describe these pheno-
mena theoretically. Arecent monograph by Napper gives a good overview.'
Most theories concentrate on the steric stabilization issue, and cannot cope
with the general observation that stabilization and flocculation occur for
the same combination of colloid and polymer, albeit in quite different polymer
concentration regimes.

Not always do polymers adsorb on partic1e surfaces. Nevertheless, it
is now generally accepted that also nonadsorbing polymers can affect the
stability of colloidal systems when the other interparticle forces are relatively
weak.v" The physical background is that nonadsorbing polymer will try to
avoid the surface region because of a lower conformational entropy close
to the surface. If two partic1es approach each other to a distance which is,
in a dilute polymer solution, smaller than twice the radius of gyration of
the polymer coils, there is only solvent between the partic1e surfaces, and
the osmotic pressure of the polymer in the outside solution pushes the
partic1es together. The resulting attraction between the partic1es may become
high enough to destabilize the colloidal system. Usually, the effect is only
strong enough in the concentration regime where coil overlap occurs. This
phenomenon has been named depletion flocculation1 because the reason
of the attraction is the depletion of polymer near a wall.

At still higher concentrations of nonadsorbing polymer (of the order of
10010 or more) the free polymer does not give rise to f'locculation any longer:
the system is restabilized. Napper and Feigin have ascribed this to a free
energy barrier occurring at intermediate partic1e separations, which would
stabilize the colloids kinetically.? On the basis of this concept they introduced
the term depletion stabilization.b" Recently, we have questioned this termi-
nology because in many cases the barrier turned out to be insignificantly
small with respect to the kinetic energy of the particles." However, it has
been shown that the attraction between the colloids decreases with increasing
polymer concentration in concentrated systems, mainly because the thickness
of the depletion zone (which is about the radius of gyration in dilute systems)
becomes smaller as the osmotic press ure goes Up.6,STherefore, if any the
term depletion restabilization would be more appropriate.

It turns out that the model of Scheutjens and Fleer9-10 for chain mole-
cules in a concentration gradient can handle all possible interactions bet~een
colloids and polymers, both adsorbing and nonadsorbing, in a straightfor-
ward way. In this paper we highlight the main points. WeshalI also pay
attention to the important issue whether there is fulI thermodynamic equi-
librium at any point during partic1e approach or whether some restrictions
apply. It is shown that full equil'ibrium is relevant for depletion interaction,
whereas for adsorbing polymer restricted equilibrium applies. In the former
case all the chemical potentials are the same in the gap between the partic1es
and in the equilibrium solution. In restricted equilibrium there is no time
for polymer desorption and transport during the time of, say, a Brownian



INTERACTION BETWEEN COLLOIDAL PARTICLES 479
coIlision, and a constant amount of polymer is present, which is only in
local equilibrium inside the gap.

INTERACTION AT FULL EQUILIBRIUM

The qualitative features of the interaction between fIat surfaces in the
presence of adsorbing and nonadsorbing polymer are depicted in Figure 1.
Concentration profiles are given for large plate separation (top) and for a
situation where the plates are relatively close (middle). The expected depen-
dence of the excess amount eex of polymer between the plates as a function
of the plate separation M is sketched in the bottom diagrams .
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Figure 1. Adsorption (left) and depletion (right) of polymer between two plates.
At Iarge plate separation the osmotic pressure inside and outside the gap is the
same and no interaction occurs (top). When the plates approach each other (middle)
the segment density halfway between the plates becomes higher (adsorption) or
lower (depletion) than the solution concentration and an attractive force develops,
mainly because of a decrease in the (absolute value of the) adsorbed amount (bottom).. ,

Let us first consider the situation for nonadsorbing polymer (right in
Figure 1). At large M the volume fraction of segments halfway between
the plates equals that of the bulk solution outside the plates. We denote the
bulk solution concentration as ip ; ; in the case of depletion it is relatively
high. Near the surfaces the volume fraction is lower than rp* because the
segments have no affinity for the plates and entro pical conditions are unfa-
vourable. When the coils in the solution do not overlap, the depletion zone
extends over a distance comparable to the radius of gyration. At high rp * the
depletion thickness is smaller because the osmotic pressure il * pushes the
chains closer to the plates. At largeM the same 11* is found inside the gap
and the free energy of interaction 'is zero. At separations smaller than twice
the depletion thickness the entropical restrictions become high enough to
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prevent the polymer to reach the same concentration in the gap as in the
outside solution. Now the average inside osmotic pressure il is smaller
than il * and the plates attract each other.

The excess amount Bex is negative for nonadsorbing polymer. If we
consider a semicrystalline lattice and number the lattice layers between the
plates i = 1, 2, ... , M the excess amount is found in equivalent monolayers
by virtue of the definition:

M
6ex = ~ (IPj-<P.)

i= 1

(1)

At large M, Bex is constant and equal to twice the depleted amount at (one
side of) one isolated plate. When the plate separation is so small that qJi = O
for any i, Bex = - MqJ* and the excess amount varies linearly with M. In
the transition region where the overlap of depletion zones just starts, - Bex

may be slightly higher than at large separation," as indicated by the shallow
dip in Figure 1 (bottom right). The curve for Bex in the interval O<M< 1
is given as a dashed part because the last layer of solvent molecules, attrac-
ted by two surfaces simultaneously, is not easily removed.: Moreover, for
M = O the contact energies between the surfaces would play a dominant role.

The l.h.s. diagrams in Figure 1 correspond to adsorbing polymer. In this
case measurable effects occur at much lower qJ * because the adsorption
energy leads to a very strong accumulation of segments near the surface:
qJj » rp * for the layers close to the surfaces. Also here there is no interaction
between the plates at large separations because the osmotic pressures inside
and outside are the same. At srnaIler M, the unfavourable entropical eon-
ditions are more than compensated by the presence of two attractive surfaces
at close separation, and the overlap between the two adsorption layers gives
rise to a higher segment concentration in the central region. Despite the
increase of tp, the excess amount of polymer (which is, obviously, positive)
decreases with decreasing M because the summation in eq. (1) extends over
a srnaIler number of layers. Some polymer has to desorb and diffuse away
into the bulk solution in order to maintain full equilibrium (constant che-
mical potentials).

The dependence of Bex on M is illustrated in the bottom left diagram in
Figure 1. Again a hump in the transition region, corresponding to Bex exceed-
ing slightly twice the excess amount near an isolated surface, may occur10,11

but its effect is relatively minor. The decrease of Bex at small M is more
important. It continues down to M = 1 (one layer between the plates) but
the surfaces cannot come into contact. For O<M< 1 the same effects play
a role as for nonadsorbing polymer. In addition, the last layer of polymer
segments experiences a double adsorption energy, leading to a volume frac-
tion that is higher than in the layer adjoining an isolated surface.

The question as to the free energy of inter action for adsorbing polymer
is not easily answered with out detailed computations. The higher osmotic
pressure inside the gap would suggest arepulsion; however, Bex decreases
and less polymer is involved. Therefore, the inter action could very well be
attractive. As amatter of fact, we shall show below that in full equilibrium
always attraction is found, also for adsorbing polymer.
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The above qualitative arguments can be made more quantitative by

considering the dependence of II on segment concentration, taking into
account the concentration gradient inside the gap and, hence, the variation
of Il, with layer number i. According to the Flory-Ruggins theory, the osmotic
pressure in the homogeneous bulk solution is given by:13

11. vO/kT = - (1- l/r) q;. -In (1 - q;.) - x q;2. (2)

where VO is the solvent molecular volume, kT the thermal energy, r the
ratio of molar volumes of polymer and solvent (or the number of segments
per chain) and X the polymer-solvent interaction parameter. This expression
could also be written in terms of the solvent chemical potential in the
solution with respect to pure solvent, which according to standard thermo-
dynamics equals -ll * VO. Analogously to eq. (2), we may define the osmotic
pressure lli in layer i with respect to pure solvent:

(3)

The only difference between eq. (3) and eq. (2) is the site volume fraction
( ({J;) accounting for the number of contacts of a site in layer i with its
neighbours in a concentration gradient. For example, in a cubic lattice (6
neighbours) 4 contacts are in layer i and 1 contact exists with each of the
neighbouring layers i -1 and i + 1: (({J;) = ({J;_t!6 + 4 ({JJ6 + ({JHI/6. Note
that II * and Il, are positive quantities, as can be seen immediately by ex-
panding the logarithm: Il ; volkT = ({J* Ir + (1/2 - x) ({J2* + ({J3* 13 + ...

Previously, we have derived an expression for the excess free energy
f (M) per surface site in terms of the concentration profile {({J; }.1O,11 This may
be rewritten in terms of Il, and II * in a very simple way:

Mr (M) = 2 yO a - }; (11; -11 • ) VO
i=1

(4)

where yO is the ·surface tension of pure solvent in contact with the surface
and a the area per site. The superscript FE denotes full equilibrium. At
large separations (M -7 (0), the surfaces do not interact and fFE (00) = 2ya.
In the latter expression, y is the surface tension of asingle plate with the
equilibrium amount of polymer adsorbed on ito For adsorbing polymer on
asingle plate, Il,> Il ; and y < yO according to eq. (4), in agreement with
Gibb's adsorption law for positive adsorption. Similarly, in the case of de-
pletion Il, < Il ; and r> yO as expected for negative adsorption.

The free energy of interaction per surface site AVE (M) is defined as
fFE (M) - fFE (00). Hence,

Ms flO (M)= 2 (yO - y) a - }; (11; -11. ) VO
i=1

(5)

The difference yO - Y can also be written as a sum over all layers for iso-

lated plates. Since AfFE (00) = 0, (yo - y) er = L (Il, - Il ; ) v~ for asingle
i=1

plate. Note that all lli'S are a function of the plate distance M.
The crucial point is the dependence of AfFE (M) on the plate separation.

For nonadsorbing polymer, the trends can be easily predicted. If M is small
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enough, only solvent remains between the plates and lli = O. In that case
we have

tJ. fFE (M) = 2 (yO - y) a + JI. VO M (6)

According to eq. (6), the extrapolated value of the free energy AfFE (O) =
= 2 (yo - y) a is negative, corresponding to attraction. With increasing plate
separation, AfFE (M) increases linearly with M.

In the case of adsorbing polymer, the situation is more complicated.
Extrapolation to M = O is not easy because Af is not linear in M. We consider
the free energy at M = 1. From eq. (5) we have:

tJ. f'E (1) = 2 (yO - y) a - (111- TI. ) VO (7)

where III is the osmotic pressure due to the sandwich structure of one layer
of concentrated polymer segments between two plates. The term - IIlvo

in eq. (7) is attractive, the others are repulsive. The net effect depends on
the relative magnitude of 2 (yo - y) a and - IIlvo (in dilute solutions II * is
negligible with respect to III). Both terms depend on the details of the eon-
centration profil es and cannot easily be estimated on the basis of general
considerations. However, in all numerical computations AfFE (M) was found
to be attractive, in agreement with other theories.v-" Apparently, IIlvo is
always the largest term in eq. (7).

Hence, it may be concluded that colloidal systems cannot be sterically
stabilized by homopolymers in fuU equilibrium. If steric stabilization occurs,
for which there is much experimental evidence, there is apparently no time
for the polymer to desorb and diffuse away. We must then consider restricted
equilibrium, which is treated in the next section.

We may observe that in the equations given above no distinction is
made between, e. g., osmotic effects and volume restriction, as was done in
older theories.1,16,17 These contributions are automatically and fuUy accounted
for by the use of the correct segment concentration profil es in eqs. (4) and (5)
which are the result of all energetic and entropical effects.

INTERACTION AT RESTRICTED EQUILIBRIUM

In practical situations it is likely that the polymer chains cannot escape
from the gap between two particles when this gap is narrow. In this case
a reasonable assumption is full equilibrium at large M (where the inter-
action is weak) until at a given separation M' the polymer is trapped. Upon
closer approach of the surfaces the total amount et of polymer remains now
constant. Analogously to eq. (1), et is defined as

M'et = ~ rpi = eex (M') + M' rp.
i=l

(8)

The principle of restricted equilibrium is sketched in Figure 2. On the
right, two full equilibrium curves et (M) are given at two bulk solution eon-
centrations, rp* and rp' * . In this example, rp * and rp' * are 10-6 and 10-2,
respectively, and the transition between full and restricted equilibrium is
assumed to occur at M' = 20. The left hand side diagram of Figure 2 gives

j
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Figure 2. The adsorption between two plates at M = 11 as a function of the
equilibrium solution concentration rp. (left) and as a function of plate separation
M (right). The dashed line, et = M, represents the maximum possible amount
of polymer between the plates at given M. Point 1 corresponds to the transition
between fuU equilibrium at M> M' and restricted equilibrium at M< M' (horizontal
line). At point 2 (M= 11) the polymer would be in equilibrium with a solution
concentration rp' * = 10-2• The path 1 ~ 3 would apply if fuU equilibrium with a
solution concentration of rp. = 10-6 were to be maintained down to M = 11. Hexa-

gonal lattice, r = 1000,X = 0.5, X, = 1.

an "adsorption" isotherm et (rp* ) at a given plate separation (in this case
M = 11).

Beyond M' full equilibrium exists, and the free energy of inter action
is given by eq. (5). Below M' restricted equlibrium applies in which the con-
stant amount of polymer et distributed itself over loops, trains, tails, and
bridges in local equilibrium. However, the chemical potential of the chains
is no longer the same as in the bulk solutian. At any M <M', a situation
is obtained in which .this et (corresponding to full equilibrium at M'
and rp*, point 1 in Figure 2) would be in Iull equilibrium with a higher
bulk salu tian concentratian rp'* at separation M (point 2 in Figure 2). We
denote rp'* as the pseudo-equilibriurn concentration. Obviously, rp'* is a funct-
ian of M; its magnitude foUows from the adsorption isotherm (left in Fi-
gure 2) as the concentratian at the intersection point of the isotherm at plate
distance M and the horizontal line corresponding to the constant value et.
If full equilibrium were to be maintained at separation M and bulk solutian
concentratian rp* , point 3 in Figure 2. with lower et would be reached.

The minimum possible distance in restricted equilibrium is M = eu
indicated as the dashed line in Figure 2. At this minimum distance, the
pseudo-equilibrium volume fraction is equal to unity.

The free energy difference between points 3 and 1, both belonging to
the fuU equilibrium curve et (rp* ) can be found directly from eq. (5). Ho-
wever, we are now interes ted in the difference between points 2 and 1,



484 G. J. FLEER AND J. M. H. M. SCHlj:UTJ,ENS

situated on different equilibrium curves but with the same Bt• Eq. (5) does
not apply in this case because of a different reference state at large M due
to different bulk solution concentrations. Previously.l" we have derived that
the free energy fRE in restricted equilibrium is given by fRE = p'E + I-lBt!r,
where I-l is the chemical potential of the polymer in the equilibrium bulk
solution. According to the Flory-Huggins theory, 13 I-l equals

/l/kT = (1-1·) (1 - (p. ) + In rp • + r X (1 _ rp • )2 (9)

The free energy difference at restricted equilibrium between M and M', A'fRIO,
can now be written as:

(j' 1"E (et) = r" (ep'. ,M) - 1'E (rp. ,M') + {,u (rp' • ) -,u (rp. )} etfr (10)

where fFE is defined in eq. (4). Note that the constant 2yoa in eq. (4) cancels
in eq. (10). When ({J * and ({J' * are equal, A'fRE reduces to A'fFE. If M' ~ 00,
A'fFE is identical to Afl'E as given by eq. (5). Whenever ({J * and ({J' * are dif-
ferent, A'fRE is greater than A'fFE because full equilibrium corresponds to
minimum free energy. It will be shown below that for M slightly below M'
the difference between A'fRE and A'fFE is small. However, at close particle
approach A'fRE becomes repulsive, which may lead to steric stabilization.

In the foregoing, we have chosen the transition between full and re-
stricted equilibrium to occur at an arbitrary distance M'. In practical situa-
tions, M' depends on the dynamics of the experimental system. In most cases
M' will be situated somewhere in the plateau of Bex (M). Then the precise
choice of M' is immaterial for the final result, especially in not too coI}-
centrated solutions, where M'({J* is small with respect to Bex (M').

Above, we have addressed only the question of how to compute inter-
action free energies, assuming that the segment concentration profiles bet-
ween the surfaces are known. The latter are obtained by taking into account
all possible chain conformations and the appropriate contact energies bet-
ween segments, solvent molecules and surface sites. The M unknown segment
concentrations can be solved from a rather complicated set of implicit equat-
ions. For the details of this procedure we refer to the Iiterature.v P

The parameters used in the model are the number r of segments per
chain and the interaction parameters X and x,. The former has been used
above (eqs. (2) and (3)), the latter is the dimensionless adsorption energy
difference between a segment and a solvent molecule on the surface. For
adsorbing polymer Xs is positive, in the case of depletion it is taken as zero.
Moreover, the lattice type has to be specified. In the examples discussed
below a hexagonal lattice is chosen.

RESULTS FOR ADSORBING POLYMER

Figure 3. shows two exarnples of concentration profiles for chains of
1000 segments with Xs = 1 in a gap of 10 lattice layers in equilrbrium with
a bulk solution concentration ({J * = 10-4. The full curve is for a B-solvellt
(x" = 0.5), the dashed curve for athermal conditions (x = O). In the Iorrner
case the segments experience anet attraction, so that the concentration in
the gap is much higher at X = 0.5 than at X = O, leading to a concentration
.halfway between the plates that is 2000 times that in the bulk of the solu-
tion. For X = O this concentration is much lower.
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Figure 3. Segment density profiles of adsorbing polymer between two plates, 10
lattice layers apart, for a theta solvent (full curve, x = 0.5) and for a good solvent
(dashed curve, X = O). The dotted curve gives the profile near the left surface for

X = 0.5 when the plates are far apart. T = 1000, 'J!. = 10-4, X' = 1.

The dotted curve in Figure 3 is the profile for an isolated plate at X = 0.5
in equilibrium with rp * = 10-4. It can be seen that in the layers close to the
surface there is hardly any difference in rpi (at this plate separation), whe-
reas in the middle region the full curve is approximately given by adding
two dotted curves. Consequently, et is at M = 10 still in the plateau region
of et (M) (see Figures J and 2) and about equal to twice the amount adsorbed
per isolated plate. Only at smaller M desorption of polymer (in full equili-
brium) sets in.

In Figure 4 some structural information is collected as a function of the
plate separation, for r = 1000, X = 0.5, Xs = 1, and et = 5 (restricted equili-
brium). For M ~ CX), this value of et corresponds to rp * = 5 . 10-3. A similar
plot for full equilibrium would be virtually the same. We can distinguish
adsorbed and free chains. The contribution of the free chains is very small,
even at large separations. The adsorbed fraction may be subdivided into
chains that are in contact with one surface only (non-bridging) and those
that have at least one segment on each surface (bridging). For M> 50,
hardly any bridges occur. With decreasing M the number of bridging chains
increases, until below M = 10 all the polymer molecules contain at least one
bridge. Analogously, the contribution of non-bridging chains decreases from
about 950/0 at large M to zero for M< 10. Note that for et = 5 the minimum
plate separation in restricted equilibrium is 5 layers.
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Figure 4. The composition of polymer between two plates as a function of the plate
separation. The polymer is subdivided into bridgtng, nonbridging, and free (non-
adsorbing) chains. The dashed curves give the amounts of segments in trains, loops,
tails, and bridges. r = 1000, X = 0.5, 7.,= 1, 6, = 5 (corresponding to ({!. = 5 . lO-s

for large M).

The segments of adsorbing chains are in trains, loops, tails, and (for
bridging chains) in bridges. The amounts of segments in these sequences
are given in Figure 4 as dashed curves. For loops, trains, and tails no di-
stinction was made between bridging and non-bridging chains. The contri-
bution of loops and trains is nearly constant over a large range of plate
separations. Only at very small interparticle distances the number of loop
segments decreases slightly and that of train segments increases somewhat,
in such away that the combined contribution of loops and trains remains
approximately constant. For tails the situation is quite different, the fraction
of tail segments decreasing already around M = 40, at the same separation
where the first bridges appear. With decreasing M the bridge fraction
increases at the expense of tails, showing clearly that tails and bridges play
a very important role in particle interactions.

Figure 5 gives an example of interaction free energies in restricted
(Iull curves) and full equilibrium (dashed curve), for r = 1000 and X= 0.5.
The restricted equilibrium curves apply to et = 3, 3.5, and 5, respectively,
corresponding to bulk volume fractions at large separation of 10-12, 10-G,
and 10-2. The full equilibrium curve is only shown for rp * = 10-6.

In full equilibrium, attraction is found under all conditions. As discussed
above, this is a general feature in all theories. Comparison of t... fRE and
t... jFE shows that for large M there is hardly any difference between the
two. However, at smaller separations both curves diverge strongly, t... fRE
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Figure 5. Interaction free energy per surface site between two plates with adsorbing
polymer. The dashed curve is for full equilibrium and ip ; = 10-6• The full curves
apply for restricted equilibrium where after equilibration at large plate separation
in a solution of qJ. = 10-12, 10-a, or 10'2the amount of polymer between the plate s

remains constant (61, = 3, 3.5, or 5, respectively). r = 1000,X = 0.5, X, = 1.

becoming repulsive when the particles approach each other relatively close.
At intermediate separations, an attractive well appears, which could lead
to bridging flocculation if it is, per pair of particles, deeper than kT. The
numbers in Figure 5. refer to the free energy per surface site, and mu st
be multipli ed by the number of interacting sites in order to obtain the
particle pair potential due to the polymer. For particles in the colloidal size
range, /',.fRE should probably be multiplied by a factor of order one thousand
or more.

The attractive well in /',.fRE becomes deeper and shifts to shorter sepa-
rations if the bulk solution concentration is decreased to 10-12• On the other
hand, for relatively concentrated systems (ep' = 10-2) the attractive part
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disappears altogether and only repulsion is found, leading to steric stabili-
zation. These predictions agree with experimental observations and suggest
that in practical systems restricted equilibrium applies. Direct force meas u-
rements of polymer between two mica surfaces'P?" give results that are
qualitatively in agreement with our model calculations. Full quantitative
agreement is difficult to establish because the amount of polymer between
the plates and the conversion facto rs (area per site, lattice step length) are
insufficiently known.

Finally, let us consider the order of magnitude of /}.fRE and /}.fFE.
As can be seen in Figure 5, these energies are of order 10-2 kT per lattice
site. In the derivation of, e. g., /}.fF" (eq. 5) we found that this quantity can
be written as arepulsive term 2 (yo - y) a and an attractive term repre-
senting the summation of nj - n * over all layers. Upon closer inspection
of these terms, it appears that both are of order kT per surface site. This
shows that /}.f equals a small difference between two large numbers that
approximately compensate each other, and illustrates the difficulties of any
theoretical model.

RESULTS FOR NONADSORBING POLYMER

In Figure 6. we show some profiles for chains of 1000 segments in a
6>-solvent (X = 0.5) between two nonadsorbing walls (Xs = O), in fuU equ-
librium with a bulk solution. For low concentrations (C)J* '$ 0.1) the polymer
does not enter a gap of 10 lattice layers because of the unfavourable entropic

1.0 ~* =0.9

Figure 6. Segment density profiles of nonadsorbing polymer between two plate s
at four different solution concentrations. r == 1000, X == 0.5, X' == O.
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conditions. With increasing rp. the higher osmotic pressure in the solution
forces some polymer between the plates, 1eading to concentrations in the
middle region that are about 60oio of the bulk concentration at rp* = 0.2 and
about 99010 at rp* = 0.4. For very concentrated solutions (rp * = 0.9) the profile
becomes rather homogeneous, with regions where rpi is even slightly higher
than rp *. We have no simple physical explanation for the latter effect but
note that Feigin and Napper" found the same trend in a similar model as ours.

In Figure 7 the free energy of interaction is plotted as a function of
the particle separation for two valu es of rp * . The curves are linear in the
regi on where there is no polymer between the plates, and this region is wider
for lower polymer concentrations. As soon as the polymer enters the gap a
deviation from this linearity occurs. Comparison with Figure 6 shows that
M = 10 is in the line ar range for rp * = 0.1 and in the transition regi on
for rp* = 0.2.

~f
kT

-0.01

O~ ~ ~ __-=~r- ~~ __

-0.03

Figure 7. Interaction free energy per surface site between two plates with non-
adsorbing polymer for two different solution concentrations rp •. The depletion
thickness !1 can be obtained by extrapolation to !1 f = O (dashed line). r = 1000,

X = 0.5, X' = O.

.. In the theoretical section we derived an equation for the line ar range
(eq. 6): the intercept equals 2 (yo -- y) a (where r > yO for negative adsorption)
and the slope is Ii; VO. Extrapolation of the line ar section towards the
abscissa gives the depletion thickness 2 1\, which is a measure for the gap
width where, upon decrease of M, the polymer is squeezed out completely.
Another essentially equivalent definition of t\ can be given. At distance 2t1.
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the excess amount of polymer in the gap is - 2 tJ. qJ* so that the depletion
thickness follows from the numerical data as 2 tJ. = -eex/qJ *

In terms of tJ. , the free energy of interaction can also be written as

tJ, f (M) = II • VO (M - 2 tJ,)

tJ,f(M) = O
(11)

In this equation, the nonlinear »tail« in the tJ. f (M) curves of Figure 7 is
neglected.

20.---------~--------~--------~
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r=1000

15
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Figure 8. The depletion thickness tJ, as a function of the polymer concentration
for four chain Iengths, Arrows indicate the concentration where the polymer coils

in solution begin to overlap. X = 0.5, X, = O.

Figure 8 gives the results for tJ. as a function of qJ* for various chain
lengths. In dilute solutions, tJ. is independent of qJ* and proportional to the
square root of the chain length r. As amatter of fact, in this region tJ. is
approximately equal to the radius of gyration Rg of the coils in solution. This
is a very reasonable result, implying that polymer coils below the overlap
concentration are excluded from a gap width equal to twice the coil radius.



INTERACTION BETWEEN COLLOIDAL PARTICLES 491
With increasing solution concentration, the individual coils in solution

begin to overlap. A measure for the overlap concentration is the volume
fraction of polymer at which close-packed spheres of radius Rg just touch.
This concentration is indicated in Figure 8 by the arrows. It is clearly seen
that, as soon as the polymer coils in solution begin to interpenetrate, also
the depletion thickness decreases and narrower gaps can be entered. In very
concentrated solutions n drops gradually, reaching zero for rp* = 1 (corres-
ponding to the polymer melt) , while at the same time the molecular weight
dependence becomes weaker. From polymer solution properties it is well
known that the osmotic pressure depends on molecular weight in dilute
solutions, whereas in concentrated systems the effect of chain length becomes
relatively much less. These trends are closely related.

From eq. (11) we see that n f (O) for flat surfaces is proportional to the
product II * n, where both 1I* and ti. depend on rp* . With increasing rp* , II"
increases and ti. decreases. It can be shown that in concentrated solutions
the increase of II * with rp* is stronger than the decrease of ti., leading to
a depletion attraction that increases with increasing rp* , at least for fIat
geometries.

For spherical particles the situation is different. Numerical data for the
interaction energy between spheres are not available as yet. However, we
may approximate the interaction between spherical particles, ti. fp, by using the

00

Deryagin approximation ti. fp (M)= 1t R S ti. f (M) dM.21 In this expression R
M

is the dimensionless sphere radius (expressed as the number of lattice steps),
and ti. f (M) is given by eq. (11). For spheres, M is the shortest distance between
two spherical particies. With this equation we obtain:

M ~ 211 11t, (M) = n R il •VO (M - 2 /1) (11_1/2M)

M ~ 2 11 11fp (M) = O

We see that the linear region of ti. f (M) disappears in ti. fp (M): eq. (12) is
quadratic in M. The physical background, obviously, is the spherical geometry
of two overlapping depletion shells, where the overlap volume increases more
than linearly with decreasing M. More important for our present purpose is
the fact that ti. fp (O) is not proportional to 1I* ti. (as for plates) but to 1I* 6.2•

Whereas for plates the depletion interaction becomes stronger in concentrated
solutions (above coil overiap), it decreases for spheres because of the quadratic
dependence on tI.. Therefore, -ti. fp increases with rp* in dilute solutions
(where ti. is constant), then passes through a maximum, and becomes smaller
at still higher concentrations.

These trends are illustrated in Figure 9. In this diagram we have plotted the
depletion interaction free energy 6. [« per particle, when this particle is trans-
ferred from a dilute dispersion to a floc phase where each particle is in eon-
tact with z neighbouring particles. Rence, A fd = (zI2) A fp (O)= -1tzRII VO A2.
In figure 9, 1tzR was chosen as 500, corresponding to a particle diameter of
order 40 nm (assuming a lattice step length of 1 nm). Plots are given for
two chain lengths, r = 100 and r = 1000. The osmotic pressure 1I* was
calculated from eq. (2), the depletion thickness from the numerical data for
flat plates through 2 ti. = -(geJrp* •

(12)
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Figure 9. "I'he change in free energy per flocculating particle due to dep1etion, for
two chain Iengths, as a function of the po1ymer concentration. Between rp+ and rp=!::
this free energy gain overcompensates the entropy loss of the particles, so that

floccuiation oceurs. X = 0.5, X, = O, :7lzR = 500.

It follows from Figure 9 that indeed the depletion attraction is weak
for low and for very high polymer concentrations, and is strongest in the
region CfJ* = 0.3 - 0.7. For CfJ* -71, 8. fel is nonzero (even if 8.-7 O) because
the polymer in a melt looses entropy when it is forced to enter a narrow
slit. However,. the accuracy for 8. fd at very high ep * as given in Figure 9 is
limited, due to the approximation involved in eq. (11) and (12): in concen-
trated solutions the »tail« in 8. f (M) around M = 28. (see Figure 7) is not
negligible.

In order to derive the implications of the dependence 8. fd (CfJ* ) on disper-
sion stability, we have to compare the magnitude of 8. f.1 with other interpar-
tiele interactions, such as Van der Waals forces and entropy effects when
partieles from a dilute dispersion are transferred to. a floc. These interactions
are difficult to calculate accurately without detailed stat.istical mechanical
models, but they may be assumed to be independent of the polymer eon-
centration.

In· Figure 9 a horizontal line is drawn, corresponding to a free energy
of partiele transfer of 20 kT. Let us assume that the partiele translational
entropy difference between floc phase and dilute dispersion is the major
contribution to this free energy of transfer. For ideally dilute phases differing
a factor of, say, 104 in partiele concentration, this free energy difference is
kT In 104 = 10 kT. However, the floc phase is very concentrated with a very
low translational entropy for the partieles, and the free energy difference is
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much higher. Therefore we choose more or less arbitrarily 20 kT in our
example, probably representative for a dispersion with a particle volume
fraction of order 10-4• A different choice would not affect the qualitative
picture.

Now we may deduce from Figure 9 how the stability of a dilute dispersion
of spheres depends, at given particle concentration, on the concentration of
nonadsorbing polymer. Below a treshold concentration ep+ the depletion
attraction is too weak to overcome the particle entropy loss and the dispersion
is stable. In the range ep> < ep* < ep--F depletion floccu.lation occurs, and
above ep=l= the depletion attraction is again too small to induce flocculation.
One could denote ep> as the depletion flocculation concentration; similarly
ep=l= is the restabilization concentration. It may be noted that the restabili-
zation is not caused by arepulsive barrier as su.ggested by Feigin and
Napper", but is simply a consequence of too weak an attraction due to the
smaller depletion thickness in concentrated solutions.

From the above discussion it is clear that ep' and ep=l= depend on the
particle concentration, on the polymer molecular weight, on the solvent
quality, and on the presence of other interparticle forces. A full analysis
of these effects has not been made so faro In a previous paper" we have
shown how experimental data of De Hek and Vrij! for hard spheres can
be interpreted satisfactorily with the present simple model.

Many experiments2,3,22 have been reported for a system of »soft« spheres
consisting of particles covered by a layer of grafted polymer. Such a system
is expected to behave differently from hard spheres since the magnitude
of the depletion thickness and its dependence on \0* will he effected by
the hairy layer. Experimental evidence suggests that both ep' and ep=l= are
lower for soft spheres as compared to hard particles. A simplified model
for soft spheres has been given by Vincent et aP2; further progress can
be made by performing numerical computations on the basis of the Scheut-
jens-Fleer model for hairy surfaces in the presence of free polymer.

CONCLUSIONS

Our lattice theory for chain molecules in a concentration gradient has
been succesfully applied to interaction between two particles in the presence
of polymer, both adsorbing and nonadsorbing. In the case of adsorbing
polymer, conditions of restricted equilibrium must be defined (consant
amount of polymer). On the other hand, depletion effects can be described
in a theory for full equilibrium (constant chemical potentials).

In dilute solutions of adsorbing polymer an attractive well is present
in the inter action free energy. This gives rise to bridging flocculation. With
increasing polymer concentration the depth of this minimum decreases
until it disappears altogether and only repulsion is found (steric stabilization).

In the case of nonadsorbing polymer, a depletion thickness can be
defined as half the slit width below which no polymer enters the gap between
two particles. As a consequence, the particles attract each other by osmotic
forces. In dilute polymer solutions the attraction is too weak to overcome
the particle flocculation entropy, in more concentrated system depletion
flocculation occurs. At very high polymer concentrations the thickness of
the depletion zone decreases, resulting in restabilization.
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SAZETAK

Efekt adsorbirajučeg i ncadsorbirajućeg polimera na interakciju među
koloidnim česticama

G. J. riee- i J. M. H. M. Scheutjens

Opisana je primjena teorijskog modela na sustav koji se sastoji od dvije
koloidne čestice u prisutnosti adsorbirajućeg i neadsorbirajućeg polimera. U slučaju
adsorpcije model predviđa da je najpovoljniji granični uvjet ograničena ravnoteža
pri kojoj je konstantna količina polimera koja se nalazi u prostoru između dvije
čestice u lokalnoj ravnoteži. Kod malih količina polimera stvaranje mostova dovodi
do flokulacije premoštavanjem (»bridging f1occulation«) dok kod većih količina
polimera dolazi do steričke stabilizacije zbog uzajamnog odbijanja dva proširena
polimerna sloja. Ako se polimer ne adsorbira na čestice može se pretpostaviti
potpuna ravnoteža, u kojoj su kemijski potencijali otopine i polimera u prostoru
između dviju čestica jednaki onima u ravnotežnoj otopini. Smanjenje količine
polimera blizu površine može dovesti do flokulacije putem smanjenja količine
(»depletion flocculation«) u otopinama polimera koje nisu odviše koncentrirane.
Kod vrlo koncentriranih sistema zona smanjene količine polimera uz površinu
čestice razmjerno je malena, i privlačenje među česticama postaje preslabo da
prevlada entropiju čestice. Sistem tada biva ponovno stabiliziran.




