CCA-1758

YU ISSN 0011-1643 UDC 547.775 Original Scientific Paper

Spectroscopic Studies on 4-(p-Dimethylaminobenzylidene) and 4-(p-Dimethylaminophenylimino) Derivatives of 3-Methyl-1-phenyl-2-pyrazolin-5-one

Anwar S. El-Shahawy, Maher M. Girgis, and Zarif H. Khalil

Chemistry Department, Faculty of Sciences, Assiut University, Assiut, P. O. Box 107 Egypt

Received February 17, 1987

The electronic absorption spectra of 4-(p-dimethylaminobenzylidene) and 4-(p-dimethylaminophenylimino) derivatives of 3-methyl-1-phenyl-2-pyrazolin-5-one were studied in polar and nonpolar solvents. HMO and PPP calculations were done to investigate the first $\pi \rightarrow \pi^*$ transition and the effect of replacing the backbone carbon atom C-13 in 4-p-dimethylaminobenzylidene-3-methyl-1-phenyl-2-pyrazolin-5-one by a nitrogen atom. The electron densities of these compounds were calculated by the SCF-method.

INTRODUCTION

Pyrazolone dyes have found wide applications as photosensitizers¹, dyestuffs², analytical³ and Antitubercular⁴ reagents. Little attention has been focused on the electronic absorption spectra of such compounds though the effect of substitution at the phenyl group of 4-arylidene-3-methyl-1-phenyl--2-pyrazolin-5-ones on their spectral behaviour has been studied.⁵

EXPERIMENTAL

4-(p-Dimethylaminobenzylidene) and (4-p-dimethylaminophenylimino) derivatives of 3-methyl-1-phenyl-2-pyrazolin-5-one (compounds I and II respectively) were prepared by refluxing equimolar ratios of 3-methyl-1-phenyl-2-pyrazolin-5-one⁶ and p-dimethylaminobenzaldehyde or N,N-dimethyl-p-nitrosoaniline in ethanol containing piperidine as catalyst¹. The separated solid products were recrystallized from ethanol. The purity of the compounds was checked by chemical analysis, Table I.

Spectral grade quality solvents (BDH or E. Merck) were used.

Stock solutions (10^{-3} M) were made by dissolving an accurately weighed amount of the dye in the appropriate volume of solvent. Dilute solutions for spectral measurements were obtained by accurate dilution.

The electronic absorption spectra were recorded at $27 \,^{\circ}$ C on a Shimadzu UV-200 S double beam spectrophotometer, using 1-cm matched silica cell.

RESULTS AND DISCUSSION

The electronic absorption spectra of compounds I and II in polar and nonpolar solvents are given in Figures 1. and 2. The λ_{\max} and ε_{\max} values of the absorption bands in the solvents used are collected in Tables II and III.

G 1	B	m. p.		Found (Calc.) %			
Compound	Formula	°C	С	Н	N		
I	$C_{19}H_{19}N_{3}O$	185	74.64 (74.73)	6.18 (6.27)	13.71 (13.76)		
il idene) and	$C_{18}H_{18}N_4O$	165	70.49 (70.59)	5.92 (5.88)	18.19 (18.29)		

Figure 1. The electronic absorption spectra of compound I in pure organic solvents at 27 $^{\circ}C$: 1) C₆H₁₂; 2) CCl₄; 3) dioxane; 4) CHCl₃; 5) isopropanol; 6) ethanol and 7) DMSO.

Figure 2. The electronic absorption spectra of compound II in pure organic solvents at 27 °C: 1) C_6H_{12} ; 2) CCl_4 ; 3) dioxane; 4) CHCl₃; 5) isopropanol; 6) ethanol and 7) DMSO.

The plots of $\Delta \nu$ as a function of $(D-1)/(D+1)^7$ for compounds (I) and (II) are nonlinear, cf. Table IV. Therefore the band shift is governed by other factors in addition to the dielectric constant of the medium. These factors include solute-solvent interactions.

The CT bands of compounds (I) and (II) (420 nm and 481 nm, respectively) are affected by the polarity of the solvent, Tables II and III.

Colorent	λ_{\max}	$\varepsilon_{\rm max} imes 10^{-3}$	λ_{\max}	$\epsilon_{max} imes 10^{-3}$	
Solvent -	nm	(cm ² mol ⁻¹)	nm	(cm² mol ⁻¹)	
	420*	74.16	263	34.58	
	407	55.00	258	38.74	
Cyclohexane	326	4.25	254	38.58	
	313	4.75	248	35.74	
	275(sh)	20.75	243	31.41	
Carbon totucablanida	425*	66.24	330(sh)	3.07	
Carbon tetrachloride	407	45.00	264	24.92	
	428*	53.17	325	3.19	
Dioxane	407	37.15	310(sh)	3.90	
			255	29.74	
	442*	88.90	310(sh)	5.51	
Chloroform	407	45.12	278(sh)	26.66	
	328	2.85	256	37.88	
l fl.	450*	48.06	310(sh)	2.20	
Isoprop. alc.	439(sh)	46.20	262(sh)	18.00	
	325	1.15	248	24.39	
	460*	70.20	310(sh)	11.01	
ETOH	439(sh)	62.30	270(sh)	33.43	
	326(sh)	7.47	251	44.84	
1111	465*	84.78	325(sh)	5.73	
DMSO	439(sh)	73.02	310(sh)	11.23	
			275(sh)	31.75	

TABLE II λ_{max} and ε_{max} Values of the Different Bands of Compound I in Different Organic Solvents (see Figure 1)

* Intramolecular charge transfer band.

The observed red shift can be explained by the increase of the hydrogen bond strength between solute and solvent. Intermolecular hydrogen bonding leads to the formation of a solute-solvent molecular complex. The value of the formation constant K_f of the complex with ethanol was determined from the spectral behaviour in mixed solvents (see Figures 3—6) using the relations previously described.⁸⁻¹⁰

The values of $K_{\rm f}$, ΔG (free energy change of formation) and n (the number of ETOH molecules which are complexed with the solute molecule) indicate that a 1:1 complex is formed. The value of $K_{\rm f}$ is dependent on both the solute and the solvent used, cf. Table V.

The HMO and SCF (PPP) calculations were done as described before.^{11,12} The HMO calculations give the eigenvalues of HOMO and LUMO for the two compounds (I and II) shown in Table VI.

TABLE III

 $[\]lambda_{max}$ and ε_{max} Values of the Different Bands of Compound II in Different Organic Solvents (see Figure 2)

Colvert	λ_{\max}	$\varepsilon_{\rm max} imes 10^{-3}$	λ _{max}	$\varepsilon_{\max} imes 10^{-3}$
Solvent	nm	(cm² mol ⁻¹)	nm	(cm² mol ⁻¹)
	481*	52.81	264	37.39
	437	48.15	259	45.02
Cyclohexane	323(sh)	8.90	253	50.84
	290(sh)	18.33	249	51.35
	277	23.50	244	47.06
	7		325(sh)	8.57
Carbon tetrachloride	488*	40.25	297(sh)	12.80
	439	32.16	267	22.98
			325(sh)	10.05
Dioxane	500*	47.24	295(sh)	16.90
	439	28.89	258	40.38
12 - C			325(sh)	11.82
Chloroform	512*	56.52	297	17.85
	438	30.85	256	33.81
M Strangering I II 463, aronit 61 1466	2.05 × 20.1 (0.1.00) = 30	1.81 	325(sh)	9.70
Isoprop. alc.	513*	51.49	295(sh)	15.70
	439	26.76	249	41.35
	Υ	с. с. с. ₁₇ — Ху	325(sh)	8.21
EtOH	518*	50.83	297(sh)	12.96
	439	25.12	248	37.86
	0 0 x 0	1001 To Minod	325(sh)	14.75
DMSO	532*	58.89	297(sh)	20.50
	445	23.00	261	41.61

* Intramolecular charge transfer band.

Figure 3. The electronic absorption spectra of 1.25×10^{-5} M of compound I in EtOH—CCl₄ solution mixtures at 27 °C: 1) 0.00; 2) 1.20; 3) 4.63; 4) 8.07; 5) 14.08 and 6) 17.17 M ethanol.

The Relation Between Spectral Shifts of the CT Bands for Compounds I and II with Respect to Cyclohexane

Solvent	$\overline{\nu/\mathrm{cm}^{-1}}$ (I)	v/cm ⁻¹ (II)	$\begin{array}{c}\Delta \nu \times 10^{-2}\\ \text{(I)}\end{array}$	$\begin{array}{c} \Delta \nu \times 10^{-2} \\ \text{(II)} \end{array}$	$\frac{D-1}{D+1} \times 10$
Cyclohexane	23809	20790	0	0	3.33
Carbon tetrachloride	23529	20492	2.80	2.98	3.75
Dioxane	23364	20000	4.45	7.90	3.77
Chloroform	22624	19531	11.85	12.59	6.55
Isoprop. alc.	22222	19493	15.87	12.97	8.96
EtOH	21739	19305	20.70	14.85	9.21
DMSO	21505	18797	23.04	19.93	9.58

D: is the dielectric constant of the solvent. $\Delta \nu$: is the CT band shift, cm⁻¹.

TABLE IV

Figure 4. The electronic absorption spectra of 1.69×10^{-5} M of compound II in EtOH—CCl₄ solution mixtures at 27 °C: 1) 0.00; 2) 0.86; 3) 1.72; 4) 5.15; 5) 8.58; 6) 11.16; 7) 14.59 and 8) 17.17 M ethanol.

Charge densities distribution over compounds (I) and (II).

It is clear that the replacement of carbon atom C-13 in compound (I) by a nitrogen atom to produce compound (II) decreases the eigenvalue of LUMO (from -10.20 to -10.89 eV) and the calculated first $\pi \rightarrow \pi^*$ transitions for the two compounds are not adjacent (380 nm and 500 nm for compounds (I) and (II), respectively) and they are comparable with the experimental first $\pi \rightarrow \pi^*$ transition, 407 and 437 nm respectively, in cyclohexane as a solvent, cf. Tables II and III.

Figure 5. The electronic absorption spectra of 1.31×10^{-5} M of compound I in EtOH—H₂O solution mixtures at 27 °C: 1) 1.20; 2) 1.46; 3) 1.80; 4) 2.06; 5) 2.92; 6) 3.78; 7) 4.63; 8) 8.07; 9) 10.64; 10) 14.08 and 11) 17.17 M ethanol.

The SCF-eigenfunctions of HOMO and LUMO for the two compounds are given in Table VII. From the constructions of the SCF-eigenfunctions of HOMO and LUMO it is clear that these eingenfunctions are mainly located over the 4-dimethylaminobenzylidene part of the molecule in compound I and over the 4-dimethylaminophenylimino part in compound II. The local symmetry of HOMO and LUMO for the two compounds is B₂; therefore the first $\pi \rightarrow \pi^*$ transition for the two compounds is allowed, and its molar absorbance has a high value ($\varepsilon_I = 55 \times 10^3$ and $\varepsilon_{II} = 48.5 \times 10^3$ mol⁻¹ cm²). Also, it is noticed that the contribution of atom 13 in HOMO is smaller than that in LUMO. This explains that the variation in the HOMO energy is smaller than the variation in the energy of LUMO after the replacement of the carbon atom in position 13 by nitrogen atom in compound I.

The electron densities of compounds (I) and (II) were calculated as described before¹¹, Table VIII.

Figure 6. The electronic absorption spectra of 1.69×10^{-5} M of compound II in EtOH—H₂O solution mixtures at 27 °C: 1) 1.72; 2) 2.57; 3) 3.43; 4) 4.29; 5) 5.15; 6) 6.01; 7) 11.16; 8) 14.76 and 9) 17.17 M ethanol.

	Commutativ	ve Data ¹ Ot	stained fo	TAB or Compo	LE V unds I and	II in Mi	red Or	ganic Solv	ents		
- Function of the second	Curtom	Excit. e kcal·1	energy mol ⁻¹	Orient.	H-bond	Total	5	104 K	abras	- 7 C	200
Compound	IIIaasic	Pure solvent	Pure EtOH	energy	kcal·mol ⁻¹	energy	2 1110	JOB DI	M	kcal·mol ⁻¹	151
	(C ₆ H ₁₂ —EtOH)	35.65 (C ₆ H ₁₂)	40.57	3.000	0.960	3.960	1	0.350	2.24	0.485	POINT ST
F	(CCl4—EtOH)	37.10 (CCl4)	40.57	1.110	1.590	2.700	1	0.000	1.00	0.000	
-	(CHCl ₃ —EtOH)	38.65 (CHCl ₃)	40.57	0.520	0.960	1.380	н Юпи	0.295	1.97	0.408	
	(H ₂ O-EtOH)	43.12 (H ₂ O)	40.57	-0.970	-0.725	-1.695	2	0.140	1.38	0.194	unun
	C ₆ H ₁₂ —EtOH	42.19 (C ₆ H ₁₂)	45.44	1.76	0.88	2.64	-	0.43	2.69	0.595	
1	CCl4—EtOH	42.81 (CC14)	45.44	0.70	1.32	2.02	-	0.288	1.94	0.399	
	CHCl ₃ —EtOH	44.91 (CHCl ₃)	45.44	0.10	0.47	0.57	-	0.424	2.65	0.586	
152 50150 1011	H ₂ O—EtOH	49.65 (H ₂ O)	45.44	-1.04		2.01	5	0.600	3.98	0.831	13 11 15 23

622

A. S. EL-SHAHAWY ET AL.

 1 at 27 $^\circ\text{C}$.

TABLE	VI
-------	----

Eigenvalues of HOMO and LUMO for Compounds I and II

Co	mpound	єномо/ev	ε _{lumo} /ev
	I		—10.20
	II		

TABLE VII

The SCF-eigenfunctions of HOMO and LUMO for the Two Compounds

Atomic		НОМО		LUMO
orbital	(I)	(II)	(I)	(II)
$\overline{\Phi_1}$	0.134	0.081	0.127	0.234
Φ_2	0.108	0.051	0.111	0.120
Φ_3	0.197	-0.170	0.197	0.690
Φ_4	0.033	0.011	0.687	0.348
Φ_5	0.201	0.088	0.505	0.330
Φ_6	0.203	-0.053	0.124	0.065
Φ_7	0.210	0.042	0.085	0.014
Φ_8	0.141	0.031	0.065	0.020
Φ_9	0.091	0.018	-0.035	0.005
Φ_{10}	0.218	0.045	0.092	0.022
Φ_{11}	0.091	0.018	0.035	0.005
Φ_{12}	0.141	0.031	0.065	0.020
Φ_{13}	-0.152	0.131	0.316	0.383
Φ_{14}	0.434	0.511	0.128	0.089
Φ_{15}	0.210	0.248	0.106	0.140
Φ_{16}	0.256	0.298	0.046	0.023
Φ_{17}	-0.427	0.490	-0.142	0.152
Φ_{18}	-0.257	0.298	0.047	0.023
Φ19	0.209	0.248	0.105	0.140
Φ_{20}	0.297	0.355	0.031	0.043

From the values of charge densities of the two compounds, cf. Table VIII the carbon atom C-3 in the pyrazoline moiety acts as a strong donor in compound II, but it acts as a weak acceptor in compound I. Carbon atom C-13 acts as a weak donor in compound I although the nitrogen atom at position 13 in compound II acts as a strong acceptor.

It is clear that the oxygen atom in compound (I) is more negative than that in compound (II). Therefore, the energy of the intermolecular hydrogen bond in compound (I) is higher than that in compound (II) in different mixed solvents, cf. Table V. It is concluded that the oxygen atom in position 5

TABLE V

SCF-electron	Densities	and	Charge	Densities	of	Compounds	I	and	II
--------------	-----------	-----	--------	-----------	----	-----------	---	-----	----

	Compound I		Compound II				
Atom	Electron densities	Charge densities	Electron densities	Charge densities			
1	1.055	0.055	1.030	0.030			
2	0.951	+0.049	0.956	+0.044			
3	1.004	0.004	0.502	+0.498			
4	0.700	+0.299	0.749	+0.251			
5	1.374	0.374	1.346	-0.346			
6	1.906	+0.094	1.906	+0.094			
7	0.981	+0.019	0.980	+0.020			
8	1.019	0.019	1.019	-0.019			
9	0.999	+0.001	0.999	+0.001			
10	1.014	0.014	1.014	-0.014			
11	0.999	+0.001	0.999	+0.001			
12	1.019	0.019	1.019	-0.019			
14	1.015	0.015	1.004	0.004			
15	0.999	+0.001	1.004	0.004			
16	1.020	0.021	1.024	-0.024			
17	0.978	+0.021	0.976	+0.024			
18	1.020	0.021	1.024	-0.024			
19	0.999	+0.0014	1.004	-0.004			
20	1.966	+0.034	1.958	+0.042			

is the negative pole of the intermolecular hydrogen bonding between the solute and the solvent.

REFERENCES

- 1. R. C. Elderfield, *Heterocyclic Compounds* Vol. 5, New York. John Wiley & Sons., Inc., London, Chapman & Hall., Limited, 1957, p. 132.
- Sandoz Ltd. (by Hermann Egli & Richard Kern). Ger. Pat. 1, 112, 965, 21 Dec. 1957; Chem. Abstr. 56 (1961) 4995.
- 3. N. V. Trofimov, N. N. Nekhaev, N. A. Kanaev, and A. I. Busev, Zhur. analit. Khim. 37 (1982) 1445.
- K. Schoen (to Endo Laboratories, Inc.), U.S. Pat. 3, 244, 593, 5 April. 1966; Chem. Abstr. 65 (1966) 3885.
- 5. M. R. Mahmoud, H. S. El-Kashef, and R. Abd El-Hamide, Spectrochim. Acta 37A (1981) 519.
- A. I. Vogel, Practical Organic Chemistry, 3rd Edn., Longman, London, 1974, p. 998.
- 7. M. S. A. Abd El-Mottaleb, and Z. H. Khalil, Z. Phys. Chim. 260 (1979) 650.
- M. S. El-Ezaby, I. M. Salem, A. H. Zewail, and R. M. Issa, J. Chem. Soc. (B) (1970) 1293.
- 9. T. Gangaly and S. B. Banerjee, Spectrochim. Acta 34A (1978) 617. 10. R. Foster, Molecular Association Vol. 1, Acad. Press, London, 1975.
- 10. R. Foster, Molecular Association vol. 1, Acad. Fless, London, 1913. 11. A. S. El-Shahawy, A. A. Harfoush, and K. A. Idriss, Spectrochim. Acta, 41 A(12), (1985) 1463.
- 12. Anwar El-Sahawy, Bull. Sci., Ass. Univ. 11(2), (1982) 47.

SAŽETAK

Spektroskopski studij 4-(p-dimetilaminobenzil)- i 4-(p-dimetilaminofenilimino)--derivata 3-metil-1-fenil-2-pirazolin-5-ona

Anwar S. El-Shahawy, Maher M. Girgis i Zarif H. Khalil

Istražen je utjecaj polarnosti medija na elektronske apsorpcijske spektre 4-(p-dimetilaminobenziliden)-3-metil-1-fenil-2-pirazolin-5-ona (I). Izmjereni spektri korelirani su sa spektrima 4-(p-dimetilaminobenziliden)-3-metil-1-fenil-2-pirazolin-5-ona (II). Razlike između spektara I i II objašnjene su na bazi rezultata HMO i PPP računa.