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Weconsider the following pair of problems related to orthonormal com-
pactly supported wavelet expansions: (1) Given a wavelet coefficient with
its nominal scale and position indices, find the precise location of the tran-
sient signal feature which produced it; (2) Given two collections of wavelet
coefficients, determine whether theyarise from a periodic signal and its
translate, and if so find the translation which maps one into the other. Both
problems may be solved by traditional means after inverting the wavelet
transform, but we propose two alternative algorithms which rely solely on
the wavelet coefficients themselves.

INTRODUCTION

Continuous wavelet decompositions of functions? have now been used for more
than a decade to extract the locations and properties of transient features of time-
varying, nonstationary signals. Basic algorithms, such as retaining only the largest
wavelet components and determining the time location of their basis elements.l? pro-
duce excellent results in cases such as isolating discontinuities or frequency transi-
tions in music and speech. More sophisticated algorithms can locate and model tran-
sient phenomena very precisely, for instance to rem ove certain dominant but
uninteresting background features like solvent absorbances in NMR spectrograms,"
or to replace a textured image by a textureless cartoonl''. However, the computa-
tional time and space costs of the continuous wavelet transform - it produces a two-
dimensional data set from a one-dimensional input - prevent the use of such meth-
ods in high-speed or real-time applications.

Discrete, compactly supported orthonormal wavelet bases, introduced by
Daubechies.š would be a formidable replacement tool for these transient signal proe-
essing and feature detection problems because of their much lower computational
complexity. They provide a real-valued transformation which preserves both dimen-
sion and rank, i.e., N-point one-dimensional real inputs produce N-point one-dimen-
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sional real outputs. There are a number of problems, however, caused by artifacts
associated to the dyadic subsampling or decimation used in the discrete wavelet
transform.

The support of compact1y supported orthonormal wavelets grows as more regu-
larity is required, and extra regularity is often desirable for the representation of
smooth or highly correlated signals. Most of the mass of a unit scale compactly sup-
ported wavelet lies over an interval of unit width, though the actual support is equal
to the filter length, typically 10 or 20 units. We first consider the problem of locating
the center of energy of a wavelet within this support, given its scale and position in-
dices. This can be done exact1y for symmetric and antisymmetric wavelets, but the
best we can do in the general case is to locate the center up to a signal dependent
error which is bounded by the wavelet's deuiation from linear phase, or deviation
from symmetry or antisymmetry. We compute a quantity to measure this deviation
somewhat different1y from Daubechies.? Our goal is to associate two numbers to
each wavelet which can be used to correct the nominal center of energy and locate
it more precisely.

It is well known that the discrete wavelet transform is very sensitive to small
translations of its input. A signal consisting of asingle basis wavelet which has been
shifted slight1y from its grid, for example, can have a discrete wavelet transform in
which all the coefficients have nearly the same amplitude. But when shifted to its
proper location, the one-wavelet signal will be easily recognized by its single nonzero
coefficient. We will describe a fast algorithm, first introduced by Beylkin,' which
computes for us the best circulant shift to apply to a periodic signal before perform-
ing a discrete orthonormal wavelet transform, so as to obtain the most peaked se-
quence of wavelet coefficients. Such an algorithm would detect that a signal consists
of asingle wavelet. It also serves to compare, in wavelet coefficients, two signal s dif-
fering only by a shift.

2. LOCALIZING TRANSIENTS GlVEN WAVELET COEFFICIENTS

We follow the notation conventions and terminology used in Ref. 17. A square-
integrable function u defines two probability density functions: x>-+ lu(x)12/ IIul12
and ~ >-+ 1&(~)12 / 11&112.It is not possible for both of these densities to be arbitrarily
concentrated, as we shalI see from the inequalities below.

2.1 -.Heisenberg's Inequality
Suppose that u = u(x) belongs to the Schwartz class S. Then x t lu(x)12 =

= x[u(x)u'(x) + u(x)u'(x)) is integrable and tends to O as Ixl -+ 00. We can therefore in-
tegrate by parts to get the following formula:

f -x dd lu(x)12 dx = f lu(x)12 dx = Ilu112.
R X R

(1)

But also, we have the following consequences of the Cauchy-Schwarz inequality
(1(f,g)l::; Ilfllllgll> and the triangle inequality (11x - zli::; Ilx - yll + Ily - zlI>:
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Combining the last two inequalities gives Ilx u(x)11 . IIu'(x) II~ ~llu(x)112. Now
u'(~) = 27t~u(~), and Ilull= Ilullby Plancherel's theorem, so we can rewrite the inequal-
ity as follows:

Ilx u(x)11 II~u(~)11 1
___ o >-
Ilu(x)11 Ilu(~)11- 47t

Since the right-hand side is not changed by translation u(x) >--+ u(x - xo) or modula-
tion u(~) >--+ u(~ - ~o), we have proved

inf(II(X- xo) U(X)II] . inf[II(~ - ~o) U(~)II] ~-L
x, Ilu(x)11 ~, Ilu(~)11 47t

(2)

Equation (2) is called Heisenberg's inequality. We mention the usual name s

der. [11(X-Xo)U(X)II]Lix = Lix(u) =mf ;
=, Ilu(x)11

der. [II(~- ~o) U(~)II~·&; = &;(u) = mf .
~, Ilu(~)11

(3)

The quantities Lix and &; are called the uncertainties in position and momentum
respectively, and they provide an inverse measure of how well u and u are localized.
Then Heisenberg's inequality assumes the guise of the uncertainty principle:

(4)

It is not hard to show that the infima in Eq, (3) are attained at the points x, and
~o defined by the following expressions:

(5)

The Dirac mass 8(x - xo) is perfectly localized at position x, with zero position un-
certainty, but both its frequency and frequency uncertainty are undefined. Likewise,
the exponential e2rri4,x is perfectly localized in momentum, since its Fourier transform
is 8(~- ~o), but both its position and position uncertainty are undefined. Equality is
obtained in Equations (2) and (4) if we use the Gaussian function u(x) = e-",,2.It is
possible to show, using the uniqueness theorem for solutions to linear ordinary dif-
ferential equations, that the only functions which minimize Heisenberg's inequality
are scaled, translated, and modulated versions of the Gaussian function.

If Lix and &; are both finite, then the quantities Xo and ~o can be used to assign
a nominal position and momentum to an imperfectly localized function.

2.2. Convolution
Given two sequences u = {u(n)} nEG and u = {u(n)} nEG' their conuolution is the sequ-

ence u * u defined by
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der" " deru*u(n) = Lu(k)u(n-k)= Lu(n-k)u(k); Gn = {keG:n-keG}. (6)

This is defined for n e·G. We will consider two choices of index set: the complete set
of integers, and the integers modulo some period q > o.

2.2.1. Doubly Infinite Sequences

If the sequences u and u are defined at all the integers G = Z, then the convo-
lution formula reduces to the infinite sum

u * u(x) = I u(y) u(x - y).
y =-00

Proposition 2.1. If u e /1 (z) and u e /P (Z) for 1 <p <:;, 00, then u * ue /P.

We can compute convolutions efficient1yby multiplication of Fourier transforms:

Proposition 2.2. If u and u are infinite sequences such that u and u exist a.e., then
U*V(~) = u(~)u(~) for almost euery ~ e T.

Proposition 2.3. If u e /1 (Z), then the map u >-+ u * u has operator norm
maxsETlu(~)1as a map from L2(T) to L2(T).

The special case which will interest us the most is that of »finitely supported-
sequences, i.e., those for which u(x) = Oexcept for finitely many integers x. Such se-
quences are obviously summable, and it is easy to show that the convolution of fi-
nitely supported sequences is also finitely supported. Furthermore, if u is finitely
supported, then u is a trigonometric polynomial and we may use many powerful
tools from classical analysis to study ito

So, let u = u(x) and u = u(x) be finitely supported sequences taking values at
integers x e Z, with u(x) = Ounless a <:;, x <:;, b and u(x) = Ounless c <:;, x <:;, d. We call [a,bl
and [c,dl the support interuals supp u and supp u, respectively, and b - a and d - c
the support widths for the sequences u and u. Then u * u(x) = Ounless there is some
y e Z for which y e [a,bl and x - y e [c,d], which requires that c + a <:;, x <:;, d + b.
Hence u * u is also finitely supported, with the width of its support growing to
(d + b) - (c + a) = (b - a) + (d - c), or the sum of the support widths of u and u. The
convolution at x is a sum over y e [a,bl II [x - d, x - cl.

2.2.2. Periodic Sequences

If G = Z/qZ is the integers {O,l, ... ,q -I} with addition modulo q, then the con-
volution integral becomes a finite sum:

q-1

U * u(x) = I u(y) u(x - y mod q).
)=0

Since all sequences in this case are finite, there is no question of summability. Con-
volution becomes multiplication via the discrete Fourier transform:
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N-I
der 1" ··k

u(k) = - L. uU) e-21U) IN,
{Ff j=O

k = O, 1, ... ,N - 1 (7)

Proposition 2.4. If u, U are q-periodic sequences, then U*Đ(y) = u(y)u(y).

Thus we can compute the norm of discrete convolution operators:

Proposition 2.5. The operator norm of the map u ~ u * u from I' 2(Z / qZ) to itself is
maxO~ysq lucy)l.
Proof: The maximum is achieved for the sequence u(x) = exp(2nixyjq), where Yo is
the maximum for lul, since then u(y) = {(] o(y - Yo).

Periodic convolution is the efficient way to apply a convolution operator to a pe-
riodic sequence. Suppose that u E I''''(Z) happens to be q-periodic, namely that
u(x + q) = u(x) for all x E Z. Then for u E I' I(Z) we can compute the convolution of
u and u by decomposing y = k + qn:

Now let us define the q-periodization uq of UE I'I(z) to be the q-periodic function

der co

u/k) = L u(k + qn). (8)
y =-00

Thus starting with asingle sequence u, we can get a family of convolution operatora,
one on Z/qZ for each integer q > o:

q-I
Uq u(x) = uq * u(x) =L lfq(k) u(x - k).

k=O
(9)

In effect, we preperiodize the sequence u to any desired period q before applying the
convolution operator.

2.2.3. Conuolution as an Operator

The Fourier transform converts convolution into pointwise multiplication. We
can use this result together with Plancherel's theorem to prove that convolution with
integrable functions preserves square-integrability. Suppose that u is integrable and
u is square-integrable. Then by Plancherel's theorem and the convolution theorem
we have liu * uli = 11U*Đ11= liu uli. This gives the estimate

liu * uli $llull",llull = Ilull"llull $llulldull. (10)

Convolution with integrable u is a bounded line ar operator on L2, and we will
have occasion to estimate this bound with the following proposition:
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Proposition 2.6. If u = u(x) is absolutely integrable on R, the n the conuolution op-
erator u ~ u * u as a map from L2 to L2 has operator norm sup[ lu(.;)1 :'; E R}.

Proof: By Equation (10), liu * uli :5: sup l lu(.;)llIull :'; ER}. By the Riemann-Lebesgue
lemma, u is bounded and continuous and lu(.;)1 -+ O as 1.;1-+ 00, so u achieves its max.i-
mum amplitude sup] lu(.;)1 :'; ER} < 00 at some point č, E R. We may assume without
loss that č, = O. To show that the operator norm inequality is sharp, let s> O be given
and find o> O such that I.; - .;.1 < o ~ lu(.;) - u(';.)1 < s. If we take u(x) = (sin 2rr8x)/rrx,
then u(.;) = l[-M](';)' and liu * uli = liu uli > (1 - s) lu(';.)llIull = (1 - s)lu(';.)llIull.

2_3_Decimation and Shifts
Decimation by q can be regarded as the process of discarding all values of a sam-

pled function except those indexed by a multiple of q > O. We denote it by dq, and
we have

der
[dq u](n) = u(qn). (11)

If u = {u(n) : n E Z} is an infinite sequence, then the new infinite sequence dqu is just
{u(qn) : n E Z} or every qth element of the original sequence.

If u is finitely supported and supp u = la, b], then dqu is also finitely supported

and supp dqu = la, b] (l qZ. This set contains either ~b~a~ or ~b~a~ + 1 elements.

If u is a periodic sequence of period p, then dqu has period q/gcd(P, q). Counting
degrees of freedom, the number of q-decimated subsequences of a p-periodic se-
quence needed to reproduce -it is exactly gcd(p, q). If gcd(p, q) = 1, then decimation
is just a permutation of the original sequence and there is no reason to perform ito
Thus, in the typical case of q = 2 we will always assume that p is even.

The translation or shift operator 'y is defined by

'y u(x) = u(x - y). (12)

Whatever properties u has at x = O the function 'yU has at x = y. Observe that 'o is
the identity operator. Translation invariance is a common property of formulas de-
rived from physical models because the choice of origin O as in u(O) for an infinite
sequence is usually arbitrary. Any functional or measurement computed for u which
does not depend on this choice of origin must give the same value for the sequence
'yU, regardless of y. For example, the energy lIull2 in a sequence does not depend on
the choice of origin:

For all y, (13)

Such invariance can be used algebraically to simplify formulas for computing the
measurement.

Translation and dilation do not commute in general, but there is an »intertwin-
ing- relation
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(14)

def
Let ty denote translation in the discrete case: ty u(n) = u(n - y). The intertwining re-
lation then becomes tydpu = dptpyu.

2.4. Quadrature Filters

We shall use the term quadrature filter or just filter to denote an operator which
convolves and then decimates. A filter operator is defined by the sequence which is
convolved with the input. If the filter sequence is finitely supported, we have a finite
impulse response or FIR filter; otherwise we have an IIR or infinite impulse response
filter. We can also project such actions onto periodic sequences, and define periodized
filters. Filtering is the fundamental arithmetic operations in the discrete wavelet
transform.

An individual quadrature filter is not generally invertible; it loses information
during the decimation step. However, it is possible to construct a pair complemen-
tary filters with each preserving the information lost by the other; the pair can be
combined into an invertible operator. Each member of the pair has an adjoint op-
erator: when we use filters in pairs to decompose functions and sequences into
pieces, it is the adjoint operator s which put these pieces back together. The operation
is reversible and restores the original signal if we have so-called exact reconstruction
filters. The pieces will be orthogonal if we have orthogonal filters for which the de-
composition gives a pair of orthogonal projections which we will define below. Such
pairs must satisfy certain algebraic conditions which are completely derived in
Ref. 3, pp.156-166.

One way to guarantee exact reconstruction is to have »mirror symmetry« of the
Fourier transform of each filter about ~ = 112; this leads to what Esteban and
Galand" first called quadrature mirror filters or QMFs. Unfortunately, there are no
orthogonal exact reconstruction FIR QMFs.

Mintzer'", Smith and Barnwell.l? and Vetterli " found a different symmetry as-
sumption which does allow orthogonal exact reconstruction FIR filters. Smith and
Barnwell called these conjugate quadrature filters or CQFs.

By relaxing the orthogonality condition, Cohen, Daubechies, and Feauveau'' ob-
tained a large family of biorthogonal exact reconstruction filters. Such filters come
in two pairs: the analyzing filters which split the signal into two pieces, and the syn-
thesizing filters whose adjoints reassemble itoAll of these can be FIRs, and the extra
degrees of freedom are very useful to the filter designer.

2.4.1. Filter Action on Sequences

A convolution-decimation operator has at least three incarnations, depending
upon the domain of the functions upon which it is defined. We have three different
formulas for functions of one real variable, for doubly infinite sequences, and for Zq-
periodic sequences. We will use the term quadrature filter or QF to refer to all three,
since the domain will usually be obvious from the context.

Suppose that f = {(n) : n E Z} is an absolutely summable sequence. We define a
{llem convolution-decimation} operator F and its adjoint F* to be operators acting
on doubly infinite sequences, given respectively by the following formulas:
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F u(i) = I f(2i - J) u(;) = I f(;) u(2i - J), i E Z; (15)
j::c-oo j =-00

I
00 •

00 I {(2i) u(i + i),
F'u0) = I {(2i - J) u(i) = i ~;oo . 1

,,- . . J+
i ~ -00 L., f(2l + 1) U(l + 2)'

i =-00

j e Z even,

(16)
. j e Z odd.

If f2q is a 2q-periodic sequence (i.e., with even period), then it can be used to de-
fine a periodic conuolution-decimation F2q from 2q-periodic to q-periodic sequences
and its periodic adjoint F~ from q-periodic to q-periodic sequences. These are, re-
spective1y, the operators

2q-l 2q-1

F2qu(i) = I f2q(2i - J) u(;) = I f2q(;) u(2i - J),
j~O j~O

05,i<q; (17)

and

q-1

F;qu0) = I {2q(2i - J) u(i) =
i~O

q -1 .

I {2q(2i) u(i + i),
i~O

q-1_ j+lI f2q(2i + 1) u(i + 2)'
i ~ o

ifj E [O,2q - 2] is even,

(18)

ifj E [1, 2q -1] is odd.

Periodization commutes with convo1ution-decimation: we get the same periodic
sequence whether we first convolve and decimate an infinite sequence and then pe-
riodize the resu1t, or first periodize both the sequence and the filter and then per-
form a periodic convo1ution-decimation. The following proposition makes this pre-
cise:

Proposition 2,7. (Fu)q = F2q u2q and (F'U)2q = F2quq

Proof: This straightforward ca1cu1ationmay be found in Ref. 17 on pp.155-156.

2.4.2. Biorthogonal QFs

A quadrup1et H, H' , G, G' of convo1ution-decimation operators or filters is said
to form a set of biorthogonal quadrature filters or BQFs if the fi1ters satisfy the fol-
lowing conditions:

Duality: H' H* = G' G' = I = H H' , = G G' ":
Independence: G' H* = H' G' = O = GH' , = H G' ";
Exact reconstruction: H' H' + G' G' = I = H' , H + G' , G;
Normalization: HI = H' I = -{il, and GI = G' I = O, where I = { ... , 1, 1, I, ...} is all
ones and 0= { ... , O, O, O, ... } is all zeroes.
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The first two conditions may be expressed in terms of the fi1ter sequences h, h' ,g,
g' which respectively define H, H' , G, G' :

L h'(k) hek + 2n) = L g'(k) g(k + 2n) = 8(n)
k k

(19)

L g'(k) hek + 2n) = L h'(k) g(k + 2n) = o.
k k

The normalization condition allows us to say that H and H' are the low-pass filters
while G and G' are the high-pass filters. It may be restated as

L hek) = L h'(k) = 12; L g(2k) = -L g(2k + 1); L g'(2k) = -L g'(2k + 1). (20)
k k k k k k

Having four operator s provides plenty of freedom to construct filters with special
properties, but there is also a regular method for constructing the G, G'. filters from
H, H' . If we have two sequences {h(k)} and {h' (k)} which satisfy Equation (19), then
we can obtain two conjugate quadrature filter sequences {g(k)} and {g' (k)} via the
formulas below, using any integer M:

g(k) = (-l)kh' (2M + 1-k); g'(k) = (-lih(2M + 1-k). (21)

We also have the following result, which is related to Lemma 12 in Ref. 6 and
a similar result in Ref. 11:

Lemma 2.8. The biorthogonal QF conditions imply H'l = H' '1= ~1
Procf:With exact reconstruction,1 = (H" H + G" G) 1 = 12 HI' 1, sinceHI = 121 and Gl =
O.Likewise, 1 = (H' H' + G' G') 1 = 12 H' 1, sinceH'1 = 121 and G'I = O.
Remark. The conclusion of Lemma 2.8 may be rewritten as follows:

L h(2k) = L h(2k + 1) = ~ = Lh'(2k) = L h'(2k + 1).
k k 2 k k

(22)

If we have the duality, independence, and exact reconstruction conditions, together
with HI =H' 1 = 121 but no normalization on G or G' , then at least one of the fol-
lowing must be true:

However, the BQF conditions as stated insure that the pairs H, G and H' ,G' are
interchangeable in our analyses.

If H, H' , G, G' is a set of biorthogonal QFs, and p is any nonzero constant, then
H, h', {5G, o=G' is another biorthogonal set. We can use this to normalize the G and
G' filters so that
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1
L g(2k) = - L g(2k + 1) = -y2 = U(2k) = - L g'(2k + 1).
k k 2 k k

(23)

This will be called the conuentional normalization for the high-pass filters.
Since H' H' H' H' = H' H' and C' C' C' C' = C' C' , the combinations H' H'

and C' C' are projections although they will not in general be orthogonal projec-
tions. That is because they need not be equal to their adjoint projections H' ' H and
C" C.

An argument similar to the one in Proposition 2.7 shows that periodization of
biorthogonal QFs to an even period 2q preserves the biorthogonality conditions.
Writing h'lA[.h''lA[.g'lA[.andg' 'lA[for the 2q-periodizations of h, h' ,g, and g' , respectively,
we have

L h''lA[(k)h'lA[(k+ 2n) = Lg' 'lA[(k)g'lA[(k+ 2n) = b(n mod q);
k k

Lg''lA[(k) h2/k + 2n) = L h''lA[(k)g'lA[(k+ 2n) = O.
k k

Here we define the periodized Kronecker delta as follows:

b(n and ) ~f f Stn. + qk) = {I, ifn == o. (mod q),
q 0, otherwise ,

k =-00

(24)

Periodization to an even period also preserves the sums over the even and odd
indices, and thus Lemma 2.8 remain s true if we replace h, h' , g, and g' with h2q,

h'2q, g2q' and g'lA['

2.4.3. Orthogonal QFs

If H = H' and C = G' in a biorthogonal set of QFs, then the pair H, C is called
an orthogonal quadrature filter pair. In that case the following conditions hold:

Self-duality: HH' = CC' = I;
Independence: CH' = HC' = O;
Exact reconstruction: H'H + C'C = I;
Normalization: HI = -Y2I, where 1= { ..., 1, 1, I, ...}.

We will use the abbreviation OQF to refer to one or both elements of such a pair.
In this normalization, H is the low-pass filter while C is the high-pass filter.

If H and G are formed respectively from the sequences h and g, the duality and
independence conditions satisfied by an OQF pair are equivalent to the following
equations:

L hek) hek + 2n) = L g(k) g(k + 2n) = ben)
k k

(25)

L g(k) hek + 2n) = L h(k)g(k + 2n) = O.
k k
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For orthogonal QFs, we have a stronger result than Lemma 2.8:

Lemma 2.9. The orthogonal QF conditions imply that GI = 0,H'l = ~l and
IG*11 = ~l. 2

Pro of This calculation may be found in Ref. 17, pp.159-160.

If H, G are a pair of orthogonal QFs and p is any constant with Ipl = 1, then
H, pG are also orthogonal QFs. Renee by taking p = ~ I kg(2k) we can arrange that

1I g(2k) =-I g(2k + 1) = .tx-
k k '12

(26)

As in Equation (23), this will be called the conventional normalization of an orthogo-
nal high-pass filter.

Given h satisfying Equation (25), we can generate a conjugate g to satisfy the
rest of the orthogonal QF conditions by choosing its coefficients as follows," using
any integer M:

g(n) = (-1)" h(2M + 1- n), n e. Z. (27)

Notice that this sequence g is conventionally normalized.
Proposition 2.7 shows that periodization of an orthogonal QF pair to an even pe-

riod 2q preserves the orthogonality conditions, and also preserves the sums over the
even and odd indices, and thus Lemma 2.9 remains true if we replace h and g with
h2q and g2q.

Self-duality gives H'HH'H = H'H and G'GG'G = G'G. Notice that H'H and G'G
are selfadjoint, so H'H and G'G are orthogonal projections.

2.5. Phase Response
We wish to recognize features of the original signal from the coefficients pro-

duced by transformations involving QFs, so it is necessary to keep track of which
portion of the sequence contributes energy to the filtered sequence.

Suppose that F is a finitely supported filter with filter sequence fin). For any
sequence u E /2, if Fuiri) is large at some index n E Z, then we can conclude that
u(k) is large near the index k = 2n. Likewise, if F'uin) is large, then there must be
significant energy in u(k) near k = n12. We can quantify this assertion of nearness
using the support of I. or more generally by computing the position of ( and its un-
certainty computed with Equations (3) and (5). When the support of (is large, the
position method gives amore precise notion of where the analyzed function is eon-
centrated.

Consider what happens when fin) is concentrated near n = 2T:

Fu(n) =I (0) u(2n - J) =I (U + 2T) u(2n - j - 2T). (28)
jeZ jeZ

Since ((j + 2T) is concentrated aboutj = 0, we can conclude by our previous reason-
ing that if Fu(n) is large, then u(k) is large when k"" 2n - 2T. Similarly,
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F*u(n) = L f(2j - n) u(;) = L fc2j - n + 21) u(j + 1). (29)
jEZ jEZ

Since fc2j - n + 21) is concentrated about 2j - n = 0, we conclude that if F'utn) is big
then u(j + 1') must be big where j ~ n/2, which implies that u(k) is big when
k ~ n/2 + T.

Decimation by 2 and its adjoint respectively cause the doubling and halving of
the indices n to get the locations where u must be large. The translation by T or
-2T can be considered a »shift- induced by the filter convolution. We can precisely
quantify the location of portions of a signal, measure the shift, and correct for it
when interpreting the coefficients produced by applications of F and F'. We will see
that nonsymmetric filters might shift different signals by different amounts, with a
variation that can be estimated by a simple expression in the filter coefficients. The
details of the shift will be called the phase response of the filter.

2.5.1. Shifts for Sequences

The notion of position for a sequence is the same as the one for functions defined
in Equation (5), only using sums instead of integrals:

der 1 '" 2
du] = IIul12ć: klu(k)1 . (30)

This quantity, whenever it is finite, may also be called the center of energy of the
sequence u E ,/2 to distinguish it from the function case.

The center of energy is the first moment of the probability distribution function
(or pdf) defined by lu(n)12/ Ilu112.We will say that the sequence u is well-localized if
the second moment of that pdf also exists, namely if

L k2Iu(k)12 = IIkul12 < 00

kEZ

(31)

Afinite second moment insures that the first moment is also finite, by the Cauchy-
Schwarz inequality:

L klu(k)12 = (ku, u) ~ likuiiiluli < 00.

kEZ

If UE/,2 is a finitely supported sequence (say in the interval la, b]) then
a s du] ~ b.

Another way of writing c[u] is in Dirac's bra and ket notation:

2 der '" -[zz] du] = (ulXlu) = (u, Xu) = L.. u(i) X(iJ) u(;), (32)

where
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der {i if i =j,
X(iJ) = i8(i -)) = diag ]..., -2, -1,0,1,2, 3,...J = O', 'f' .

1 t "').
(33)

To simplify the formulas, we will always suppose that Ilull = 1. We can also suppose
that f is an orthogonal QF, so Lk tek) f(k + 2)) = 8(j). Then FF* = I, F' is an isometry
and F'F is an orthogonal projection. Since lIF*ull = [zz]= 1, we can compute the center
of energy of F'u as c [F'uJ = (F'ulXlF'u) = (uIFXF'lu). We will call the the double
sequence FXF' between the bra and the ket the phase response of the adjoint eon-
volution-decimation operator F' defined by the filter sequence f Namely,

FXF'(i,)) = I k f(2i - k) l(2j - k).
k

(34)

Now

_ der
FXF'(i,)) = I ([i +))J + k) f(U - jJ - k) f(U - iJ - k) = 2X(iJ) - Cr(iJ).

k

Bere 2X(i,)) = (i +j) L:k f(U - jJ - k) leU - iJ - k) = 2i8(i - j) as above, since f is an or-
thogonal QF, while

der", -
Cr(i,)) = L. k f(k - [i - jJ) f(k - U -iJ).

k

(35)

Thus c[F'uJ = 2c[uJ - (uICrlu). Cr is evidently a convolution matrix: Cli,j) = r{i - j)
so that Cr u = y * u. The function y is defined by the following formula:

der", _
y(n) = L. k f(k - n) f(k + n).

k

(36)

From this formula it is easy to see that y(n) = Y(-n), thus y<~)= j'{-,;) = Y(~) => r E R.
This symmetry of y make s the matrix Cr selfadjoint. A10ng its main diagonal,
Cr(i,i) = y(0) = c[tJ. Other diagonals of Cr are constant, and if f is supported in the
finite interval [c, b], then Cli,)) = y(i -)) = O for li - ji> Ib - al.

We can subtract the diagonal from C, by writing Cr= C7 + c[tJI, which is the same
as the decomposition y(n) = f(n) + c[tJ8(n). This gives a decomposition of the phase
response matrix:

FXF' = 2x - c[tJI - Cf

Thus FXF' is mu1tiplication by the linear function 2x - c[fJ minus convolution
with f. We will say that f has a linear phase response if f == O.

Proposition 2.10. Suppose that f = {f(n) : n E Z} satisfies L:k tek - n) f(k + n) = 8(n)
for n E Z. If f is Hermitean symmetric ar antisymmetric about so me integer or half
integer T, then the phase response of f is linear.
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Proof: We have f(n) = ±{(2T - n) for all n E Z, taking + in the symmetric case and -
in the antisymmetric case. Now f(O) = O for all filters. For n *- O we have

f(n) =I k f(k - n) {(k - n) =I k {(2T - k + n) f(2T - k - n) =

k k

= 2T I {(k + n) f(k - n) - I k {(k + n) f(k - n) = O - f(n).
k k

Thus we have f = O for all n E Z.
The linear function shifts the center of energy x to 2x - c[f], and the convolution

operator f perturbs this by a »deviation- (u, f * u)/lluI12. We can denote the maxi-
mum value of this perturbation by d[f]. By Plancherel's theorem and the convolu-
tion theorem, the deviation is (u, iP, u)/llul12 and its maximum value is given (using
Proposition 2.6) by the maximum absolute value of iP(~):

d[f] = sup] IYO(~)1: ~ E [O,l]}. (37)

Now f(n) = iPC-n) is symmetric just like y, so its Fourier transform iP is purely real
and can be computed using only cosines as follows:

YO(~) = 2I y(n) cos 2rrn~.
n=l

(38)

The critical points of YO are found by differentiating Equation (38):

ro'(~) = -4rr I n y(n) sin 21tn~.
n~l

(39)

It is evident that ~ = O and ~ = 112are critical points. For the 17 orthogonal QFs
listed in the appendix, we can show that liP(~)1 achieves its maximum at ~ = 112,
where

yo (tJ = 2 f (-1ty(n) = 2 f f (-1)" k f(k - n) {(k + n).
n e L n=-oo n e L

(40)

Graphs of yo for some of the example OQFs can be seen in Figures 1 through 4.
Values of the quantities df] and d[f] for the example OQFs are listed in Table I.

Notice that if g(n) = (-1)n h(2M + 1 - n), so that h and g are a conjugate pair of filters,
and [supp gl = [supp hi = 2M is the length of the filters, then d[g] = d[h] and c[g] +
dh] = 2M - 1. This also implies that Ch(iJ) = -CgCij), so that the function iP corre-
sponding to the filter h is just the negative of the one corresponding to g.

We can put the preceding formulas together into asingle theorem:

Theorem 2.11. (OQF Phase Shifts) Suppose that u E ,.cl and that F: /,2 ~ /,2 is
eonuolution and deeimation by two with an orthogonal QF f E /' 1. Suppose that c[ u]
and e[ fJ both exist. Then
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Figure 1. ,P, '1, and]p for »Beylkin 18« high-pass OQF.
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Figure 2. ,P, '1, and ]p for »Coiflet 18« low-pass OQF.
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Figure 3. ,P, '1, and ]p for »Daubechies 18« high-pass OQF.

where ,P E /"2 is the sequence

c[F'u) = 2c[u) - c[tJ - (u, rf! * u) / Ilu112,



16

20

O.

10-10

-0.5

-0.75

-1 -10 -5

M. V. WICKERHAUSER

Figure 4. -I, r, and YO for »Vaidyanathan 24« low-pass OQF.

Table I: Center-of-energy shifts and errors for some
example OQFs.

f [supp t1 Hor G c[f] d[f]

B 18 H 2.4439712920 2.6048841893
G 14.5560287079 2.6048841893

C 6 H 3.6160691415 0.4990076823
G 1.3839308584 0.4990076823

12 H 4.0342243997 0.0868935216
G 6.9657756002 0.0868935217

18 H 6.0336041704 0.1453284669
G 10.9663958295 0.1453284670

24 H 8.0333521640 0.1953517707
G 14.9666478359 0.1953517707

30 H 10.0333426139 0.2400335062
G 18.9666573864 0.2400330874

D 2 H 0.5000000000 0.0000000000
G 0.5000000000 0.0000000000

4 H 0.8504809471 0.2165063509
G 2.1495190528 0.2165063509

6 H 1.1641377716 0.4604317871
G 3.8358622283 0.4604317871

8 H 1.4613339067 0.7136488576
G 5.5386660932 0.7136488576

10 H 1.7491114972 0.9711171403
G 7.2508885027 0.9711171403

12 H 2.0307505738 1.2308332718
G 8.9692494261 1.2308332718

14 H 2.3080529576 1.4918354676
G 10.6919470423 1.4918354676

16 H 2.5821186257 1.7536045071
G 12.4178813742 1.7536045071

18 H 2.8536703515 2.0158368941
G 14.1463296483 2.0158368941

20 H 3.1232095535 2.2783448731
G 15.8767904464 2.2783448731

V 24 H 19.8624838621 3.5116226595
G 3.1375161379 3.5116226596
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yD(n) ={t k f(k - n) f(k + n),

The last term satisfies the sharp inequality

where

k=-oo n e L

d[f)=2 L L (-ltkf(k-n){(k+n) .

If d[f] is small, then we can safely ignore the deviation of F'u from a pure shift of
u by e[f]. In that case, we will say that c[F'u] ""2e[u]- e[f) and c[Fu] ""k[u]- %e[f).
We note that the »C« filters have the smallest errors d[f]; these are the filters to
use if we wish to extract reasonably accurate position information.

If we apply a succession of filters FiF; ... F'L> then by induction on L we can com-
pute the shifts as follows:

where

(42)

Similarly, if u = Fi F; ... PLu, so that FL ... F2 Fl U = u, then the following holds:

where

(44)

Now suppose that ih, g) is a conjugate pair of OQFs, so that t. E {h> g} for each
i = 1, 2, ..., L. Then d[f;l is constant1y d[h] and we have the simpler estimates for
the deviation from a pure shift:

and (45)

Suppose that we encode the sequence of fi1ters Fi F; ... F'L as the integer
b = b12L-1 + b22L-2 + ... + bL2°, where

(46)
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Then we can write c[fk] = b, c[g] + (1 + bk) c[h] = c[h] + bk(c[g]- c[hl). Notice that the
bit-reversal of b, considered as an s-bit binary integer, is the integer
b' = b12° + b221 + ... + bL2L -1. This simplifies the formula for the phase shift as fol-
lows:

Corollary 2.12. If hand g are a conjugate pair of OQFs with centers of energy c[ h]
and c[ g] , respectively, then

c[F;. F;, ... Pi, u] = 2L c[u]- (2L - 1) c[h]- (c[g] - c[hl)b' - e", (47)

where Ic'l ~ (2L - 1) d[h] and b = b12L-1 + b22L-2 + ... + bL encodes the sequence of fil-
ters as in Equation (46), and b' is the bit-reversal of b considered as an L-bit binary
integer.
Proof" We observe that

L

c[Fi F; ... Pi, u] = 2L c[u]- L 2L-k [c[h] + bL-k + l(C[g]- c[hl)] - c'
k;l

L-1 L-1
= 2L c[u]- c[h] L 2s - (c[g]- c[h]) L s., 12' - r/

8;0 s;O

=2L c[u]- (2L - 1) c[h]- (c[g] - c[h])b' - e",

The estimate on e" follows from Equation (45).

2.5.2. Shifts in the Periodic Case
Defining a center of energy for a periodic signal is problematic. However, if a

periodic signal contains a component with a distinguishable scale much shorter than
the period, then it may be desirable to locate this component within the period. If
the component is characterized by a large amplitude found by filtering, then we can
locate it by interpreting the position information of the filter output. We must adjust
this position information by the center-of-energy shift caused by filtering, and allow
for the deviation due to phase nonlinearity. In the periodic case, the shift can be ap-
proximated by a cyclic permutation of the output coefficients.

We can compute the center of energy of a nonzero q-periodic sequence uq as fol-
lows:

Since c[uq] is a convex combination of 0, 1, ..., q - 1, we have 0 ~ c[uq] ~ q - 1.
Now suppose that uq is the q-periodization of U and that all but e of the energy in
the sequence U comes from coefficients in one period interval Jo dJ/ Uoq,joq + q - 1],
for some integer i,and some positive e « 1.Wemust also suppose that U has a finite
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position uncertainty which is less than q. These conditions may be succinctly com-
bined into the following:

1

(J?;J-uo+t)qr IUUlI')' <q,lul. (48)

Equation (48) and some straightforward computations (see Ref. 17, pp.172-174)
produce the following inequalities:

IIIuql12 [c[uq] - ~J -lluql12 [c[u] - joq - ~JI < 2q8 (1 + 58) Ilu112;

IIIuql12 - IIuI121 < 48 (1+ 58) Ilu112.
(49)

We can replace IIuql12 with IIuI12 in the left inequality of

lC[uq]- c[u] + joql < 4q8 (1+ 58) (50)

Renee, if almost all of the energy of u is concentrated on an interval of length q,
then transient features of u have aseale smaller than q and will become transient
features of uq upon q-periodization. These will be located at nearly the same position
modulo q as features of u, and we can use the following approximation to locate the
center of energy of a periodized sequence to within one index:

der
c[Uq] = C[U] mod q. (51)

We interpret the expression »X mod q« to mean the unique real number :X: in the in-
terval [O, q] such that x = x' + nq for some integer n.

We can use Proposition 2.7 to compute the following approximation:

c[F*2q Uq] = c[(F'u)2q] = c[F'u] mod 2q = 2c[u] - c[f] - (U ,rP * u) IIIuI12 mod 2q.

Now (u, rP * u) I IIuI12 is bounded by d[f] so we plan to ignore it as before, though we
must still verify that the OQFs satisfy Equation (48) with sufficiently small 8. Table
II shows the value of e for a few example OQFs and a few example periodizations.
In all cases e < 1, so the table lists only the digits after the decimal point.

Since there is no unique way to deperiodize uq to an infinite sequence u, it is
necessary to adopt a convention. The s.implest would be the following:

u(n) = {u/n), if O::; n < q,
0, otherwise.

(52)
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Table II: Concentration of energy for some example orthogonal QFs.

[supp t1 Hor q=2 q = 4 q=6 q = 8 q = 10 q = 12 q = 14
G q = 16 q = 18 q = 20 q = 22 q = 24 q = 26 q = 28

B 18 H 0.703612 0.279300 0.142238 0.074249 0.033688 0.014072 0.005406
0.001415

G 0.734120 0.324821 0.163452 0.087139 0.038976 0.016137 0.006156
0.001590

C 6 H 0.247013 0.102745
G 0.268885 0.069768

1~ H 0.263115 0.072831 0.033281 0.010694 0.001009
G 0.251051 0.070544 0.028711 0.009039 0.001205

18 H 0.299435 0.100032 0.052849 0.018963 0.007231 0.002661 0.000621
0.000040

G 0.291211 0.098243 0.046702 0.017889 0.007332 0.002556 0.000708
0.000045

24 H 0.329096 0.120402 0.065564 0.027330 0.014121 0.005809 0.002328
0.000890 0.000331 0.000036 0.000002

G 0.322880 0.119051 0.060292 0.027004 0.013983 0.005754 0.002531
0.000936 0.000367 0.000039 0.000002

30 H 0.354113 0.136558 0.075916 0.035107 0.020482 0.009303 0.004743
0.002035 0.000958 0.000291 0.000138 0.000026 0.000002 0.000000

G 0.349093 0.135636 0.071338 0.035330 0.020121 0.009401 0.005009
0.002111 0.001051 0.000285 0.000134 0.000024 0.000002 0.000000

D 4 H 0.171193
G 0.273971

6 H 0.304120 0.050230
G 0.259392 0.073125

8 H 0.308900 0.102651 0.017895
G 0.323009 0.122720 0.023634

10 H 0.342554 0.135552 0.040530 0.006627
G 0.449328 0.116023 0.053618 0.008251

12 H 0.422494 0.137647 0.058646 0.016224 0.002475
G 0.463486 0.160047 0.064599 0.020210 0.002964

14 H 0.524235 0.169394 0.072909 0.023686 0.006412 0.000924
G 0.508880 0.223013 0.076843 0.029062 0.007680 0.001077

16 H 0.524480 0.210433 0.085366 0.032061 0.009408 0.002489 0.000344
G 0.587024 0.220427 0.103528 0.038321 0.011119 0.002899 0.000393

18 H 0.564454 0.243878 0.102607 0.045068 0.014338 0.003662 0.000948
0.000128

G 0.636888 0.238832 0.128066 0.050826 0.016666 0.004213 0.001082
0.000144

H 0.634131 0.248979 0.120135 0.051443 0.024453 0.006775 0.001411
20 0.000354 0.000047

G 0.672192 0.282813 0.138670 0.060597 0.025714 0.007739 0.001591
0.000354 0.000053

V 24 H 0.872011 0.390176 0.217686 0.116186 0.062451 0.036782 0.017151
0.006270 0.001937 0.000629 0.000191

G 0.829783 0.355441 0.190529 0.101064 0.057180 0.034695 0.015266
0.005653 0.001764 0.000574 0.000175

3. WAVELET REGISTRATION

We now consider the second problem: an algorithm for finding the best shift for
a periodic discrete wavelet transform. Our procedure is to find which periodic shift
of a signal produces the lowest information cost.
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3.1. Information Cost
Before we can define an optimum representation we need to have a notion of

information cost, or the expense of storing the chosen representation. So, define an
information cost functional on sequences of real (or complex) numbers to be any real-
valued functional M satisfying the additivity condition below:

M(u) = L p(lu(k)I); p(O) = O.
kEZ

(53)

Here Il is a real-valued function defined on [0,00). We suppose that Lk p(lu(k)l) con-
verges absolutely; then M will be invariant under rearrangements of the sequence
u. Also, M is not changed if we replace u(k) by -u(k) for some k, or, in the case of
complex-valued sequences u, if we multiply the elements of the sequence by complex
constants of modulus 1. We take M to be real-valued so that we can compare two
sequences u and u by comparing M(u) and M(u).

For each x EX we can take u(k) =B* x(k) = (bk' x), where bk E B is the kth vector
in the basis B E 9J. In the finite-rank case, we can think of bk as the kth column of
the matrix B, which is taken with respect to a standard basis ofX. The information
cost of representing x in the ba~ is then M(B'x). This defines a functional .~ on
the set of bases ,q; for X:

...1{: 9J~ R; B ~ M(B*x). (54)

This will be called the M-information cost of x in the basis B.
We define the best basis for x E X, relative to a collection 9J of bases for X and

an information cost functional M, to be that B E 9Jfor which M(B'x) is minimal. If
we take ,9] to be the complete set of orthonormal bases for X, then .~ defines a func-
tional on the group O(X) of orthogonal (or unitary) linear transformations of X. We
can use the group structure to construct informatian cost metrics and interpret our
algorithms geometrically.

We can define all sorts of real-valued functional s M, but the most useful are
those that measure concentration. By this we mean that M should be large when
elements of the sequence are roughly the same size and small when all but a few
elements are negligible. This property should hold on the unit sphere in /2 if we
are comparing orthonormal bases, or on a spherical shell in /2 if we are comparing
Riesz bases or frames.

Some examples of information cost functionals are:
• Number above a threshold
We can set an arbitrary threshold e and count the elements in the sequence x
whose absolute value exceeds e. i.e., set

I(W) = {lwl, if Iwl ~ e,
I O, if Iwl <co

This information cost functional counts the number of sequence elements
needed to transrnit the signal to a receiver with precision threshold e .
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• Concentration in I"p
Choose an arbitrary O< P < 2 and set J.1(w)= Iwlp so that M(u) = II{ u}II~. Note
that if we have two sequences of equal energy Ilull = Ilullbut M(u) < M(u), then
u has more of its energy concentrated into fewer elements.

• Entropy
Define the entropy of a vector u = { u(k)} by

71' (u) = ~ pek) log p~) (55)

where pek) = Ilu(k)112IIIul12is the normalized energy of the kth element of the se-
quence, and we set p log 1.= O if p = o. This is the entropy of the probability
distribution function (or pdf) given by p. It is not an information cost func-
tional, but the functional leu) = ~k lu(k )1210g(1 I lu(k )12) is. By the relation

71' (u) = Ilull-2l(u) + log Ilu112, (56)

minimizing l over a set of equal length vectors u minimizes 71' on that set.
• Logarithm of energy
Let M(u) = L ~=llog lu(k)12. This may be interpreted as the entropy of a Gauss-
Markov process k >-) u(k) which produces N-vectors whose coordinates have
variances ui = lu(1)12, ... , u'fv = lu(N)i2. We must assume that there are no un-
changing components in the process, i.e., that uZ *" O for all k = 1, ...,N. Mini-
mizing Mtu) over B E O(X) finds the Karhunen-Loeoe basis for the process;
minimizing over a »fast« library !lJ finds the best »fast« approximation to the
Karhunen- Loeve basis.

3.1.1. Entropy, Information, and Theoretical Dimension

Suppose that {x(n)}~=l belongs to both L2 and L2 log L. If x(n) = O for all suffi-
ciently large n, then in fact the signal is finite-dimensional. Generalizing this notion,
we can compare sequences by their rate of decay, i. e., the rate at which their ele-
ments become negligible if they are rearranged in decreasing order.

We define the theoretical dimension of a sequence {x(n): NEZ} to be

d = exp (~ pen) log p(~))

where pen) = Ix(n)12 / Ilx112.Note that d = exp 71' (x) where .71' (x), defined in Equation
(55) above, is the entropy of the sequence x.

(57)

3.1.2. Searching for Minimum Cost

Beylkin- observed earlier that computing the periodic discrete wavelet transform
of all N circulant shifts of an N-point periodic signal requires computing only N log,
N coefficients. If we build a complete binary tree with information cost tags com-
puted from from appropriate subsets of the shifted coefficients, then the best com-
plete branch will give a representation of the circulant shift which yields the lowest
cost transform. After solving the technical problem of ties, the computed shift can
be used as a registration point for the signal.



TIME LOCALIZATION TECHNIQUES 23

The first step is to build a binary tree of the information costs of the wavelet
subspaces computed with all circulant shifts. We write the cost of a node of the tree
into an auxiliary variable attached to the node, which will later be added together
with the other nodes along the branch to give a branch cost. We also assume that
the output array is at least q/2 elements long, to accommodate the intermediate out-
puts of convolution and decimation. The algorithm is implemented recursively as fol-
lows:

shiftscosts(output y; input x; parameter q): Costs of circulant shifts
• If q :o; 1then return (this is the recursion termination condition).
• Convolve-decimate the q-periodic input sequence {x(l), ... , x(q)} to a q/2··peri-

odic output sequence {y(l), ... , y(q /2)} using the high-pass filter G.
• Compute the information cost of y and store ito
• Convolve-decimate the q-periodic input sequence {x(l), ... , x(q)} to a q/2-peri-

odic output sequence {y(l), ... , y(q /2)} using the low-pass filter H.

• Apply shiftscosts to the q/2-periodic sequence {y(1),y(2), ... ,y(q/2)}.

• Apply shiftscosts to the q/2-periodic sequence {y(2), ... ,y(q/2),y(1)}.

The function shiftscosts can also be used to accumulate the costs of a a whole
branch into its leaf at the same time that we compute the coefficients, as we descend.
One of the inputs to the function is q, and we assume that the input sequence is
q-periodic and registered at O. Then the information cost of a 2L-point discrete pe-
riodic wavelet transform shifted by T will be found in the node at level L whose block
index is the bit-reverse of T. We can extract these values with a utility function, then
use a bubble sort to find the least one while searching in bit-reversed order, and re-
turn its index. This finds the least circulant shift which yields the minimal infor-
mati on cost.

To register a periodic signal, we compute the registration point and then circu-
lar1y shift the signal so that the registration point becomes index zero. It is also pos-
sible to avoid the use of a binary tree data structure by directly writing the costs of
circulant-shifted wavelet coefficients to an array.

Wavelet registration works because the information cost of the wavelet subspace
Wk of a 2L-periodic signal is a 2k-periodic function for each 0:0; k :o; L. Thus the infor-
mation cost in the node at level k, block n is the information cost of Wk with a cir-
culant shift by n' (mod 2k), where n' is the length k bit-reversal of n. A branch to a
leaf node at block index n contains the wavelet subspaces W1, ... , WL of the periodic
discrete wavelet transform with shift n' . The scaling subspace VL in the periodic
case always contains the unweighted average of the coefficients, which is invariant
under shifts.

We can define a shift cost function for a 2L-periodic signal to be the map fin) =
cn'L> the information cost in the tag of the costs tree at level L and block index n' ,
the bit-reverse of n.

Two 2L-point signal s whose principal difference is a circulant shift can be com-
pared by cross-correlating their shift cost functions. This is an alternative to tradi-
tional cross-correlation of the signals themselves, or multiscale cross-correlation of
their wavelet and scaling subspaces as done in Ref. 9.
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APPENDIX: ORTHOGONAL QUADRATURE FILTER COEFFICIENTS

Here we give the coefficients of the 17 orthogonal quadrature filter pairs mentioned
in the text. The reader interested in obtaining machine-readable versions of these co-
efficients by electronic mail should send a request to Victor@Math.WUStL.Edu, or
else they may be found on the diskette accompanying Ref. 17. We omit any lists of
biorthogonal filter coefficients, since those available to the author are symmetric or
antisymmetric and therefore have linear phase reponse and a shift which is either
O or 1/2. The intrepid reader may obtain those as well by email or diskette, from
the mentioned sources.

Beylkin 18: Low-pass High-pass Coifman 18: Low-pasa High-pass

9.9305765374353927 E-2 6.4048532852124535 E--4 -3.7935128643778759 E-3 -3.4599773197402695 E-5
4.2421536081296141 E-l 2.7360316262586061 E-3 7.7825964256707869 E-3 7.0983302505704928 E-5
6.9982521405660059 E-l 1.4842347824723461 E-3 2.3452696142119103 E-2 4.6621695982014403 E-4
4.4971825114946867 E-l -1.0040411844631990 E-2 "':6.5771911281431228 E-2 -1.1175187708269618 E-3
-1.1092759834823430 E-l -1.4365807968852611 E-2 -6.1123390002955698 E-2 -2.5745176881279692 E-3
-2.6449723144638482 E-l 1.7460408696028829 E-2 4.0517690240961679 E-l 9.0079761367322896 E--3
2.6900308803690320 E-2 4.2916387274192273 E-2 7.9377722262562034 E-l 1.5880544863615901 E-2
1.5553873187709380 E-l -1.9679866044322120 E-2 4.2848347637761869 E-l -3.4555027573344464 E-2

-1.7520746266529649 E-2 -8.8543630622924835 E-2 -7.1799821619170590 E-2 -8.2301927106320283 E-2
-8.8543630622924835 E-2 1.7520746266529649 E-2 -8.2301927106320283 E-2 7.1799821619170590 E-2
1.9679866044322120 E-2 1.5553873187709380 E-l 3.4555027573344464 E-2 4.2848347637761869 E-l
4.2916387274192273 E-2 -2.6900308803690320 E-2 1.5880544863615901 E-2 -7.9377722262562034 E-l
-1.7460408696028829 E-2 -2.6449723144638482 E-l -9.0079761367322896 E-3 4.0517690240961679 E-l
-1.4365807968852611 E-2 1.1092759834823430 E-l -2.5745176881279692 E-3 6.1123390002955698 E-2
1.0040411844631990 E-2 4.4971825114946867 E-l 1.1175187708269618 E-3 -6.5771911281431228 E-2
1.4842347824723461 E-3 -6.9982521405660059 E-l 4.6621695982014403 E-4 -2.3452696142119103 E-2

-2.7360316262586061 E-3 4.2421536081296141 E-l -7.0983302505704928 E-5 7.7825964256707869 E-3
6.4048532852124535 E-4 -9.9305765374353927 E-2 -3.4599773197402695 E-5 3.7935128643778759 E--3

Vaidyanathan 24: Coifman 24:
Low-pass High-pass Low-pass High-pass

-6.2906118190747523 E-5 4.5799334110976718 E-2 8.9231366822027571 E-4 -1.7849845586999338 E-6
3.4363190482102919 E-4 -2.5018412950466218 E-l -1.6294920131108490 E-3 3.2596804448576129 E-6
-4.5395661963721929 E-4 5.7279779321073432 E-l -7.3461663276562349 E-3 3.1229876078043358 E-5
-9.4489713632194927 E-4 -6.3560105987221494 E-l 1.6068943964069236 E-2 -6.2339033865764618 E-5
2.8438345468355646 E-3 2.0161216177530866 E-l 2.6682300155628804 E-2 -2.5997455231942175 E-4
7.0813750405244471 E--4 2.6349480248845991 E-l -8.1266699680313054 E-2 5.8902075681143784 E-4
-8.8391034086138780 E-3 -1.9445047176647817 E-l -5.6077313316471950 E-2 1.2665619286795187 E-3
3.1538470558970040 E-3 -1.3508422712948126 E-l 4.1530840703043015 E-l -3.7514361569249027 E-3
1.9687215010072714 E-2 1.3197166141697772 E-l 7.8223893092049879 E-l -5.6582866859460380 E-3

-1.4853448005230099 E-2 8.3928884366112830 E-2 4.3438605649146839 E-l 1.5211731527239149 E-2
-3.5470398607283453 E-2 -7.7709750901969410 E-2 -6.6627474263000752 E-2 2.508226184514693~ E-2
3.8742619293411440 E-2 -5.5892523691373548 E-2 -9.6220442033563697 E-2 -3.9334427122913219 E-2
5.5892523691373548 E-2 3.8742619293411440 E-2 3.9334427122913219 E-2 -9.6220442033563697 E-2
-7.7709750901969410 E-2 3.5470398607283453 E-2 2.5082261845146933 E-2 6.6627474263000752 E-2
-8.3928884366112830 E-2 -1.4853448005230099 E-2 -1.5211731527239149 E-2 4.3438605649146839 E-l
1.3197166141697772 E-l -1.9687215010072714 E-2 -5.6582866859460380 E-3 -7.8223893092049879 E-l
1.3508422712948126 E-l 3.1538470558970040 E-3 3.7514361569249027 E-3 4.1530840703043015 E-l

-1.9445047176647817 E-l 8.8391034086138780 E-3 1.2665619286795187 E-3 5.6077313316471950 E-2
-2.6349480248845991 E-l 7.0813750405244471 E--4 -5.8902075681143784 E-4 -8.1266699680313054 E-2
2.0161216177530866 E-l -2.8438345468355646 E-3 -2.5997455231942175 E-4 -2.6682300155628804 E-2
6.3560105987221494 E-l -9.4489713632194927 E-4 6.2339033865764618 E-5 1.6068943964069236 E-2
5.7279779321073432 E-l 4.5395661963721929 E-4 3.1229876078043358 E-5 7.3461663276562349 E-3
2.5018412950466218 E-l 3.4363190482102919 E--4 -3.2596804448576129 E-6 -1.6294920131108490 E-3
4.5799334110976718 E-2 6.2906118190747523 E-5 -1. 7849845586999338 E-6 -8.9231366822027571 E--4
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Coifrnan 6: Low-pass High-pass Coifman 12: Low-pass High-pass

3.8580777747886749 E-2 2.2658426519706856 E-l 1.6387336463179785 E-2 -7.2054944536811512 E-4
-1.2696912539620520 E-l -7.4568755893443428 E-l -4.1464936781966485 E-2 1.8232088709100992 E-3
-7.7161555495773498 E-2 6.0749164138568412 E-l -6.7372554722299874 E-2 5.6114348193659885 E-3
6.0749164138568412 E-l 7.7161555495773498 E-2 3.8611006682309290 E-l -2.3680171946876750 E-2
7.4568755893443428 E-l -1.2696912539620520 E-l 8.1272363544960613 E-l -5.9434418646471240 E-2
2.2658426519706856 E-l 3.8580777747886749 E-2 4.1700518442377760 E-l 7.6488599078264594 E-2

-7.6488599078264594 E-2 4.1700518442377760 E-l
-5.9434418646471240 E-2 -8.1272363544960613 E-l
2.3680171946876750 E-2 3.8611006682309290 E-l
5.6114348193659885 E-3 6.7372554722299874 E-2

-1.8232088709100992 E-3 -4.1464936781966485 E-2
-7.2054944536811512 E-4 -1.6387336463179785 E-2

Coifman 30: Low-pass High-pass Haar: Low-pass: High-pass

-2.12080863336306810 E-4 -9.5157917046829356 E-8 7.07106781186547 E-l 7.07106781186547 E-l
3.58589677255698600 E-4 1.6740829374930063 E-7 7.07106781186547 E-l -7.07106781186547 E-l
2.17823630484128470 E-3 2.0638063902331633 E-6

-4.15935878160399350 E-3 -3.7345967496715605 E-6 Daubechies 4: Low-pass Higb-pass
-1.01311175380455940 E-2 -2.1315014062244917 E-5
2.34081567615927950 E-2 4.1340484491956856 E-5 4.8296291314453416 E-l -1.2940952255126037 E-l
2.81680290621414970 E-2 1.4054114890107723 E-4 8.3651630373780794 E-l -2.2414386804201339 E-l

-9.19200105488064130 E-2 -3.0225951979184068 E-4 2.2414386804201339 E-l 8.3651630373780794 E-l
-5.20431632162377390 E-2 -6.3813129615137752 E-4 -1.2940952255126037 E-l -4.8296291314453416 E-1
4.21566206728765440 E-l 1.6628637690858134 E-3
7.74289603740284550 E-l 2.4333732092240538 E-3 Daubechies 6: Low-pass High-pass
4.37991626228364130 E-l -6.7641854186633200 E-3

-6.20359639056089690 E-2 -9.1642311530462268 E-3 3.3267055295008263 E-1 3.5226291885709533 E-2
-1.05574208705835340 E-l 1.9761779011723959 E-2 8.0689150931109255 E-l 8.5441273882026658 E-2
4.12892087407341690 E-2 3.2683574283249535 E-2 4.5987750211849154 E-1 -1.3501102001025458 E-l
3.26835742832495350 E-2 -4.1289208740734169 E-2 -1.3501102001025458 E-1 -4.5987750211849154 E-l

-1.97617790117239590 E-2 -1.0557420870583534 E-l -8.5441273882026658 E-2 8.0689150931109255 E-l
-9.16423115304622680 E-3 6.2035963905608969 E-2 3.5226291885709533 E-2 -3.3267055295008263 E-l
6.76418541866332000 E-3 4.3799162622836413 E-l
2.43337320922405380 E-3 -7.7428960374028455 E-l Daubechies 8:

-1.66286376908581340 E-3 4.2156620672876544 E-l Lcw.-pass High-pass
-6.38131296151377520 E-4 5.2043163216237739 E-2
3.02259519791840680 E-4 -9.1920010548806413 E-2 2.30377813309 E-l -1.05974017850 E-2
1.40541148901077230 E-4 -2.8168029062141497 E-2 7.14846570553 E-l -3.28830116670 E-2

-4.13404844919568560 E-5 2.3408156761592795 E-2 6.30880767930 E-1 3.08413818370 E-2
-2.13150140622449170 E-5 1.0131117538045594 E-2 -2.79837694170 E-2 1.87034811719 E-l
3.73459674967156050 E-6 -4.1593587816039935 E-3 -1.87034811719 E-1 -2.79837694170 E-2
2.06380639023316330 E-6 -2.1782363048412847 E-3 3.08413818360 E-2 -6.30880767930 E-l

-1.67408293749300630 E-7 3.5858967725569860 E-4 3.28830116670 E-2 7.14846570553 E-l
-9.51579170468293560 E-8 2.1208086333630681 E-4 -1.05974017850 E-2 -2.30377813309 E-l

Daubechies 10: Daubechies 12:
Low-pass High-pass Low-pass High-pass

1.60102397974 E-l 3.33572528500 E-3 1.11540743350 E-1 -1.07730108500 E-3
6.03829269797 E-1 1.25807519990 E-2 4.94623890398 E-l -4.77725751100 E-3
7.24308528438 E-l -6.24149021300 E-3 7.51133908021 E-l 5.53842201000 E-4
1.38428145901 E-1 -7.75714938400 E-2 3.15250351709 E-l 3.15820393180 E-2

-2.42294887066 E-1 -3.22448695850 E-2 -2.26264693965 E-1 2.75228655300 E-2
-3.22448695850 E-2 2.42294887066 E-l -1.29766867567 E-l -9.75016055870 E-2
7.75714938400 E-2 1.38428145901 E-l 9.75016055870 E-2 -1.29766867567 E-1

-6.24149021300 E-3 -7.24308528438 E-1 2.75228655300 E-2 2.26264693965 E-1
-1.25807519990 E-2 6.03829269797 E-l -3.15820393180 E-2 3.15250351709 E-1
3.33572528500 E-3 -1.60102397974 E-l 5.53842201000 E-4 -7.51133908021 E-l

4.77725751100 E-3 4.94623890398 E-l
-1.07730108500 E-3 -1.11540743350 E-l
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Daubechies 16 Daubechies 14
Low-pass Higb.-pass: Low-pass High=pass:

5.44158422430 E~2 ~1.l7476784000 E-4 7.78520540850 E~2 3.53713800000 E-4
3.12871590914 E-1 ~6.75449406000 E-4 3.96539319482 E~l 1.80164070400 E-3
6.75630736297 E-1 ~3.91740373000 E-4 7.29132090846 E~l 4.29577973000 E-4
5.85354683654 E~1 4.87035299300 E~3 4.69782287405 E~l ~1.25509985560 E~2
~1.58291052560 E~2 8.74609404700 E-3 ~1.43906003929 E~l ~1.65745416310 E~2
~2.84015542962 E~l ~1.39810279170 E~2 ~2.24036184994 E~l 3.80299369350 E~2
4.72484574000 E~4 ~4.40882539310 E~2 7.13092192670 E~2 8.06126091510 E~2
1.28747426620 E~l 1.73693010020 E~2 8.06126091510 E~2 ~7.13092192670 E~2
~1.73693010020 E~2 1.28747426620 E~l ~3.80299369350 E~2 ~2.24036184994 E~l
~4.40882539310 E~2 ~4.72484574000 E~4 ~1.65745416310 E~2 1.43906003929 s-i
1.39810279170 E~2 ~2.84015542962 E~l 1.25509985560 E~2 4.69782287405 E~l
8.74609404700 E-3 1.58291052560 E~2 4.29577973000 E~4 ~7.29132090846 E~l
~4.87035299300 E-3 5.85354683654 E~l ~1.80164070400 E~3 3.96539319482 E~l
~3.91740373000 E-4 ~6.75630736297 E-1 3.53713800000 E-4 ~7.78520540850 E-2
6.75449406000 E-4 3.12871590914 E-1
~1.l7476784000 E-4 ~5.44158422430 E~2 Daubechies 20:

Low-pass High-pass
Daubechies 18:

Low-pass Higb.-pass 2.66700579010 E~2 ~1.32642030000 E-5
1.88176800078 E~l ~9.35886700000 E~5

3.80779473640 E~2 3.93473200000 E~5 5.27201188932 E~l ~1.l6466855000 E~4
2.43834674613 E~l 2.51963189000 E~4 6.88459039454 E~l 6.85856695000 E~4
6.04823123690 E~l 2.30385764000 E~4 2.81172343661 E~l 1.99240529500 E~3
6.57288078051 s..i ~1.84764688300 E~3 ~2.49846424327 E--1 ~1.39535174700 E~3
1.33197385825 E~1 -4.28150368200 E~3 ~1.95946274377 E~1 ~1.07331754830 E~2
~2.93273783279 E~1 4.72320475800 E~3 1.27369340336 E~1 ~3.60655356700 E~3
~9.68407832230 E~2 2.23616621240 E~2 9.30573646040 E~2 3.32126740590 E~2
1.48540749338 E-1 ~2.50947115000 E~4 ~7.13941471660 E~2 2.94575368220 E~2
3.07256814790 E-2 ~6.76328290610 E~2 ~2.94575368220 E~2 ~7.13941471660 E~2
~6.76328290610 E~2 ~3.07256814790 E~2 3.32126740590 E~2 ~9.30573646040 E~2
2.50947115000 E-4 1.48540749338 E~l 3.60655356700 E~3 1.27369340336 E~l
2.23616621240 E-2 9.68407832230 E~2 ~1.07331754830 E~2 1.95946274377 s-i
~4.72320475800 E-3 ~2.93273783279 s-i 1.39535174700 E~3 ~2.49846424327 s-i
~4.28150368200 E-3 ~1.33197385825 E~l 1.99240529500 E~3 ~2.81172343661 z-i
1.84764688300 E~3 6.57288078051 E~l ~6.85856695000 E~4 6.88459039454 E~l
2.30385764000 E~4 ~6.04823123690 E~l ~1.l6466855000 E~4 ~5.27201188932 E~l
~2.51963189000 E~4 2.43834674613 s-i 9.35886700000 E~5 1.88176800078 E~l
3.93473200000 E~5 ~3.80779473640 E~2 ~1.32642030000 E'-5 ~2.66700579010 E~2
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SAŽETAK

Tehnike vremenske lokalizacije za wavelet-transformacije

Mladen Victor Wickerhauser

Razmatramo slijedeći par problema koji se odnose na ortonormirana kompaktno podržana
»wavelet--proširenja: (1) Uz wavelet-koeficijent dan njegovim nominalnim indeksima veličine
i pozicije, pronaći precizan položaj prijelazne pojave signala koja ga je prouzročila; (2) iz dva
skupa wavelet-koeficijenata odrediti da li su proizišli iz periodičnog signala i njegova pomaka
i, ako jesu, pronaći translaciju koja preslikava jedan u drugi. Oba su problema rješiva tradi-
cionalnim metodama nakon invertiranja wavelet-transformacije, no mi predlažemo dva alter-
nativna algoritma koji se zasnivaju isključivo na samim koeficijentima.




