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This paper proposes an approach to the problem of adaptation of neu-
ral networks (NN) to arbitrary tasks. It is well known that the functional
properties of a NN depend on its construction: on topological structure,
learning and activation methods, and signaloutput. A definition language
is developed for describing various constructions of NNs in the shape of
strings. This paper uses a model of a neuron which has a receptive field
and adaptable learning, activation and signaling, while the NN model eon-
sists of interconnected layers allowing feedforward, feedback and lateral
connections with asingle input and ouput layer. Adaptation of NNs is done
with a genetic algorithm (GA) using crossover, mutation, and proportional
selection operators on a population of strings that represent NNs. These
strings (and their respective NNs) are evolved until they find solutions to
given tasks which are defined as objective functions. The paper proposes a
solution to »deception«,an important problem concerning GA's convergence:
a strict hierarchy in the description of NNs based on ordered express ion
which decreases the probability of dual representations. This approach can
develop autodidactive NNs.

INTRODUCTION

Applications of neural networks (NN) can be loosely divided into two groups: op-
timization of complex problems in multidimensional spaces and robust associative
or classifying signal processing. The problem that is always encountered is how to
choose an appropriate construction of a NN which will be able to solve the required
task. The construction of an NN is given by its topology, activation and learning
method, as well as signaloutput. Wrongly chosen NN construction cannot solve the
given task, or solve them only partially.

Automatic adaptation of NN construction to a given task enables the adapted
NN to completely solve the task, but also to minimize the size of NN, thus shorten-
ing the time necessary for learning and, finally, the time of its response to stimuli.
In this work, genetic algorithms (GA) are used to find NN constructions which are
capable of solving arbitrary problems.
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GA can converge very fast to the complex space regions which contain good so-
lutions of the task due to their implicit parallelism, which is based on simultaneous
estimation of a vast number of subsolutions and the ability to combine these solutions.

This paper develops a specific language that describes the model of an individual
neuron and the topology of an arbitrary NN. Here, it will be called description lan-
guage. It is used to generate strings that define the constructions of arbitrary NNs
(the strings represent »genotypes- ofNNs). The strings are translated to realizations
of NNs using an interpretation function (the realization presents the »phenotype- of
the NN).

The second chapter describes genetic algorithm operators and the ir charac-
teristics, and explains the reasons for GA convergence. The third chapter gives a
general description of NNs, followed by the model used in this work. The fourth
chapter delves into the problem of deception that plagues interpretation functions,
and proposes the type of language that describes arbitrary NNs while decreasing the
occurrence of this problem. The fifth chapter concludes with descriptional abilities
of the proposed language and the expected results of this combined optimization ap-
proach.

GENETIC ALGORITHMS

Genetic algorithms are based on the principles of biological evolution which were
found by Charles Darwin and defined as »the suruiual of the fittest«.

The process of evolution works on a group of individuals that make a population.
Members of the population compete in accomodating to the environment. Competi-
tion is the basis of the natural selection: nonaccommodated members are rejected,
and accommodated members are reproduced, creating offspring that take the place
of rejected members. Reproduction is the mixing of characteristics of pairs of good
members to produce new members that possess some characteristics of one parent,
and other characteristics of the other parent. The second way of changing the popu-
lation is called mutation. Mutation randomly chooses a member of the population
and randomly changes some of its characteristics.!

The purpose of GA is to change the structure of some modifiable program by
changing the genetic code which represents ito The main problem is to find a eon-
venient genetic code that represents the modifiable program in a satisfactory way.

The members of the population are represented by genetic codes in the form of
strings, Researchers most often use strings consisting of binary values, but some-
times the strings have different interpretations.š Each member of the population is
represented by one string, and the group of all strings makes up the population.š

The GA procedure has the following steps:

L The function which defines the environment imposed on the strings has to be deter-
mined and the results which this function gives for each string are called fitness.

2. An initial population of strings has to be generated.

3. The strings are evaluated by the fitness function, and the selection is imposed on
the population based on the fitness factor of each string: bad strings are rejected,
and the best ones are chosen for reproduction with the probability proportional
to their fitness.
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4. Reproduction is preformed by crossover: a pair of strings are aligned along each
other, arandom point is selected, and the tails of strings after this point are in-
terchanged.

5. The offspring produced by reproduction replace the rejected strings.

6. Mutations are occasionally performed to prevent the population from becoming
uniform as a result of approaching the region of an optimum.

7. The algorithm continues at step 3 until a satisfactory string is found.

The properties and the convergence of GAhave recently attracted a lot of at ten-
tion. Implicit parallelism is proposed as the main reason for a fast convergence." It
has been found that this parallelism and the capability of combining strings that
contain partial solutions result in two properties:

• The frequency of sampling a particular subspace is proportional to the prob-
ability of a good solution in that subspace

• The number of strings in a particular subspace grows at a rate proportional
to the mean value of fitness in the subspace

The reason for such properties is that a string belongs to all the regions of the
problem space where its substrings belong. Big regions of the problem space are rep-
resented by strings with a small proportion of defined bits and a big proportion of
undefined bits. Therefore, these regions are sampled by a vast majority of the popu-
lation members. An example of such a string is 10 * * * * * * with two leading bits
defined, and the rest undefined.

Crossover selects some random point, which can be the one contained in a sub-
string belonging to a good region of the problem space. In that case, the produced
offspring will leave the good region and enter another, probably worse region, thus
spoiling the effect of implicit parallelism on the convergence. The probability of a
substring leaving some region depends on the distance between the bits of this sub-
string. For example, a string 10 * * * * has a chance 115to leave region 10 as there
are 5 points where crossover can take place. Therefore, the substrings that are eon-
secutive and short (which are called building blocks) will tend to stay intact through
the crossover operation. These substrings will be inherited by the offspring with the
probability proportional to the fitness value of the string that contains them. As
there is a vast number of building blocks in a string, the implicit parallelism is
maintained.

An important point is that GAis not an optimization method that converges to
some optirnum by »looking- at the gradient in its momentary local neighbourhood,
but rather by sampling the problem space in a sophisticated way.Thereofre, GAeon-
verges fast to some of the good regions of the problem space, but finds slowly the
exact point of optimum in that region. Consequently, optirnum finding methods like
the gradient method should be used for the final convergence.f

Elitist selection," where the best member is always retained, assures the eon-
vergence of GA to the global optimum while a canonical GA, where this property
does not hold, has no convergence at all but has a tendency to repeatedly finding
the global optimum.?
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THE MODEL OF THE NEURON AND THE NETWORK

NN represent a crude simulatian of the neural systems in living beings. One NN
consists of a network of interconnected neurons having multiple inputs (dendrites)
and asingle output (axon). Through inputs the neuron receives signals from neigh-
bouring neurons, multiplies signals with a specific weighting factor, and most often
sums up the products. The sum represents the activity of the neuron, and the ac-
tivity produces the signal output.š

ai =I WijSj

j

Si = Sea;)

where ai is the activation of the i-th neuron, Wij is the weighting factor for the signal
emanating from neuroni and sinking into neuron i, and Si is the result of the signal
function S working on the activation of neuron i. It is interesting to note that, with
respect to signal processing, the activation function is a scalar product of input sig-
nals and their respective weights, and the scalar product is the main mathematical
tool for digital signal processing.? Signal function is either linear or limiting between
the strongest and the weakest allowed values. If it is alimiter, it can be of a thresh-
old type, or a sigmoid type which has a continuous first derivative (important for
some types of learning). Sigmoid is defined as Fia ) = 11(1 + exp(-a».

The behaviour of NN is a consequence of the collective behaviour of single neu-
rons, but differs greatly from the single neuron behaviour. NN consisting of three
layers (input, hidden, and output) organizes its middle (hidden) layer to represent
the input data in a self-specificway. Removing one neuron from this layer will not
destroy the response of the NN to the same input data, but will gracefully reduce
the quality of the output.l? This is a consequence of the distributed representation
of the input data in the hidden layer.

Most researchers build their NN to consist of a few layers,11.12and the NN model
that is used in this paper enables the same. The layers are 2D planes interconnected
into anetwork. There is one input and one output layer. Alllayers can receive inputs
from a few layers, except the input layer which may not be connected to any layer
(including itself). The layers may be connected in a cyclic way, and may signal to
themselves (this is called a lateral connection). The activation function is not explic-
itly given but through the topology of the whole construction. The operations be-
tween the layers are EĐ and @, where EĐ is standard commutative addition of two or
more values, and @ is a noncommutative blocking operator where the first operand,
if active, blocks all the following operands, thus preventing them from influencing
the activity of the receiving neuron.

To define the construction of interconnected layers, it is necessary to define the
size of each layer with two numbers and how the layers are interconnected.

Figure 1 shows an example of interconnected layers. In this example, layer F is
excited by layer C, but this excitation can be blocked by layer D. Layer F excites
itself laterally, and excites the output layer B.

Each layer consists of neurons which are clones of each other: they have the
same activation function, the same weights, the same signal function, and the same
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input
layer

output
layer

Figure 1. Example of an NN model with feedforward, feedback and lateral connections. Con-
nections are exciting or blocking. There must be exact1y one input and one output layer.

learning function. The layers have different and specific functions - a property of
diversification that has been found in biological systems.!" One neuron does not nec-
essarily see the whole neighbouring layer, but onlyaregion of it which is called re-
ceptive field. This means that a neuron is connected to those neurons in the neigh-
bouring layer which are in its receptive field. This resembles the way in which the
real neurons in biological system are interconnected.P The neurons belonging to one
layer have different positions of the receptive fields - they are shifted one to another.
All neurons belonging to a layer see all the neurons of its neighbouring layer, but
asingle neuron sees only a part of them, as shown in Figure 2.

A neuron sees its receptive field through a mask of weights. All neurons in a
layer have the same mask of weights. The influence of a neighbouring layer on one
neuron is the scalar product of the signals from the receptive field and the receptive
weights in the mask of weights.

default layer

neighbour layer
rnask

o

Figure 2. Model of the neuron as a part of a layer (n receptive field, w mask of weights, a ac-
tivation, s signaloutput, m previous activation, o previous signaloutput).
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The signal function maps the activation to the signaloutput by one of the func-
tions: linear, threshold, or sigmoid.

Asingle neuron has a very limited scope of information which it can use for
learning:

• its own activation (a)
• its own signaloutput (8)

• the weight mask (Wi)

• the signal outputs of neurons in the receptive field (ni)
• its own signaloutput in the last iteration (o)
• the signal outputs of neurons in the receptive fields in the last iteration (mi)

This model allows any kind of learning that is a linear function of these variables:

To define the whole complex, it is necessary to add the following definitions for
neurons of each layer: the size of the weighting mask (receptive field), the learning
function for the mask, and finally the signal function.

THE DESCRIPTION LANGUAGE

Let us now turn to the language that is used to define arbitrary NN construc-
tions. The main problem concerning the definition of such a language is called de-
ceptionP Deception is the possibility that the fitness of a string is not correlated to
the fitness of its component substrings. The results of deception can be that two
strings with high fitness produce an offspring string that, when translated to a NN
construction by an interpretation function, gets a lower fitness value than its par-
ents. Three reasons may cause this peculiar problem.P
1. The interpretation function is »many to one«,allowing a number of strings to produce

the same NN construction. 'l\vo NN with identical construction and weights may
produce offspring containing repeated components instead of complement parts.

2. The parent topologies are identical, but the weights are not: the distributed rep-
resentations may differ between NN which have similar behaviours, and off-
spring may inherit parts of distributed representations that do not fit each other.

3. The parent topologies and the weights differ: parents may be genetically too far
to produce sane offspring.

The first cause of deception comes as a result of descriptions ofNN construction s
that do not have a well-defined sequence, in which case the interpretation function
has the »many to one- property: crossover will often interchange parts of parent
strings producing offspring which do not represent a whole NN construction. There-
fore, the language developed here describes the characteristics of a NN construction
in well-defined places, sequentially and hierarchically. A string is divided into func-
tionally separated substrings. These substrings describe NN in the following order:
topology, activation method, learning method, signal function, layer sizes, and finally
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constant values. Hierarchically higher substrings call for the definition of their com-
ponents in the hierarchically lower substrings.

The description of NN construction does not include the weights between neu-
rons, so the second cause of deception does not apply to our GA. The development
of weighted connections between the neurons of a member is done by the NN learn-
ing method of this member during its life, but the weights are lost in the reproduc-
tion process. This accentuates the structure of NN with its specific selforganizing
properties.

The third cause of deception cannot be easily avoided, and perhaps should not
be avoided at all. Complex problems can always be solved in various ways, and
groups of member strings that cannot have good offspring represent such different
solutions. Aseparate »breeding- of those groups can relax the third cause of deception.

Each component of the NN construction has to be declared and its value has to
be defined. A component belongs to a certain type with a specific name. It has a code
number that discriminates it from the other components of the same type. The ccm-
ponents are declared in the following way:

$ [code] - layer
1\ [code] - size (2D)
~ [code] - type of mask
# [code] - learning method
? [code] - signal function
! [code] - constant

The NN construction is defined in blocks, each block being a substring of the
whole string. A block has a start and a stop code, and all components of the same
type are. sequentially declared and defined between the start and stop codes of a
block. The number of components in a block is not limited (apart from computer im-
posed limitations). Components are divided by a dot and surrounded by parentheses.
Generally, a block looks like:

101 ( ).( ).( ). etc. lEI

where Odenotes one of the following: T,S,M,V,L,K,E,and the blank spaces between
the parentheses denote components of the same type.

Each block defines a group of components of the following types:

• ITltopology
• ISllayers
·IMlmasks
• [Vllayer sizes
• ILllearning methods
• IKlconstants
.jElend
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Now, let us give an informal specification of the language. The blocks describe
the components in the following way:

ITl ($code < "code; = $code 0 $code 0· .. 0 $code). etc lEI
181($code = "code). etc lEI
IMI t-code = "code, #code). etc lEI
IVI (/\code = !code, !code). etc lEI
ILI (#code = [arithmetic expression containing: a, w, n, m, o, s, +, -, *, 7, (, )]). etc.1E1
IKI (!code = value, change indicator). etc. lEI

(0 denotes either excitation EĐor blocking @)

A simple example will give a better insight into the usage of the description lan-
guage. The example presents a two layered network consisting of an input layer and
an output layer where the output layer has a receptive field through which it »sees-
the input layer. The learning method is the simplest one: Hebbian learning, where
the change of a weight is proportional to the activation of the neuron times the
weight itself. Learning changes weights of the masks confronting' receptive fields.
The size of the input layer is 200 x 200, the output layer is 100 x 100, the receptive
field is 9 x 9, and the rate oflearning is 3. Finally, the change factor of the constants
is set to 4, which denotes no change.

ITl ($A = O). ($B = $A-w}). lEI
181($A = /\so)· ($B = /\s}). lEI
IMI C-w} = /\S2, #lo)· lEI
IVI (/\so = !ko, lk}). (/\s} = !k2, !k3)· (/\s2 = !k4, !k5)·
ILI (#lo = !k6 X W X a). lEI
IKI (!ko = 200, 4). (!k} = 200, 4). (!k2 = 100,4). (!k3 = 100,4). (!k4 = 9, 4).

(!k5 = 9, 4). (!k6 = 3, 4).

The last question to be tackled is how to improve the rate of evolution of a popu-
lation where the members have been described by the decription language rules. If
the whole population has a very low fitness value, then the information contained
in strings representing the members can be severely changed without much damage.
In such a case, the rate of evolution should be increased. The factors that are con-
sidered here and which are capable if changing this rate are the selected points of
crossover, the sliding of the constants, the amount of genetic information, and the
mechanism for gene repair.

The crossover points can be selected completely at random, allowing for the
greatest variability of the offspring but also maximizing the probability that the off-
spring cannot code NN constructions. Toincrease the probability of getting derivable
offspring, it is necessary to restrict the crossover points to certain allowable loca-
tions. The most secure locations are the points between strings. A less stringent re-
striction allows the points between expressions contained in a block. Finally, pairs
of equal operations signs like »=« and »0« could be allowed for crossover points.

The constants used by a NN define its construction and behaviour. If constants
change by a small amount form generation to generation (a process that we call
»sliding«), then the NN's characteristics that depend on constants will change more
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rapidly than only by crossover and mutations. The sliding has to be stopped when
NN gets higher fitness results,

A string contains a certain amount of »genes«, or information how to construct
aNN. Obviously, some »genes- have to be used for the construction, but some do
not have to be used. Those which are not used represent a pool of genes and may
enter the construction of NN in some later generation. New genes may be added to
the pool by a mechanism called gene generator. Gene generator produces genes by
means of arandom process and they are inserted into strings. The pool of genes im-
proves the variability of a NN construction.

A gene repair mechanism can be run after each genetic operation. Genetic op-
erators alter the information carried by strings in an unpredictable way. The pur-
pose of genetic repair mechanism is to detect »insane- genes and to translate each
one to its nearest meaningful gene if that is possible, otherwise to reject that gene
or the complete string containing ito The random results of the gene generator are
good candidates for a gene repair mechanism as they are often prone to mending or
discarding. Also, the sliding constants can be conceived as deviant genes, and should
be mended to become nonsliding as soon as their NNs get higher fitness results.
Therefore, the gene repair mechanism has to be activated on them.

CONCLUSION

This paper develops a language called description Zanguage for defining the eon-
truction of a wide variety of models of neural networks. The strings that are prod-
ucts of description language are well adapted to modification with genetic algo-
rithms. The genetic algorithms that are used are based on previous works in the
field of evolutional programming and improved by some additional mechanisms.

Description language has been developed to be able to define some already
known and well studied NN models which are based on unsupervised learning. This
language enables the construction of multilayer NN with feedforward and feedback
connections between the layers, and lateral connections inside a layer. Asingle neu-
ron has a particular receptive field for every neighbouring layer. All neurons in one
layer are the same, excluding the positions of their receptive fields. The method of
activation and learning as well as the signal function are selected by GA.

The point of this work is twofold: the usage of a string-generating description
language for definition of NN constructions, and a convergence method that consists
of a genetic algorithm and a neural network learning. After finding an appropriate
construction of NN (by locating the subspace where the good solutions are situated),
it is up to the NN to converge to the local optirnum of that subspace. This method
divides the whole convergence into two parts: approaching the region of the solution
with GA, and finding the exact position of the solution with NN.

In principle, this approach can give answers to the following questions:

1. Are the known NN models reachable by using GA?

2. Is it possible to improve these models?

3. How well can we imitate the biological visual system?

4. Can we use developed models for 2D signal processing?
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SAŽETAK
Prilagodba neuronskih mreža s pomoću genetskih algoritama

TIn !lakovac

Opisan je pristup adaptaciji neuronskih mreža proizvoljnim zadacima. Dobro je poznato
da radne značajke neuronskih mreža ovise o njihovoj konstrukciji: topološkoj strukturi, metodi
učenja i aktivacije i izlaznoj signalnoj fi.mkciji.Razvijen je opisni jezik 'kojim se različite konstruk-
cije neuronskih mreža opisuju u obliku slovčanog niza (string). Uporabljeni model neurona ima
receptivno polje, adaptivno učenje, aktivaciju i signalnu funkciju, a cjelokupna neuronska mreža

, sastoji se od slojeva koji dopuštaju unaprijedne, povratne i postranične veze s jednim ulaznim i
jednim izlaznim slojem. Adaptacija neuronskih mreža izvodi se genetskim algoritmom upotreblja-
vajući križanje (crossover) , točkastu mutaciju i selekciju kao operatore nad populacijom nizova
koji reprezentiraju neuronske mreže. Ti se nizovi evoluiraju prema rješenju zadanog problema.
Predlaže se rješenje takozvanog decepcijskog (deception) problema koji uzrokuje nekonvergentnost
genetskog algoritma: uvodi se hijerarhija opisa neuronskih mreža s uređajem izraza kojim se
smanjuje vjerojatnost udvostručenih reprezentacija. Tim pristupom moguće je razvijati neuron-
ske mreže bez učitelja.




