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In this paper we consider some geometric questions relating to a
higher dimensional analogon of a triangle, called simplex. In particular, we
shall be concerned with the distance matrix of its vertices. We shall also
majorize the volume of a simplex in terms of the distances between verti-
ces. As consequences, we shall derive some inequalities for determinants
and, in particular, an improvement of the well-known Hadamard's inequal-
ity. We shall also point to some possible applications to the chemical graph
theory.

INTRODUCTION

In the first part of this paper, we consider the problem of the existence of a sim-
plex (a higher dimensional analogon of a triangle or a tetrahedron) with prescribed
edge lengths and a similar problem involving prescribed dihedral angles. We shalI
also give some connections between these two approaches. Similar problems in non-
Euclidean spaces are also of inter est and we shalI address them as well. The basic
tool in these considerations will be the so called (geometric) distance matrix of an
appropriate set of points.

In the second part, we consider the problem of majorizing the volume of a sim-
plex in terms of the edge lengths, i.e. elements of its distance matrix. The main in-
gredients here are some geometric facts, like the so called sine law and others.

In the third part, we give some consequences of the resuItsfrom the first two
parts. There are some geometric as well as some purely algebraic consequences. In
fact, these consequences are mainly some inequalities involving volumes of some
polytopes or inequalities (rather upper bounds) of some determinants in terms of
their entries. Among others, one of the obtained inequalities improves substantially
the well-known Hadamard's inequality (often used not only in mathematics but also
in mathematical physics and mathematical chemistry).

In the final part, we describe some possible applications of the previous material
to mathematical chemistry, in particular to the chemical graph theory which, in
turn, applies to various problems in chemistry. For example, some inequalities in-
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volving the eigenvalues of the associated matrix, which is related to the bound of
certain chemical indices (e.g. Wiener index).

Simplex and its Distance Matrix
As we all know from our high-school days, the three edge lengths of a triangle

determine it up to congruence, provided they satisfy the triangle inequality: a+b>c;
b=c»:o; c+a:»b (Figure 1).

c
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A

Figure 1.

A natural question arises for a tetrahedron. Namely, is it true that all the re-
quired triangle inequalities guarantee the existence of a tetrahedron? In other
words, suppose six positive numbers a, b, c, d, e, f are given. What is the necessary
and sufficient condition for the existence of a tetrahedron with these (prescribed)
edge lengths? See Figure 2. .

Figure 2.

It turns out that all the required triangle inequalities (i.e. a + b > c, b + c > a, ... ,
b + f> d, ... ) are not sufficient for the existence of a tetrahedron. For example (see
Figure 3), three segments of length a and three segments of length b can form an }>a-
tripoid« on a »b-triangle«or a »b-tripoid«on an »c-triangle« or in a third »zig-zag«way.

Figure 3.
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If a is much larger than b, it is plausible (and, in fact, true) that only the first
construction can be realized, but if a is only slightly larger than b, it is plausible
(and, indeed, true) that all three possibilities can occur. The condition b < a ::;2b is
not sufficient for the existence of a "b-tripoid« on an »e-triangle. and, hence, the fig-
ures that satisfy the triangle inequality in all the required ways are not necessarily
realizable.

So, what is a »triangle-inequality- for a tetrahedron? The answer to this ques-
tion is given by the following theorem, rediscovered by many authors in the long his-
tory of this natural question. For a proof, see e.g. Ref. 15.
Theorem 1. Let a, b, c, d, e, f be given positive numbers. The inequalities

and

o c2 b2 d2 1
c2 O a2 e2 1
b2 a2 O f 1 > O
d2e2f01
1 1 1 1 O

are necessary and sufficient conditions for the existence of a tetrahedron S = ABCD
with edge lengths a = IBCI, b = ICAI,c = IABI,d = lADI, e = IBDI,f = ICDI.

Now, let's go a step further, and consider the same question for a simplex. An
n-dimensional simplex S = (Ao' Al' ... A,,) is the smallest convex set (i.e. the convex
hull) that contains n + 1point s Ao, AI,-"..:..A"in n-dimensional space R" which are in
the general position (i.e. the vectors AoAI form a basis in R") and these points are
called its vertices. l-dimensional simplex is usually called a segment, 2-dimen-
sional simplex is a triangle, and 3-dimensional a tetrahedron. An n-dimensional sim-
plex (shortly n-simplex) can be thought of as a complete graph K,l+lon n + 1vertices,
but »embedded- in R" so that there are no crossings of its edges. E.g. 4-dimensional
simplex can be represented by K5 (Figure 4).

Figure 4.

(For basic graph-theoretical concepts and results, the reader may consult Ref. 6 -
in Croatian, or e.g. Ref. 7 - in English).

For vertices Ai' Aj of the simplex S = (Ao, Al>... ,A,,),let dij = I1\A) be the distance
between them, i.e. the length of the edge AiAj• We form the distance matrix.
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Denote by D(2) = (dij
2) the matrix of the squares of distances, and let M = (m;),

where mij = dro + dJo - d5· Then, as it is easy to show

det

1
1

= (_1)"+1 detM.
1
1

11 ... 110

Any determinant of the form

det

1
1

1 1

1
1

110

where i, j E I and I ~{O,1, ..., n} is called a Cayley-Menger determinant. D(2)

itself is often called the distance matrix.
Now, what is a »triangle-inequality- for a simplex? In geometry and physics, one

often considers not only the ordinary Euclidean (vflat«) space Rn but also the
»curved- spaces of constant curvature K. If this constant curvature K is positive (it
can be taken to be equal +1), then we can assume that this space is an n-dimensional
(unit) sphere S", and if the space has a negative constant curvature K (it can be
taken to be equal -1), then it is the hyperbolic n-dimensional space H". In all three
of these types of spaces it makes sense to consider simplices (flat or curved »trian-
gles«); see Figure 5.

Figure 5.

The appropriate notion of distances in all three geometries can also be defined
and, hence, one can ask for the »triangle inequality- for simplices in all three ge-

,ometries. The answer is given by the following theorem.
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Theorem 2 (Dekster-Wilker, 19911)0 Let D = (di) be an (n+ 1) x (n+1) real matrix
with dii = O, dij = dji ~ O, i, j = O,1, ..o,n, n ~ 2, and let its entries be used to form
the n x n matrix M = M(D) = (mij)' where

cosh diO cosh djo - cosh dij,
d~ +dJo - d5,
COS dij - COS diO COS djo,

in the hyperbolic case
in the Euclidean case
in the spherical case.

Then, an n-dimensional simplex S = (Ao,Aj,..o,An)exists in the n-space under eon-
sideration such that the entries of D occur as the distance between the A;'s, i.e.
dij = IAiA), if and only if the eigenvalues ofM are all real and non-negative,

Such a matrix D is then called realizable and any such simplex is called a re-
alization of D and D is called the distance matrix of its realization,

Furthermore, if D is realizable, then the dimension of the convex hull of each
realization ofD is equal to the rank of Mo

For the Euclidean case, see also Ref. 120

Besides the lengths of edges of a simplex, one can also measure the dihedral an-
gles, i.e. the angles between the (hyper-) planes of the simplex. Let again S = (Ao,
Al' .. o,A,,) be an n-simplex and let aij be itsdihedral angle alopg the edge A;Aj,i.e.
the angle between the hyperplanes AoAj.. oA;.. oAlt and AoAlo..~o ..A" (the symbol •
means »omitted«). We now define another matrix C = (Ci), where Cii = 1 and cij =
-cos aij for i * j, and OS i, j S no Let Cij be the cofactor of the entry cij of CoThen,
the following theorem holds,

Theorem 3 (Yang-Zhang, 198310)0 The necessary and sufficient conditions for the ex-
istence of an n-simplex in R" with prescribed dihedral angles aij (iJ = O, 1, ..o,n) are

det C = Oand Cij > Ofor all i, j.

The determinant det C is known as the SchHifli determinant.

In fact, in spaces of constant curvature, this result was extended in the following
way,

Theorem 4 (Bohm, 198611)0 In the spaces of constant curvature K we have the
existence of an n-simplex with prescribed dihedral angles aij if an only if all Cij > O
and in the cases

K = 1 (spherical) ~ det C > O
K = O (Euclidean) ~ det C = O
K = -1 (hyperbolic) ~ det C < 00

Arelation between matrices C and D (at least in the Euclidean case) is as fol-
lows, Let
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1
1

d&
1
1

1 1 1 1 O

and let DiPl = Dj2l(Ao, Al, ..., An) be the cofactor of the (i,j)-th entry dif of D(2l,
O:s; i, j:s; n, i <j, Then, the following holds.

Theorem 5 (Yang-Zhang, 19891°). With the above notations

Dl]> (Aa, Al, ... An)
- Cij = cos au =----;=/=====,;;=========,;;====_

y D(2l (Aa, ... , Ai' ... , A,) . D(2l (Aa, ... , Aj, ... , A,,)

In particular,

Volume and the Sine Law for Simplices
In the first section, we have seen how some basic laws (existence) of a simplex

depend on determinants, mainly of its distance matrix. In this section, we continue
in the same spirit.

Another important gadget of a simplex is its volume. Again, from high-school
days we recall the famous Heron's formula for the area of a triangle in term s of its
sides (or edge lengths). Volume V of an n-simplex S = (Ao' Al' ..., An) with dU =IA,A)
is given by the following Heron's formula for a simplex (e.g. see Ref. 12):

1
1

2n(n!)2 y2 = Idet d& I.
1
1

1 1 1 1 O

Although this is an exact formula, it is rather impractical, since in order to com-
pute an n x n determinant, at least n! computations are required in general. There-
fore, very sharp estimates and actually very sharp upper bounds for the volume of
a simplex are of great interest. For this purpose, recall again your nice high-school
days and one of the basic triangle laws, the sine law. It simply says that for the area
F of a triangle, such as in Figure 6a, we have

sin a sin p sin y ( 2F Jbc sin a = ca sin p = ab sin y( = 2F), or -- = -- = -- = - .
abc abc
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Figure 6.

But, one can look at this in the following way. Pick a point within the triangle
and draw from it unit outward normals to the sides. Then, this gives rise to three
new little triangles with areas F", Fp, Fy (see Figure 6b). The sine law can than be
interpreted as follows:

bcF" = caFp = abFy .

Generalizing this idea to simplices, we have the following basic rule.
Theorem 6 (The sine law for simplices, Ref 2). Let S = (A", Al> ... , An> be an n-simplex
in R", V = vol S (volumeofS), Si = (Ac,..., Ai, ..., An> its side opposite to the vertex Ai' ni
the hyperplane of Si' Vi =vol..., Si (i.e. the »surface area- of SJ Let °be anl' internal
point in S, -;i = oBi, the unit »outward« normal to ni and E, = (O, BQ, ••• , Bi ... , Bn>
associated »unit« n-simplex and Wi = vol E, its volume. Then .

i=O,l, ... ,n.

From this basic law it is not hard to derive the basic upper bound for the volume
of a simplex in terms of its facets. Namely, the following inequality holds.
Theorem 7 (Main inequality"). With the same notations as in the previous theorem
we have

-1 < , len + 1),,-1 (n : n~1vn - n. 3 TI Vi 'n" i~Q

with equality if and only if the simplex is regular.
From this by falling induction, the promised sharp upper bound of volume by

the edge-Iengths is given in the following way.
Theorem 8 (Ref. 2). With the same notation as above, di) = IAiA) , we have

<-.l /n+1[ n .Jn:l
V - n! V 2" TI dL) ,

o e i «j s n

with equality if and only if the simplex is regular.
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So, for example, for a tetrahedron with edges a, b, c, d, e, f, we have

with equality if and only if a = b = c = d = e = f

Same Geometric and Algebraic Consequences
The above resuIts have some nice geometric and algebraic consequences. We

shall present here some of them. Firstly, some geometric corollaries are as follows.
Theorem 9 (Isoperimetric inequality for a simplex). With the same notations

as in Theorem 6, let F = L;:'o Vi be the »total area« of the simplex S. Then

_F"_ > .l ,J'n'3'-n-(-n-+-1-Y-H-=-1
yn-1 - n! '

with equality if and only if S is regular.
In other words, among all n-simplices with a given »total area«, the regular sim-

plex has the largest volume.
Theorem 10. Let P be an n-dimensional polyhedron in R" consisting of p sim-

plices Si of dimension n, such that they satisfy the codimension 2 intersection prop-
erty, i.e. for i * i, dim(Si n S) ::;n - 2. Let Vi = vol Si' F, = »total area« of Si' V =
vol P = LVi the volume of P and F = LF; = »total area« of P. Then, the following
inequalities hold:

(n! Jn=l ( 1 Jn:1 2:PV< -- Fin-I,
- ..J n3n (n + 1),,-1 1+ n i=l

n

and

Next, we give an upper bound for the volume of a convex simplicial polytope. A
simplical polytope is a polytope all of whose faces are simplices.

Theorem 11. Let P be an n-dimensional convex simplicial polytope (i.e. all top-
dimensional faces - called facets - are (n - Ll-simplices). Let the i-th of these (n - 1)-
simplices have the edges of lengths dJ~,p, q = 1, 2, ..., n, i = 1, 2, ... , f Let O be
any internal point of P and let hi be the distance from O to the i-th facet. Then, the
volume V(P) can be majorized as follows

1 ;-n- f ( J~ 1 ;--Vi(P)::; - - '" h. TI d(i) n::; - 2nn_1 (diam P)dn-1 fn! 2n- 1 L., . pq n! max ,
i::: 1 ls.p<q5.n

where dmax = max dJ~is the largest edge of P, and diam P = max d(X,YJ the diameter
lP,q X,YeP

of P (i.e. the largest distance between two points of P).
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There are many more interesting geometric consequences of the main inequality.
Let us mention just one more. Let S = (Ao' Al' ..., An) be an n-simplex with volume
V and O E S any point in that simplex. If hi is the distance from O to the facet op-
posite to the vertex Ai' i = 0, 1, ..., n, then

with equality if and only if hoVo = hI VI = ... = h,Yn = (n V)/(n + 1); in particular,
the equality holds if S is regular and O is its centre.

Now, we turn to some algebraic consequences. In fact, we shalI give some (sharp)
upper bounds for determinants.

Let again S = (Aa, Al' , An) be an n-simplex ofvolume V, and let S be embedded
in R" and let Ai = (a~), a~)' , a~)) be coordinates of the vertex 1\, i = 0, 1, ..., n. Denote
by P the (extended) matrix of coordinates

[a
OJ aCO) aCO) :]1 2 n

p= .

a(n) a(n) ... a~)1 2

Then, V = I det PI In!' Let ali) be the i-th row of P and

Now,recall that the well known Hadamard's inequality reads as follows(see Ref. 13):

2 2
I det PI = n!V:o:;(IldiJ) n+1 = ( Il IIali) - aW11) n+1

l<j OSl<jSn

But, from Theorem 8 it follows that we have an improvement of this inequality
by factor " (n + 1)/2n. In other words, we have.
Theorem 12. For any matrix P as above,

---- 2

I detPI :o:; In: 1 ( Il IIa(i)-aU)11 )n+1,
2 o Sl <J -s n

with equality if and only if all IIali) - a(j)11 are mutually equal.
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From Heron's formula, we also get the following.
Theorem 13. For any realizable (n + 1) x (n + 1) distance matrix D = (di),

Idet d~

1
1

4

I ~ (n + 1) (Il di)] rHl ,
L<)1

1
1 1 110

with equality if and only if dij's are mutually equal.
-->

Now, for an n-dimensional S = (1.0, Al' ..., An), think of vectors ai = AoAi' i = 1,
2, ..., n as a basis of R", Then, from the fact that the volume V = vol S is given by--> -->
(n!V)2 = det(ai), where aij = ai . aj (scalar product), and from Theorem 8, the follow-
ing can be deduced for the determinant of the Gram matrix.

---+ ---+ ---+ • ---+ ---+
Theorem 14. Let al, a2, ... ,an be any basis of R" and aij = ai . dj. Then,

1[[" J[ ]],,:1det(a)<~ TIa TI (a+a-2a
lJ - 2n i=l Ul$. i <i s n u JJ LJ '

with equality if and only if an = ... = a"n = a2 and aij = a2/2 for i*- j.
As a final inequality in this series, we mention the following facto

Theorem 15. Like in the previous theorem, let Mi = det(akl)k,l"b i = 1, 2, ..., n be
principal minors. Then,

with equality if and only if aii = a2 and aij = a2/2, i *- j.
The above bounds hold for any real n x n symmetric, positive definite matrix.

A bit stronger results can be obtained by improving Theorem 8 as in Ref. 8. and,
hence, all its consequences can be slightly improved.

All these results came out from geometric considerations in Euclidean space and,
in particular, from the sine law for simplices. Let us say that very little is known
about simplices in non-Euclidean spaces, particularly in hyperbolic space. The prob-
lem of computing the volume of such a simplex seems to be an extremely difficult
task, although many efforts in this direction have been made through history, start-
ing with Gauss, Riemann and others. Therefore, it would be of great interest to have
analogous bounds for the volume of simplices in hyperbolic space, spherical space,
Minkowski space ete., which are also often encountered by physicists.

As we have so far seen in this survey, the basic laws have a decisive role, like
the sine law. So, it would be of great importance to have on disposal the sine law
for hyperbolic and other geometries. There have been, in principle, some results in
this direction (e.g. by Hsiang), but not an explicit and useful result like the one pre-
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sented here (except for a triangle which was known long ago). However, in terms of
the above resu1ts, we have some results in this direction. For example, if D = (di)
is an (n + 1) x (n + 1) realizable matrix in the hyperbolic space, then the correspond-
ing (symmetric) matrix M = (mi) is apositive definite (n + 1) x (n + 1) matrix and
by the inequality in Theorem 14 we have (seemingly not a very remarkable result,
but still):

det M = det(cosh diO cosh djo - cosh di) ~

n + 1[[ n ] 1n:l~--n- TI sinh'' diO Il (sinh'' diO + sinh'' djO + 2 cosh diO cosh djO - 2 cosh di) .
2 .=1 VJ

A similar result can be obtained for the spherical case.

Applications to the Chemical Graph Theory
So far, we have considered the so called geometric distance matrix. In graph-

theoretical applications to chemistry (or, rather, in the chemical graph theory, as it
is called in the last decade or so, see Ref. 13), one usually considers a graph G on
its vertices Ul' U2, ..• , Un and then its n x n distance matrix L1(G)= (d(ui, u)' where
d(Ui' u) is the number of edges in the shortest path from ui to Uj, if it exists; if not,
we put d(Ui' u) = 00 (see Refs. 3, 5). This is a source of very useful tools in chemistry,
used to predict certain properties of chemical substances even before they have been
synthesized by organic chemists. Among the most useful of such tools are various
»topological indices- arising from the underlying graph of a chemical compound; for
example, the Wiener index, introduced by Harry Wiener from Brooklyn College in
1947, has been used in a variety of ways, from predicting antibacterial activity in
drugs to correlating thermodynamic parameters in physical chemistry and modeling
all kinds of solid state phenomena (see e.g. Ref. 16 as one of the late st papers on
this much explored topic). The Wiener index W(G) of a graph G is simply defined
as the sum of all the entries of L1(G)in the upper triangular part, i.e.

W(G) =L: d(ui, u).
'<;}

The distance matrix was first used in chemistry by Hosoya (see Ref. 17)and since
it has become a standard tool used in the variety of applications, from considering
evolutionary distance s in DNA sequences to predicting carcinogenecity in arene sys-
tems.t-" In doing so, it seems that the (ordinary) distance matrix L1(G)has a close
rel ati on to the Laplacian matrix L(G) of a graph G (see the excellent survey"). The
Laplacian L(G) of a graph G is defined by

L(G) = D(G) - A(G).

where D(G) is the diagonal matrix consisting of vertex degrees, while A(G) is the
common adjacency matrix of G. This assertion can be supported by the following »in-
terlacing theorem- about the eigenvalues ofL1(T)and L(T) of a tree T, as well as some
other facts about L1(T)and L(T).
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Theorem 16. Let T be a tree on n vertices. The first (vinterlacing«) fact is this. Let
OI> O> 02~ .. , ~ Onbe the eigenvalues of .đ(T) and Al ~ A2~ ... ~ An_I> O = Anthe
eigenvalues of L(T). Then,

As the second fact, the Wiener index W(T) is given by

n-I 1
W(T)=n L -.

r=I Ai

The third fact is that det LJ(T)= (_1)n-1 (n - 1)2n-2, i.e. det LJ(T)depends only on
n and not at all on the structure of T.

To relate our research to the Laplacian and (ordinary) distance matrix of a
graph, let us recall M. Fiedler's geometric approach as described in Ref. 8. Namely,
the Laplacian L(G) of a graph G on n vertices can be viewed as aGram matrix based
on certain n vectors, XI' X2' ... , xn in Rn-1. Taking the tangent plane Pi to the standard
sphere 8n-2 in Rn-1 at the intersection of the ray generated by Xi and this sphere,
and then taking the half-space defined by Pi containing the origin, as the intersec-
tion of these half-spaces, we get an (n-1)-simplex 8 = (Al' A2, ... , Ar.>- Let du = IA;A)
be the distance between vertices Ai and Aj and let D(2)(G) = (di})be the Cayley-
Menger matrix of a graph G.

In the case of a tree, the Cayley-Menger and the distance matrix agree, i.e. if T
is a tree, then D(2)(T)= LJ(T);in words, the distance matrix of a tree is the Cayley-
Menger matrix arising from its Laplacian matrix.

In a general case, we can apply our results of Theorems 13 and 14 to get new
information about L(G) and then, in turn, on G. On the other hand, we can also ap-
ply our geometric results (notably Theorems 7 and 8) and obtain geometric informa-
tion about the resulting simplex 8 = 8(G). Of course, another possibility is to start with
a weighted graph. One can also consider the weighted strong directed digraph. A nice
result in this direction is a theorem proved by Graham, Hoffmann and Hosoya saying
that for the distance matrix D(W) of such a digraph W with blocks Glr G2, ... , Gn the
following formula holds

n

detD(W) =L [detD(G) TI cofD(G)L
i=l j:t;i

where cof(M) denotes the sum of the cofactors of M, see Ref. 3.
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The permanent of an n x n matrix A = (ai) is defined by

n

per A = I Ilaicr(i) ,
creS,. i=l

where Sn is the symmetric group of all permutations of {I, 2, ... , n}. In chemistry,
permanents are important because they are used to count the »Kekule's structures«
(or perfect matchings) of a graph. Per L(G) ~ 2(n - 1) for every connected graph G
on n vertices was the first important result in this direction. Determinants and perma-
nents are connected (or »homotopic«) via so called immanents. Namely, for any irre-
ducible character x of Sn, the corresponding immanent dx of an n x n matrix A = (ai)
is defined by

n

dx (A) = I x(a) Ilaicr(i) .
crES" i=l

For X = E (the signum character), dx = det, while for X = 1, dx = per.·Immanents
are important in counting the Hamiltonian cycles of a graph, and they are, perhaps,
another instance where we can extend our results, However, we shall not consider
the above mentioned possible projects in this paper.
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SAZETAK
Matrica udaljenosti simpleksa

Darko Veljan

U radu se razmatraju neka geometrijska pitanja 0 simpleksu, visedimenzionalnom analo-
gonu trokuta, pri cemu je posebna pozornost obracena matrici udaljenosti za vrhove simpleksa.
Takoder je provedena majorizacija volumena simpleksa i izrazena s pornocu udaljenosti medu
njegovim vrhovima. Kao rezultat slijedi izvod nekih nejednakosti za determinante, a posebice
jedno poboljsanje dobro poznate Hadamardove nejednakosti. U radu su istaknute neke moguce
primjene u kemijskoj teoriji grafova.




