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The procedure is proposed for obtaining the complexity numbers of
square-cell configurations. It is based on the concept of the canonical
square-cell configuration. The complexity number of a square-cell configu-
ration is then simply the minimal of edge-cuts by which this structure can
be reduced to constituting canonical configurations.

INTRODUCTION

Recent interest in square-cell configurations in chemistry+" prompted the pre-
sent report. The name used for these configurations in discrete mathematics is
square animals." A square-cell configuration is made up of square s which are simply-
or multiply-connected.š It starts with asingle square and grows by adding squares,
one at a time, in such amanner that the new square has at least one side in contact
with a side of a square already present in the square-cell configuration. A square-cell
configuration is simply-connected if it does not posses a hole, while the multiply-con-
nected square-cell configuration is a configuration with holets). In Figure 1, a sim-
ply-connected square-cell configuration with nine squares is given as an example.

Figure 1. A graph representing a simply-connected square-cell configuration with nine cells.

* Reported in part at MATHlCHEM/COMP 1994, an international Course and Conference on the Interfaces
between Mathematics, Chemistry and Computer Science, Dubrovnik, Croatia: June 26 - July 1, 1994.



92 N. TRINAJSTIĆ ET AL.

In this work, we will be concerned only with the simply-connected square-ceH
configurations. However, our resuIts can be extended to multiply-connected square-
cell configurations without any difficulty.

Statistical properties of square-cell configurations (in this case usually referred
to as lattice animals) and their embeddings in square lattices are important, for ex-
ample, in modelling the thermodynamic properties of branched polymers in dilute
solutions'<l'' and for characterizing shape s of two-dimensional solids and molecular
aggregates on the surfaces of catalysts.P Additionally, analysis of the shapes of
square-cell configurations is of interest in the design of new composite materi als and
in the study of interactions of enzymes with various molecules of biological rele-
vance.? Square-cell configurations or lattice animals or polyominoes are also of in-
terest in pure mathematics.l=!"

THE NUMBERS OF SQUARE-CELL CONFIGURATIONS AND THE
CORRESPONDING CANONICAL CONFIGURATIONS

We have recently developed an algorithm for the constructive enumeration of
hexagonal-ceH configurations (hexagonal animals, polyhexesj'? which is based on the
DAST (dualist angle-restricted spanning tree) code.l" The DAST code was used with
a slight modification to represent square-cell configurations. It was also used as the
basis of a computer program for generating and enumerating all square-ceH configu-
rations with up to a given number of squares.š

The DAST code can be introduced in the following way. Let an entered
polyomino (p,a,b) be a polyomino P together with a directed (»entrance«) edge (a,b)
on its boundary. Then, the (»entrance«) square at that entrance edge may have up
to three neighbours. - NI' N2, N3 - beyond the other edges. This gives rise to a de-
composition of the polyomino area into, at most, four disjoint areas:

p o: the entrance square itself,
Pl: the edge-connectivity component of NI (if present) after elimination of

po, N2 and N3,

P2: the edge-connectivity component of N2 (if present) after elimination of
po, Pl and N3,

and
P3: the edge-connectivity component of N3 (if present) after elimination of

po, Pl and P2•

Obviously, this decomposition will not be independent of the ordering of the
neighbours, so there must be an arbitrary but then fixed convention about this se-
quel. To code the presence or emptiness of any of the components in the three bits
of an octal digit, there must also be a convention on mapping. With the path
(a,b,c,d,a) around the entrance square, we found it most convenient to look first be-
tween d and a with weight 4, then between c and d with weight 1 and lastly between
b and c with weight 2 (see Figure 2). This gave us, at most, three smaller entered
polyominoes (P1,a,d), (P2,d,c) and (P3>c,b). Application of this decomposition recur-
sively definitely terminates in the cases with asingle square.

Now, we can define the »DAST(dualist angle-restricted spanning tree) tuple« of
an entered polyomino (with respect to the above convention) recursively: We add the
weights of the neighbours present to obtain a digit from O to 7 and append to it the
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Figure 2. Selected directions relative to the entrance edge of the starting square and their
weights.

DAST tuples of the up to 3 smaller components (if present) ordered by the conven-
tion. The same rule gives a DAST tuple of O for the one-square polyomino, which
completes the recursion.

For a polyomino P, we define the »DAST code« as the lexicographic minimum
of the DAST tuples of those up to 8 entered polyominoes (p,a,b) for which, after a
suitable rotation and reflection, no vertex of the polyomino lies more to the west
than or exactly north of a (a being a corner is necessary, but not a sufficient condi-
tion for this).
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Figure 3. The step-by-step development of the DAST code for a square-cell configuration with
seven squares. Black dots indicate square already reserved for later processing. The label in
a square denotes the position in the DAST code corresponding to this square.
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Figure 4. The DAST tuple for another orientation of the square-cell configuration from Figure 3.
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The step-by-step development of the DAST code for a square-cell configuration
with seven cells is presented in Figure 3.

This is lexicographically the smallest DAST code for the studied structure. We
can easily write down another DAST tuple, corresponding to a different orientation
of this configuration (see Figure 4), but this code cannot be taken into account be-
cause it is lexicographically greater than the code given in Figure 3.

The computer program, a block-diagram ofwhich is given in Ref. 3, was adapted
to compute the canonical square-cell congifurations.' A square-cell configuration that
cannot be nontrivially reduced into a smaller one by the procedure called the squash-
ing of a square animal in the manner decribed by Harary and Mezey- is called the
irreducible or canonical configuration. In Figure 5, we give shapes of canonical
square-cell configurations with up to seven cells.
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o

121240 121300 121420 121500 121600 124240 124300 125020

~ ~ ~~db~cqp~
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1213400 1214120 1214140 1214240 1214300 1215020 1216040 1216200

1217000 1241240 1241300 1241420 1241500 1241600 1242120

1242420 1242500 1243400 125030012520201252400 1253000 1301300

1301600 1313000 1'315000 1324010 1325000 1330010 1341400

1343000 1370000 3252000

Figure 5. All canonical square-cell configurations with up to seven cells.
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TABLE I

The numbers of square-cell configurations An and canonical square-ce li configurations Cn
with n cells

1
1
1

2
1
O

3
2
1

4
5
2

5
12
5

6
35
12

7
107
33

8
363
95

9
1248
300

(i) A selected square-cell configuration with six cells

(ii) The set of canonical square-cell configurations that
beJongs to A6

(iii) Counting the edge-cuts

(liU) All pos ••tnte reducuoes of A, Into Cl.qP'~'-,---~--,I I t t,

I I - -- - --

~~r-r.Rn
~~~

(iiI.2) All pos.~lhlt rtductions of A, \nln C3

(iii.J) All possible reducnons of A, inlo C4

(iii.4) All poS5ib~ reduClinns of A, inIn eS

(iv) The complexity number of A,

Figure 6. The step-by-step determination of the complexity number Xn for a square-cell confi-
guration An with n=6.
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In Table I, we give the numbers of square-cell configurations and the correspon-
digng canonical configurations with up to nine squares, computed using our program
described earlier" to which we added a part related to the squashing of square ani-
mal according to the recipe given by Harary and Mezey.!

Computations have been carried out on a PC (386-AT,40 MHz). The CPU time
needed to complete computations reported in Table I was 6 min. 35 sec.
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Figure 7. The DAST codes and cornplexity nurnbers for all square-ceH configurations with six
squares.
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THE COMPLEXITYNUMBER OF SQUARE-CELLCONFIGURATIONS

We define the complexity number Xn of a square-cell configuration An with n
square s as the sum of all minimum numbers of edge-cuts necessary to reduce An into
the corresponding set of canonical configurations, The procedure for obtaining Xn
consists of the following steps:

(i) Draw a square-cell configuration An with n cells;
(ii) Identify the set of canonical configurations Ck (k = 1,2,- ..n-l) that are

subgraphs ofAn;
(iii) Count the edge-cuts by which An is reduced to a given Ck;
(iv) Sum the edge-cuts and this sum is the complexity number Xn of An.

An example, which illustrates the determination of the complexity number for
a cross-like square-cell configuration with 6 squares, is presented in Figure 6.

In Figure 7, we give Xn numbers for all square-cell configurations with 6 cells.
The results in Figure 7 reveal the following points:

(D X; increases with branching;
(ii) Isomers with a similar mode of branching possess the same Xn values;
(iii) Peri-condensed configurations posses higher values of Xn than the

cata-condensed square-cell configurations.

Finally, we point out that the proposed complexity measure only very roughly
follows the DAST code. Therefore, it really cannot be used to classify isomers; all it
can say is that a certain isomer is more (or less or equally) complex with respect to
the edge-cutting than the other. The DAST code still appears to be the most eon-
venient way of classifying square animals. The only advantage of the proposed
scheme over the DAST code is that the complexity is expressed as a number and
not as a sequence of digits, like the DAST code. In some situations, this may be a
more convenient piece of information. Further work on this topic is in progress.
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SAŽETAK

o složenosti kvadratnih konfiguracija

Nenad Trinajstić, Wolfgang R. Muller, Klaus Szymanski and Jan V. Knop

Predložen je postupak za kvantificiranje (dobivanje broja) složenosti kvadratnih konfigu-
racija, koji se temelji na koncepciji kanonskih kvadratnih konfiguracija. Broj složenosti neke
kvadratne konfiguracije jednak je minimalnom broju potrebnih rezanja bridova da se takva
struktura reducira na jednu od svojih kanonskih konfiguracija.




