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Large benzenoid polymers containing monomer units which are m~tu-
ally connected by two ce bonds are considered. These molecules are treated
with in the simplified BORT or, equivalently, within a simplified VB ap-
proach. Ageneral method for the evaluation of resonance energies and local
aromaticity properties, such as contribution of various six- and ten-cycles
to the total resonance energy, is described. As an illustration, the tetraben-
zanthracene polymer family is considered. Exact expressions for local and
global properties of infinite tetrabenzanthracene polymers, as well as
highly accurate approximate expressions for finite tetrabenzanthracene
polymers, are derived.

INTRODUCTION

In the literature, calculations were reported on a number of benzenoid poly-
mers;' including random pi-network polymers, and various graph theoretical models
and enumerations.f In arecent paper.š very large polymer molecules were consid-
ered. The prime intention of this paper was to study finite but very large benzenoid
systems. Interests in such calculations are manifold:
1) How large do such finite molecule need to be in order to exhibit properties that
are the »same- as those of infinite systems?

2) How far into the bulk of the molecule does the edge effect penetrate?
3) What local properties are there, in particular the local properties of cycles not far

from the edge of the molecule?
In order to answer these questions, one can treat benzenoid polymers within

various semiempirical methods. One possibility is to use the conjugated circuit ap-
proach." This model is equivalent to the resonance theory model of Herndon.š which,
in turn, can be viewed as an extension of the early work of W.T. Simpson." Another
possibility is to use a simplified VB approach, and yet another to use a simplified
BORT approach.i-š However, on this simplified level, the particular framework is not
essential. One can show that, subject to appropriate approximations and in the case
of benzenoid systems, almost identical formulas are obtained within the VB, the eon-
jugated circuit, and the BORT approaches.t-"
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In Ref. 3, numerical treatment of very large benzenoid systems was done with
the computer program, developed by the author, which can manipulate very large
integers.? The computations were performed on a PC 386 (33 MHz) computer, and
the practical limit was approximately 25000 monomer units. This limit was due to
the memory limitations of the PC and it was not inherent to the computer program
itself.

In the present paper, we intend to show that one does not need to perform such
extensive numerical calculations involving thousands of monomer units in order to
obtain the required results, In particular, we will show that the properties of large
benzenoid polymers, such as resonance energies, local aromaticity properties, edge
effects ete., can be expressed in a close analytical form.

THE METHOD

Let us first formulate a simplified treatment of large benzenoid molecules within
the VB and BORT approaches.

In the VB approach, the ground state lfI of a conjugated molecule is represen ted
as a linear combination of VB resonance structures. In a simplified approach, one
considers only VB Kekule structures Kk, and one further assumes that all these
structures are contained in the ground state lfI with the same weight, i.e. one uses
the ansatz

(1)

The expectation value of an operator O in the above state is

I (KsIOiKp)
(lfIIOllfl) = -,-,s,p _

I (KsIKp)
(2)

S,p

where (KsiKp) is the overlap between VB Kekulć structures Ks and Kp, while
(K:.IOiKp) is a matrix element of the operator O between the se structures.

A similar approximation can be formulated in the BORT approach.š" In this ap-
proach, the ground state lfI is first approximated in the spin-separated form

lfI = I<p ?i) (3)

where <p and ?i are spin-o, and spin-p substrates, respectively. In a closed shell sys-
tem, the state <p is identical to a state ?i, except for a spin. Hence, one can express
all spin independent properties in terms of the state <p alone. In the case of alternant
molecules, the ground state <p can be approximated as a linear combination of posi-
tive BORT Kekule structures."

<p = I s;
k

(1')
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This expression is formally identical to expression (1), except that only positive
Kekulć structures are considered. Absence of negative structures is due to the fact
that, in the case of an alternant system, the matrix element of the Hamiltonian op-
erator between BORT structures of opposite parity vanishes.l"

Expectation value of the spin independent operator ° in the state lfI is now

I (I\;IOIK;)
(1fIIOIIfI)= 2 -'-'s,p'--__

I (K~IK;>

(2')

S,p

This expression is formally identical to expression (2), except for a factor 2 which is
due to the spin separation (3), and except for the fact that, in the BORT case, one
considers only positive Kekule structures, while in the VB case one considers all
Kekule structures, positive and negative alike. However, in the case of benzenoid
molecules, this latter difference vanishes, since in a benzenoid system all Kekulć
structures have the same parity.8,9

Relations (2) are quite easy to implement. All one needs is a systematic way for
the calculation of overlaps (KslKp) and matrix elements (KsIOlKp)' We will consider
here the resonance energy RE of benzenoid hydrocarbons. This energy can be rep-
resented as the expectation value of the Hamiltonian H. Since resonance energy
should measure the extra stabilization due to the resonance between various struc-
tures, it is convenient to define the corresponding Hamiltonian in such away that
all Kekule structures have zero energy." One can show that in the case of benzenoid
systems, matrix elements of the BORT Hamiltonian between BORT Kekule struc-
tures are proportional to matrix elements of the VB Hamiltonian between VB
Kekule structures, while the corresponding overlaps are identical.P As a conse-
quence, in the case of benzenoid systems, relations (2) and (2') will produce results
that differ only ba an unimportant scaling factor. Hence, on this level of approxima-
tion, it is not important whether one uses the BORT or VB approach. In order to
be more specific, we will consider the BORT approach.

Relations (2') can be further simplified, since the summations over overlaps and
matrix elements can be conveniently reformulated in terms of the summations over
various superposition diagrams.I-"Each superposition diagram is a superposition of
two positive Kekule structures, and, in general, a given superposition diagram cor-
responds to more than just one pair of Kekule structures. Superposition diagrams
corresponding to distinct Kekule structures contain isolated cycles which have an
even number of vertices, and a diagram contribution depends only on the pattern
of these cycles.i-" One can, hence, associaate with each cycle pattern a weighted
count which equals a number of different superposition diagrams having identical
cycle patterns. One easily finds that a weighted count of each cycle pattern equals
a number of Kekulć structures in a subgraph which is obtained by removing this
cycle pattern from the original graph. Relation (2') can be, thus, expressed in terms
of various weighted counts and the corresponding contributions.

We will now make yet another approximation. We will assume that Kekule
structures are orthonormalized, i.e. we will assume9,10
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This approximation it not so severe. The only effect of this approximation is to res-
cale the relative contributions of different terms to the total resonance energy, with-
out affecting either their relative order or their ratios. With this approximation, the
denominator in (2') reduces to a Kekule count.

The resonance energy per carbon atom can be now approximated as:

" c,RE=L,. R'KN (4)

where K is the Kekulć count, N is the number of carbon atoms, C, is the weighted
count of the particular cycle pattern, and Rs is the corresponding contribution of this
cycle pattern to the total resonance energy. The summation is performed over all cy-
cle patterns. Each cycle pattern consists of disjoint even cycles.P and the weighted
count C; of each partiuclar cycle pattern equals the number of Kekulć structures in
the graph which is obtained by removing from the original graph all cycles forming
this pattern. One also finds that the contribution Rs of each cycle pattern equals the
sum of the contributions ofvarious cycles contained in this cycle pattern.F Moreover,
the contribution of each particular cycle in a cycle pattern rapidly decreases with
the size of this cycle and the number and size of all other cycles.P In a crude ap-
proximation, one can neglect all smaller terms and retain only the few dominant
ones. In the case of benzenoid systems, two most important contributions are due
to the cycle patterns containing asingle six-cycle and asingle ten-cycle, respec-
tively.8,12Relation (4) thus reduces to

C(6) R6 + C(lO) RIO
RE = ~~~KN--=---=---'-" (4')

where C(6) and C(lO) are global weighted counts of six- and ten-cycles, respectively,
while R6 and RIO are the corresponding contributions to the total resonance energy.
Weighted count of each particular cycle equals the number of Kekulć structures in
the graph which is obtained by removing this cycle,? and global weighted count C(6)
and C(lO) are the sums of such counts over all six- and ten-cycles, respectively. One
also finds contributions R6 and RI012

where /3is a resonance integral. Up to an unimportant scaling factor, the same result
is obtained also within the VB approach. Il

In the conjugated circuit model? and in the case of benzenoid systems, one ob-
tains arelation which is formally identical to the simplified relation (4'). However,
in this model, quantities R6 and RIO are adjustable parameters chosen in such away
as to maximize the agreement with experiment. Their recommended values are:"
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R6 = 0.869 eV and RIO = 0.247 eV .

The advantage of BORT is that it produces the exact ratio of contributions R6
and RIO' without introduction of yet another parameter. This advantage is much
more pronounced in the case of a more general expression (4) which includes many
other terms besides asingle six- and asingle ten-membered cycle.?

LOCALAND GLOBALPROPERTIES

As an example, we will consider the tetrabenzanthracene family shown in Figure 1.
These molecules can be considered as being derived from the biphenyl by adding ad-
ditional triphenylene units. Each new triphenylene unit is added to the already ex-
isting fragment by introducing two additional CC bonds. We use index n in order to
indicate afinite molecule of this family which has n biphenylene units embedded in
its structure. Thus, n=l represents biphenylene itself, n=2 represents tetrabenzan-
thracene, ete. (Figure 1).

Figure 1.

According to (4') the resonance energy per carbon atom for this family is

C (6)R + C (10)R
RE = n 6 n 10 = RE (6)R RE (10)R

n K N n 6 + n 10
n n

(4")

where index n refers to the n-th member of the family, and where REn(6) and
REn(10) are contributions of six- and ten-membered cycles to the total resonance en-
ergy REn, respectively.

In the case of the tetrabenzanthracene family, Kekulć counts Kn satisfy recursive
relations''
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with the initial conditions Ko = Oand Kl = 4.
In general, in the case of an arbitrary benzenoid polymer whose monomer units

are mutually connected with two ce bons, the Kekule count satisfies the recursive
relation

Kn+l=aKn-~Kn_l

where coefficients a and ~ depend on a particular polymer family. In order to derive
the se quantities, it is sufficient to establish Kekule counts Kl, K2, K3 and K4 for the
first four members of the family.This gives two equations in tow unknowns, a and ~

which are trivial to solve.
Hence, the Kekule count can be expressed in terms of quantities Un satisfying

the same recursive relation

Un+l=aUn-~UIl_l (5)

and with the initial values Uo=O and Ul=1
In particular, in the case of the tetrabenzanthracene family, one finds

(6)

where

(5')

In the case of other benzenoid polymers consisting of identical monomer units
mutually connected with two ce bonds, the Kekulć count Kn can be generally ex-
pressed as a linear combination

(7)

where K, and K2 are Kekule counts of the first two members of a polymer family,
respectively.

According to Eq. (7), Kekulć counts can be expressed in terms of quantities Un'
However, not only Kekulć counts, but also all weighted cycle and weighted cycle pat-
tern counts can be expressed in terms of quantities Un' This follows from the fact
that each weighted count equals the Kekule count of the graph which is obtained
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by removing from the initial graph all cycles contained in the superposition pattern,
and from relation (7) which expresses Kekule counts in terms of quantities Un'

For example, in the case of the tetrabenzanthracene family, there are three types
of six-cycles and two types of ten-cycles (Figure 2), weighted cycle count Cnk of a six-
cycle Xk in the n-th tetrabenzanthracene polymer (Figure 2a) equals the Kekulć
count of the graph which is obtained by removal of this cycle. Rowever, by removing
the six-cycleXj" one essentially obtains two tetrabenzanthracene polymers, one eon-
taining h and the other containing n-h units. Renee, the resulting graph has
KkKn_k Kekule structures. Using relation (6) one obtains Cnk= 16 Uk Un_ko

~~
~ ... ~

a)

~~.~
~ ... ~ ... ~

b)

cl
Figure 2.

Removal of asingle cycle from a tetrabenzanthracene polymer does not neces-
sarily result in graphs corresponding to the same polymer family. This is, for exam-
ple, the case of the removal of cycle Ak in Figure 2a. However, the resulting graphs
are members of another polymer family which differs from the initial polymer family
only in terminal atoms. The Kekule count for this other polymer family satisfies the
same recursive relation (5') as the original tetrabenzanthracene family, only the in-
itial conditions K} and K2 differ. Renee, one can again express the weighted cycle
count Ank in terms of quantities Un' In this way, all cycle counts can be ultimately
expressed in term s of quantities Un'

This is a general result. The Kekulć count as well as all six- and ten-cycle
weighted counts can be always expressed in terms of quantities Un' For different
polymer families, one obtains only different parameters a and p. But the final result
is always the same: there is a finite number of six- and ten-membered types, such
as A, B, X; Li and E in Figure 2, and for each cycle type the weighted count of the
particular cycle can be expressed in terms of quantities U,/ In the case of the tetra-
benzanthracene family, the weighted counts of six-cycles are
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k = 1, ... ,n-l (8)

k = 1, ... ,n -1.

Relations (8) include the weighted counts of all six-cycles. For example, by symmetry
the weighted count of six-cycle E in Figure 2a equals Bn, t- Also by symmetry,
An,k =An,n -k -1 and Cn,k = Cn,n -k'

On this level of approximation, the above weighted counts are the same in the
BaRT, VB, and the conjugated circuits approach." In fact, relations (8) were first re-
ported, without derivation, within the framework of the conjugated circuit model."

In a similar way, one derives weighted counts for various ten- cycles." These cy-
cles are shown in Figure 2b. There are two types of ten-cycles, type Li and type E.
Formally, one can draw yet another cycle type, shown as type E in Figure 2c. How-
ever, this ten-cycle isolates two subgraphs containing three vertices ..Since no Kekule
structure can be drawn on an odd number of vertices, this ten-cycle has no contri-
bution.? One finds that types Li and E include all possible ten-cycle types that have
a nonvanishing contribution to the total resonance energy." Weighted counts of these
cycles are

k = 1, ... ,n-l
(8')

k = 1, ... ,n - 1 .

Relations (8') differ from the corresponding relations in Ref. 3. In this reference, the
weighted counts of ten-membered conjugated circuits are given. In the case of the
tetrabenzanthracene family, there are three types of ten-membered conjugated cy-
cles. These types are associated with cycle types A, B, and Xin Figure 2a, respec-
tively. There are, hence, three corresponding formulas for weighted counts." There
are, however, only two types of ten-membered cycles, types Li and E in Figure 2b,
and hence only two expressions (8') are needed.

One can express weighted counts (8) in a more compact form in terms of quan-
tities Xn,k

k = 0, 2, ... , n (9)

which satisfy Xn,k = Xn,n-k and XnO = Xnn = O. One obtains

(10)
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(10')

In order to obtain relative eontributions of various eycles to the total resonanee en-
ergy, one has to normalize the above weighted eounts to the Kekulć eount

(11)

(11')

Relations (11) refer to loeal properties, i.e. to the properties of a partieular six-
or ten-eycle. For example, a"k is arelative eontribution of a six-membered eycle Ak
in a tetrabenzanthraeene polymer eontaining n embedded biphenyl units. Sinee this
is a eontribution to the total resonanee eneergy, one can assoeiate an" with the loeal
aromatieity of the six- eycle Ah' ete.

In order to obtain the eontribution of all cycles of a particular type (A, B, X, L1
or E), one has to sum the above weighted counts over all allowed cycle positions in-
dicated by index k. In this way, one obtains the properties which refer to the entire
molecule and which are global. One can define other global properties, such as the
total contribution of all six-cycles, total contribution of all ten-cycles, as well as an
appropriate linear eombination of these contributions, which represents the total
resonance energy. All these global quantities can be expressed in term s of the global
counts Wn:

n-I n-I

Wn =L Xn. k =L Uh Un - k •

k=1 k=1
(12)

For exmaple, the global weighted count of all six-membered A- type cycles is

n

An = 2 L Ank= 4 (Wn+1 - 2Wn + Wn_1) .
k=1

One similarly obtains all other global weighted counts

Bn = 8 (Wn - Wn _ 1) (13)

en = 16Wn
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(13')

In order to obtain the relative contributions of various cycle types to the total reso-
nance energy, one has to normalize the above weighted counts with the Kekule
count. Moreover,we are not interersted in the total resonance energy but rather in
the resonance energy per carbon atom. The corresponding relative contributions per
carbon atom are

e, c;
bn = KN' en = K N

n 11 n 11

(14)

o; En
dn = KN' en = KN

11 n n n
(14')

where N" = 18n - 6 is the number of carbon atoms in the tetrabenzanthracene poly-
mer containing n embedded biphenylene units.

Quantities An' Bn ete. are weighted counts of all six- and ten-cycle types,
while quantities an' b ; ete. are the corresponding contributions to the total reso-
nance energy, normalized per one carbon atom. All these quantities are expressed
in terms of global counts W"and Kekulć counts. We have above given expressions
for the case of the tetrabenzanthracene family. However, one obtains similar ex-
pressions for all other benzenoid polymers, provided these polymers consist of
identical monomer units which are mutually connected by two bonds.? In each
case, there is a finite number of different six-cycle and ten-cycle types, and the
global weighted counts of these cycle types can be always expressed in terms of
quantities W".

Finally, in the case of the tetrabenzanthracene family, the global six- and ten-
cycle weighted counts are:

(15)
Cn(10) = 24 (Wn - Wn -1)

and hence
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(15')

24 (W" - W,,_l)
REn(10) = KN

n n

Table I shows a few initial values for the key quantities Uh and W,.. These quantities
are needed to express all the above local and global properties.

TABLE I

Initial values for the key quantities Uh and Wn whieh are re-
quired to express the loeal and global properties of the tetra-

benzanthraeene family

n Un W"
O O O
1 1 O
2 10 1
3 99 20
4 980 298
5 9701 3940
6 96030 48803
7 050599 580120
8 9409960 6702996
9 93149001 75859800
10 922080050 845044005
11 9127651499 9296660300
12 90354434940 101249210494
13 894416697901 1093549879580
14 8853812544070 11728666283207
15 87643708742799 125046925496560
16 867583274883920 1326384297425192

EDGE EFFECTS IN AN INFINITE BENZENOlD POLYMER

Let us now investigate the edge effect in an infinite benzenoid polymer. As an
illustration, we again consider the tetrabenzanthracene family shown in Figure 1,
and we take n to be infinite. We would like to estimate the contribution of the first
few cycles Al' BI' XI' A2, B2, ... to the total resonance energy. We would also like to
estimate how far the edge effect penetrates into the bulk of the molecule.

As n increases, the contribution of a particular cycle, such as cycle Ah
(k=1,2,3, ...), converges to some limit value. This limit value is associated with an in-
finite polymer. Further, as k increases, the limit values associated with a particular
cycle type converge to some bulk value. Thus, far enough from the edge of an infinite
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polymer the contributions of the cycles Ak stabilize to some bulk value a, the eon-
tributions of the cycles Bk stabilize to some bulk value b, etc. We will now derive
closed expressions for all these limit values, as well as for the corresponding bulk
values.

From relations (9), (10) and (11), one finds for afinite tetraabenzanthracene
polymer

I! Un-2 Un-1 Un_I)ank ="2 Xn + 1,k + X" - 1,k - 1 ----u-- - X'" k ----u-- - Xn,k - 1 ----u--
n 11 TI.

Un-1 Un-2
bnk=xn kU--Xn-1,k-I U-

n n

(16)

Un-1 Un-2
d"k =Xn,k U- -Xn-1,k-I U-

n n

Un-2 U,,_2
enk = Xn, k U- - Xn - 1, k U-

n n

where Xnk is the normalized quantity

(17)

which satisfies xn, k = Xn, n _ k and xn, 1= 1.
In order to evaluate the contribution of various cycles to the resonance energy

of an infinite polymer, one has to evaluate the limit of the above quantities as
n -+ 00, that is, one has to evaluate quantities akoo = lim ank, bkoo = lim b"h' etc. From
Eq. 17, one finds ,,-'>00 "-'>00

(18)

where

U
A= lim ~ and X liU k = Im X",k

n~co n n~oo

(19)
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Quantity ak", is, thus, the resonance energy contribution of cycle Ak in an infinite
polymer, quantity bkoo is the resonance energy contribution of cycle Bk in an infinite
polymer, etc .. One can associate local aromaticity with these contributions, and one
can study the edge effect in terms of a change of these contributions as k increases.
As one penetrates more and more into the bulk of a molecule, these cycle contribu-
tions converge to some bulk values a = lim akoo' b = lim bk", etc. It is convenient to
define alimit bulk quantity X: k -> co k -> co

X = lim xk .
k->oo

(20)

Bulk quantities a, b, c, d and e are now

Our derivation is almost complete. It remains to evaluate quantities x, A, and
Xk. We will evaluate these quantities for a general case, and not just for the tetra-
benzanthracene family.
Let us first evaluate the quantity A. From Eq. (7), it follows

Since this relation holds for each n, taking the limit n ~ 00, one finds

(22)

This equation is identical to the transfer matrix equation.P Quantity A is, hence, the
root of the transfer matrix equation. According to definition (19), of the two possible
roots it must be the larger one. Hence

u+'-';~
A= 2 . (23)

Let us now evaluate bulk quantity X and limit quantities Xk> From Eqs. (17) and (19),
one finds

(24)

in particular, XI = 1 and X2 = ulA.
We will now prove by mathematical induction that

(25)
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where
a-A a--Y~

y----
- A - a + -Ya2 - 4~ .

(25')

First, one can easily verify that relation (25) holds for k=l and k=2. Assume now
that this relation holds for k-1 and k-2. We will show that this implies the validity
of Eq. (25) for k.

Using Eqs. (5) and (24), one finds

By assumption, relation (25) holds for k-1 and k-2, which implies

Using Eq. (22), the first two term s in the brackets evaluate into one. Using Eqs. (22)
and (25'), the remaining two terms evaluate into -s". This proves that Xk satisfies
relation (25), provided this relation is satisfied by Xk -1 and xk - 2. Since this relation
is satisfied for k=l and k=2, by mathematical induction it is satisfied for each k.

According to Eq. (25), llimit quantities Xk converge exponentially to a bulk value
x. Since the edge effect decreases by (l/y) whenever k increases by one, quantity (1Iy)
can be considered as a damping factor. One can also define the penetration index y
with the relation

that is
1

y~--.
lny

The penetration index determines how far the edge effect penetrates into the bulk
of a polymer. The larger this index, the further is the penetration.

All six- and ten-cycle contributions in an infinite tetrabenzanthracene polymer
are now expressed in a closed analytical form. These contributions are given by re-
lations (18), where quantities A and xn are given by relations (23) and (25), respec-
tively. Using a=10 and ~=1, one finds

A = 5 +m = 9.898979485566 ,
5-m

y = . c-: = 0.0102051443364
5 + \124
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5+-&
X = . r:::-: = 1.0103103630799 ,

2 '124
r = 0.218109009153

In particular, from Eq. (21), six- and ten-cycle bulk contributions are

1
a = c = -.J6 = 0.408248290464 ,

2 + -.J6
b = .r:::-:r:::-: = 0.0917517095361

'124(5 + '124)
(21')

2 + -.J6
d = e = -& -& 0.0917517095361.

24 (5 + 24)

Comparing the three six-cycles, one finds that cycles A and X have the same bulk
contribution to the total resonance energy, while cycleB has a substantially smaller
bulk contribution. This contribution determines the relative bulk aromaticity of six-
cycles. As regards the two ten-cycles, they have the same bulk contribution to the
total resonance energy and, hence, they are equally aromatic.

These contributions are only relative, that is one can compare only the contri-
butions of the cycles of the same size, six-cycleto six- cycle and ten-cycle to ten-cycle.
In order to compare six- to ten- cycle contributions, one should multiply six-cycle
contributions with R6 and ten-cycle contributions with RIO' Here one can use either
BORT or conjugated-circuit values for these quantities.

In a similar way, one can obtain explicit expressions for all other local proper-
ties. All the dependence on index k, which determines the distance from the edge of
an infinite polymer, is contained in quantity Xk• As k increases, xk exponentially ap-
proaches to a bulk value x. The rate of this change is mainly determined by the
damping factor lIy = 97.98979482.

In the same way, one can analyze all the other linear benzenoid polymers
containing identical monomer units which are mutually connected by two CC
bonds. In general, in the limit of an infinite polymer, all six- and ten-cycle eon-
tributions can be expressed in terms of the quantities Xk and Avia some relations
similar to relations (18) above. In each case, quantity A is given by Eq. (23) while
quantities x" are given by Eq. (25). The penetration of the edge effect into the
bulk of the molecule is determined by quantity Xk, which exponentially ap-
proaches the bulk value x. Ultimately, all these expressions depend on only two
quantities, a and ~. These quantities depend on a particular benzenoid family
and can be very easily obtained. The rate at which the edge effect decreases from
the edge of the polymer into the bulk of the polymer is determined by the damp-
ing factor lIy. This damping factor equals the ratio of the larger to the smaller
root of Eq. (22). The smaller this ratio, the further the edge effect penetrates into
the bulk of the molecule.

Another problem is how reliable are the limit quantities Eq, (18) which are valid
for an infinite tetrabenzanthracene polymer, as an approximation for the quantities
Eq. (16) valid for a finite tetrabenzanthracene polymer. According to relations (16),
(17) and (18), this question reduces to the problem of how reliable is the bulk quan-
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TABLE II

Convergence of Xnk to limit values Xk for the case of the tetrabenzanthracene fa-
mily. These limit values correspond to an infinite tetrabenzanthracene polymer. As

k increases, limit values Xk in the last row converge to the bulk value x.

n Xn2 Xn3 Xn4 Xn5

3 1.010101010101
4 1.010204081633
5 1.010205133491 1.010308215648
6 1.010205144226 1.010309278351
7 1.010205144335 1.010309289200 1.010310341164
8 1.010205144336 1.010309289306 1.010310352010
9 1.010205144336 1.010309289307 1.010310352121 1.010310362856
10 1.010205144336 1.010309289307 1.010310352122 1.010310362967
11 1.010205144336 1.010309289307 1.010310352122 1.010310362968
00 1.010205144336 1.010309289307 1.010310352122 1.010310362968

tity xk as an approximation of the quantity xn k' This is illustrated in Table II. In
this Table, quantities xnk for k=2, 3, 4 and 5 ~re given. Each column contains the
values xnk for a fixed k. As n increases, these values converge to alimit quantity Xk

at the bottom of each column. For each value of k, only those values of n which sat-
isfy n ;:::2k - 1 are shown. For smaller values of n, one can use the symmetry relation
Xnk = Xn•n -ko

Convergence of each X
l1
k to alimit quantity xk is very fast. Thus, already xn ap-

proximates the limit quantity XI up to twelve significant figures. while a:lready xS2
approximates the limit quantity x2 up to twelve significant figures, etc. Since all
limit quantities Eq. (18) are expressed in terms of limit quantities Xk, this illus-
trates how reliable limit quantities ak"" bk", etc. are as an approximation of quan-
tities ank, bnk etc. in the case of a finite tetrabenzanthracene polymer. As illus-
trated by Table II, for all tetrabenzanthracene polymers except very small ones,
one can reliably approximate exact quantities Eq. (11) with the corresponding
limit quantities Eq. (18). In the case of small polymers, direct numerical calcu-
lation is not so involved and one can use exact expressions Eq. (11) instead of
approximate expressions Eq. (18).

Similar results are obtained for all other benzenoid polymers containing mono-
mer units which are mutually connected by two CC bonds. In general, one has to
estimate the convergence of quantities Xnk to the limit quantity Xk. This convergence
depends on the damping coefficient lIy: the larger this damping coefficient, the
faster is the convergence.

GLOBALPROPERTIES

Let us now consider global properties, such as the global cycle contributions
of a particular cycle type, global six-cycle and ten- cycle contributionas and, fi-
nally, the global resonance energy. We will derive formulas for global proper-
ties in the limit n ~ 00, and we will compare these formulas with the exact results
for some finite n.
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Let us first define normalized quantities Wn as average quantities Xnk.

n-I
Wn 1 ~

Wn = U (n _ 1) = n-I L. Xnk
n-I k=1

(26)

As n increases, Xnk converges to xk' Thus, for a big enough n and for k ::; n12, one
can approximate Xnk with x., while for k ~ nl2 one can use symmetry Xn " =Xn n _k
and approximate Xnk with Xn_k' Hence, and from Eqs. (19) and (25), the global quan-
tity ui; can be approximated as

The last sum equals (y - yn/2)/(1_ y). For a big enough n, one has yn/2", 0, and,
hence, finally

(27)

One can now approximate all global contributions Eq, (14) in terms of quantities io.;

an"'Wn+118n_6
n Wn n-I wn -1 n - 22- +-----

A 18n - 6 A2 18n - 6

f w; n-I ui; -1 n - 2l
bn '" 21T -18-n---6 - -A-2- -1-8n---6

W n-I
cn '" 4 -t- 18n _ 6 (28)

f ui; n-I w; -1 n - 2ls; '"41T -18-n---6 - -A-2- -18-n---6

jWn n-I wn-1 n - 2le ~2 - -----
n ~ A 18n - 6 - A2 18n - 6

where quantities A and ui., are given by relations (23) and (27), respectively.
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TABLE III

Comparison of the exact six- and ten-cycle global contributions with these contributions cal-
culated approximately using relation (29)

n REn(6) approx. REn(6) exact RE,,(10) approx. RE,,(10) exact.

1 0.0824564191455 0.8333333333333 0.0000000000000 0.0000000000000
2 0.0799872435695 0.0800000000000 0.0199914957131 0.0200000000000
3 0.0793349625984 0.0793350168350 0.0239902244094 0.0239898989898
4 0.0790352499271 0.0790352504638 0.0257885004374 0.0257884972217
5 0.0788639855435 0.0788639855489 0.0268160867391 0.0268160867068
6 0.0787531674129 0.0787531674130 0.0274809955226 0.0274809955222
7 0.0786755947215 0.0786755947215 0.0279464316710 0.0279464316710
8 0.0786182583844 0.0786182583844 0.0282904496937 0.0282904496937
9 0.0785741535097 0.0785741535097 0.0285550789420 0.0285550789420
10 0.0785391737814 0.0785391737814 0.0287649573113 0.0287649573113
100 0.0782654193867 0.0782654193867 0.0304074836799 0.0304074836799
1000 0.0782389476379 0.0782389476379 0.0305663141723 0.0305663141723
10000 0.0782363091990 0.0782363091990 0.0305821448058 0.0305821448058
co 0.0782360161369 0.0782360161369 0.0305839031787 0.0305839031787

Similarly, one approximates the total six- and ten-cycle contributions

n wn n-I
REn(6)""wn+118n_6+4~ 18n-6

(
w; n-I w; -I n - 21

REn(10) "" 6 ~ 18n _ 6 -Y 18n - 6 .

(29)

In the limit n -+ 00, one obtains

RE",(6)= :8 {I +i-:2}' RE",(10)= ; [1- ±J . (30)

Table III gives a comparison of the exact values RE,,(6)and REn(10) with these
values calculated according to relations (29). Formally, approximations Eq. (29)
shoud be valid for a large n. However, as shown in Table III, these approximations
are extremely good also for quite a small n. Already for the polymer containing only
seven units, relations (29) approximate exact global six- and ten-cycle contributions
up to twelve significant figures. Relations (29) are quite acceptable even for very
small polymers. Thus, in the case of tetrabenzanthracene, which is the the second
member in this polymer family, these relations reproduce exact six- and ten-cycle
contributions up to three and four significant figures, respectively.

Another point which should be emphasized is that values REn(6) and RE,,(10)
converge quite slowly to the respective limit values RE",(6)and RE",(10)for an infi-
nite polymer. As shown in Table III, in the case of the tetrabenzanthracene polymer
containing as many as 1000monomer units, the six-cyclecontribution REJQoo(6)ap-
proximates the exact limit value RE",(6)only up to four significant figures, while the
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ten-cycle contribution RE100oC10)approximates the exact limit value REoo(10) only up
to three significant figures. In view of this slow convergence, and in order to esti-
mate the behaviour of these quantities for very large polymers, various extrapolation
techniques were attempted in Ref. 14, such as expansion in a geometric series, poly-
nomial optimal curve fitting, orthogonal optimal curve fitting, etc. All these approxi-
mations are far less accurate than the closed relations (29) obtained here.

CONCLUSIONS

Benzenoid polymer systems containing monomer units which are mutually eon-
nected by two CC bonds were considered. These molecules were treated within a
simplified BORT or equivalently!! within a simplified VB approach. This simplified
approach relies on the ansatz Eq (1), and in the resulting expression Eq, (4') for the
total resonance energy all terms are neglected, except two dominant terms corre-
sponding to asingle six- and asingle ten-cycle, respectively. On this level of approxi-
mation, and in the case of benzenoid systems, the resulting relations are quite simi-
lar to the conjugated circuit model."

As an illustration, the tetrabenzanthracene polymer family was explicitly eon-
sidered. Closed expressions for local and global contributions to the total resonance
energy were derived. Exact bulk values for various cycle types were also obtained.
As regards global properties, highly accurate approximate expressions which de-
scribe finite polymers were also obtained. It was shown that the influence of the edge
effect decreases exponentially as one enters the bulk of the molecule. The damping
coefficient which determines how much this influence decreases as one moves a sin-
gle monomer unit inside a polymer equals the ratio of the larger to the smaller root
of the characteristic equation (22). In the case of the tetrabenzanthracene family, one
has a = 10 and p = 1. In the case of other polymer families, these quantities have
some other values, producing some other damping coefficients. In each particular
case, coefficients a and p can be very easily determined, for example, from the
Kekule counts of the first four members of a polymer family.
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SAŽETAK

Rubni efekti u vrlo velikim benzenoidnim polimerima

Tomislav P. Živković

U radu su razmatrani vrlo veliki benzenoidni polimeri čiji su monomeri međusobno pove-
zani sa po dvije veze CC. Račun je proveden u okviru pojednostavnjenog BORT, tj. pojedno-
stavnjenog VB postupka. Opisan je općeniti postupak za račun rezonancijskih energija i svoj-
stava lokalne aromatičnosti, kao što su npr. doprinosi šestero- i deseteročlanih prstenova
ukupnoj rezonancijskoj energiji. Za ilustraciju postupka razmatrani su tetrabenzantracenski
polimeri. Izvedeni su točni izrazi za lokalna i globalna svojstva beskonačno dugih polimera toga
tipa, kao i vrlo dobri približni izrazi kada takovi polimeri imaju konačnu duljinu.




