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Mimar Sinan Mah., Mimar Sinan Bulvari E-207, No. 177 TR-16 310 Yildirim/Bursa,
Turkey

Received January 29, 2016; accepted September 13, 2016

Abstract. In this paper, new construction methods for self-dual codes are given. The
methods use the short Kharaghani array and its variation. They are applicable to any
commutative Frobenius ring. We apply the constructions over the ring F2 + uF2 and self-
dual Type I [64, 32, 12]2-codes with various weight enumerators obtained as Gray images.
By using an extension theorem for self-dual codes we were able to construct 27 new extremal
binary self-dual codes of length 68. The existence of extremal binary self-dual codes with
these weight enumerators was previously unknown.
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1. Introduction

Self-dual codes constitute an interesting class of codes, especially the ones over the
binary field. In [4], an upper bound on the minimum distance of a binary self-dual
code is given. This type of codes is related to various topics such as design theory,
graph theory and lattice theory. Recently, self-dual codes over rings have been used
to construct new codes. For some of the works done in this direction we refer the
reader to [6, 9, 12, 13].

The upper bound on the minimum distance of a binary self-dual code is finalized
in [16]. Possible weight enumerators of self-dual codes of lengths up to 64 and 72 are
listed in [4]. Since then researchers have used different techniques to construct self-
dual codes. In [11], Huffman gave a survey on classification of self-dual codes over
various alphabets. Construction of new self-dual codes and the classification of self-
dual codes have been a dynamic research area. Among those constructions, the ones
using circulant matrices are celebrated most. In [5], binary self-dual codes of length
72 are constructed by Hadamard designs, using automorphism groups is another
way to build up self-dual codes. For more information we refer to [1, 3, 7, 8, 13].

In this paper, inspired by a four-block circulant construction in [1] that uses
the Goethals-Seidel array, we propose a new construction via the short Kharaghani
array. A variation of the method is also given. By using the methods for the ring
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F2+uF2 we construct self-dual codes of length 32. As binary images of the extensions
of these codes we were able to construct 27 new extremal binary self-dual codes of
length 68. Self-dual codes for these weight enumerators have been obtained for the
first time in the literature.

The rest of the paper is organized as follows. In Section 2, the preliminaries
about the structure of the ring F2 + uF2 and the construction from [1] we were
inspired by are given. Section 3 is devoted to the methods we introduce which use
the short Kharaghani array. The computer algebra system MAGMA [2] has been
used for computation and results regarding the constructions are given in Section 4.
A substantial number of self-dual Type I [64, 32, 12]

2
-codes and 27 new extremal

binary self-dual codes of length 68 are constructed. Section 5 concludes the paper
with some possible lines of research.

2. Preliminaries

Throughout the text, let R be a commutative Frobenius ring. A linear code C of
length n overR is anR-submodule ofRn. Elements of C are called codewords. Codes
over F2 and F3 are called binary and ternary, respectively. Consider two arbitrary
elements x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) of Rn. The Euclidean inner
product is defined as 〈x, y〉E =

∑

xiyi and in this paper the duality is understood
in terms of the Euclidean inner product. In other words, the dual of a code C of
length n is denoted as C⊥ and defined to be

C⊥ = {x ∈ Rn | 〈x, y〉E = 0 for all y ∈ C} .

A code C is said to be self-orthogonal when C ⊂ C⊥ and self-dual when C = C⊥. An
even self-dual code is said to be Type II if all codewords have weights divisible by
4; otherwise it is said to be Type I. For more information on self-dual codes over
commutative Frobenius rings we refer to [7].

The ring F2 + uF2 is a characteristic 2 ring of size 4. The ring is defined as F2 +
uF2 =

{

a+ bu|a, b ∈ F2, u
2 = 0

}

, which is isomorphic to the quotient F2 [x] /
(

x2
)

.
Type II codes over F2 + uF2 have been studied in [6]. Some construction methods
for self-dual codes over F2+uF2 are given in [9]. Karadeniz et al. classified self-dual
four-circulant codes of length 32 over F2 + uF2 in [12]. For codes over F2 + uF2 a
duality preserving a linear Gray map is given in [6] as follows:

ϕ : (F2 + uF2)
n
→ F

2n
2 , ϕ (a+ bu) = (b, a+ b) , a, b ∈ F

n
2 .

In [4], Conway and Sloane gave an upper bound on the minimum Hamming
distance of a binary self-dual code which was finalized by Rains as follows:

Theorem 1 (see [16]). Let dI(n) and dII(n) be the minimum distance of a Type I
and Type II binary code of length n, respectively. Then

dII(n) ≤ 4⌊
n

24
⌋+ 4

and

dI(n) ≤

{

4⌊ n
24
⌋+ 4, if n 6≡ 22 (mod 24)

4⌊ n
24
⌋+ 6, if n ≡ 22 (mod 24)

.
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Self-dual codes meeting these bounds are called extremal.
For the rest of the paper we let R = (rij) be the back diagonal (0, 1)-matrix

of order n satisfying ri,n−i+1 = 1, rij = 0 if j 6= n − i + 1. We are inspried by a
construction of self-dual codes given in [1] as follows:

Theorem 2 (see [1]). Let A,B,C,D be four n by n circulant matrices satisfying
AAT +BBT + CCT +DDT = −In. Then the code generated by the matrix

G =









I4n

A BR CR DR
−BR A DTR −CTR
−CR −DTR A BTR
−DR CTR −BTR A









is a self-dual code.

λ-circulant matrices share most of the properties of circulant matrices. For in-
stance, they commute with each other for the same λ. Thus, the construction in
Theorem 2 can easily be extended to λ-circulant matrices. The construction uses the
Goethals-Seidel array and we propose four-block-circulant constructions in Section 3.

3. Self-dual codes via the short Kharaghani array

In this section, two constructions for self-dual codes over commutative Frobenius
rings are given. In [15], Kharaghani gave some arrays for orthogonal designs. The
first construction uses the short Kharaghani array and the second uses a variation of
the array. Although the conditions of duality appear to be strict, we obtained good
examples of self-dual codes over the ring F2+uF2 and the binary field F2. The given
methods can be used for any commutative Frobenius ring. In what follows, ternary
self-dual codes are given as examples in order to demonstrate that the methods work
for non-binary alphabets. A ternary self-dual code of length n is said to be extremal
if d meets the upper bound d ≤ 3⌊ n

12
⌋+ 3.

We need the following lemma from [13];

Lemma 1 (see [13]). Let A and C be λ-circulant matrices. Then C′ = CR is
a λ-reverse-circulant matrix and it is symmetric. Moreover, AC′ − C′AT = 0.
Equivalently, ARCT − CRAT = 0.

Theorem 3 (Construction I). Let C be a linear code over R of length 8n generated
by the matrix in the following form:

G :=









I4n

A B CR DR
−B A DR −CR
−CR −DR A B
−DR CR −B A









, (1)

where A,B,C and D are λ-circulant matrices over the ring R satisfying the condi-
tions

AAT +BBT + CCT +DDT = −In
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and
ABT −BAT − CDT +DCT = 0.

Then C is self-dual.

Proof. Let M be the right half of the matrix G in (1). Then it is enough to show
that MMT = −I4n.

MMT =









A B CR DR
−B A DR −CR
−CR −DR A B
−DR CR −B A

















AT −BT −RCT −RDT

BT AT −RDT RCT

RCT RDT AT −BT

RDT −RCT BT AT









=









X Y Z T
−Y X −T −Z
−Z −T X Y
−T Z −Y X









,

where

X = AAT +BBT + CCT +DDT

Y = −ABT +BAT + CDT −DCT

Z = −ACR−BDR+ CRAT +DRBT

T = −ADR+BCR− CRBT +DRAT .

We have Z = T = 0 by Lemma 1 and Y = 0, X = −In by the assumption. Hence
MMT = −I4n, which implies GGT = 0. Therefore, the code C is self-orthogonal
and self-dual due to its size.

In the following example we obtain an extremal ternary self-dual code of length
56 by Theorem 3.

Example 1. Let C56 be the code over F3 obtained by Construction I for n = 7, λ = 1,
rA = (2200120) , rB = (0020102) , rC = (0010020) and rD = (2111001). Then C56
is a self-dual [56, 28, 15]

3
-code. In other words, it is an extremal ternary self-dual

code of length 56 with 68544 words of weight 15 and an automorphism group of order
23 × 7.

Now we give a variation of the construction in Theorem 3 as follows:

Theorem 4 (Construction II). Let λ be an element of the ring R with λ2 = 1 and
C a linear code over R of length 8n generated by the matrix:

G :=









I4n

A B CR DR
−BT AT DR −CR
−CR −DR A B
−DR CR −BT AT









, (2)

where A,B,C and D are λ-circulant matrices over R satisfying the conditions

AAT +BBT + CCT +DDT = −In

CDT −DCT = 0



New binary self-dual codes of length 68 via the short Kharaghani array 125

and

−ADR+BCR− CRB +DRA = 0.

Then the code C is a self-dual code over R.

Proof. Let M be the right half of the matrix G in (2). Then

MMT =









X Y Z T
−Y T X −T T −U
−Z −T X Y
−T T U −Y T X









,

where

X = AAT +BBT + CCT +DDT

Y = −AB +BA+ CDT −DCT

Z = −ACR−BDR + CRAT +DRBT

T = −ADR+BCR − CRB +DRA

U = BTDR+ATCR −DRB − CRA.

By Lemma 1, Z = 0. Matrices AT and BT are λ−1-circulant, they are λ-circulant
since λ = λ−1. Hence by Lemma 1, U = 0.

Y = −AB +BA+ CDT −DCT = CDT −DCT ,

since λ-circulant matrices commute. By the assumption, Y = 0 = T and X = −In.
It follows that MMT = −I4n, which implies C is self-orthogonal. The code C is
self-dual due to its size.

There are only two extremal self-dual ternary codes of length 24. Those are the
extended quadratic residue code and the Pless symmetry code. In the following
example we obtain both by Theorem 4.

Example 2. Let C24 be the code over F3 obtained by Construction II for n = 3, λ =
2, rA = (221) , rB = (201) , rC = (212) and rD = (221). Let D24 be the code over F3

obtained by Construction II for n = 3, λ = 2, rA = (200) , rB = (112) , rC = (102)
and rD = (110). Then C24 and D24 are self-dual [24, 12, 9]

3
-codes. The code C24

is the Pless symmetry code and the code D24 is the extended quadratic residue code
over F3 for p = 23.

Remark 1. The two extremal self-dual [24, 12, 9]
3
-codes in Example 2 are also eas-

ily obtained by Theorem 3. On the other hand, only the Pless symmetry code of
parameters [24, 12, 9]

3
could be constructed by Theorem 2. That exhibits that the

constructions proposed in this section might be advantageous compared to Theorem
2 even if the conditions are restrictive.
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4. Computational results

The constructions given in Section 3 can be applied to any commutative Frobenius
ring. We focus on binary self-dual codes obtained by the methods. The constructions
applied to the binary field F2 and the ring F2 + uF2. The results are tabulated.
Twenty seven new extremal binary self-dual codes of length 68 are obtained as an
application of Theorem 3 and Theorem 4.

In [4], possible weight enumerators for a self-dual Type I [64, 32, 12]
2
-code were

characterized as:

W64,1 = 1 + (1312 + 16β) y12 + (22016− 64β) y14 + · · · , 14 ≤ β ≤ 284,

W64,2 = 1 + (1312 + 16β) y12 + (23040− 64β) y14 + · · · , 0 ≤ β ≤ 277.

Recently, codes with β =29, 59 and 74 in W64,1 [13], a code with β =80 in W64,2

were constructed in [12]. Together with these, the existence of codes is known for
β =14, 18, 22, 25, 29, 32, 36, 39, 44, 46, 53, 59, 60, 64 and 74 in W64,1 and for β =0,
1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 28, 19, 30, 32, 33,
36, 37, 38, 40, 41, 44, 48, 51, 52, 56, 58, 64, 72, 80, 88, 96, 104, 108, 112, 114, 118,
120 and 184 in W64,2.

4.1. Computational results for Construction I

Results for Construction I for n = 8 over F2 and for n = 4over F2 + uF2 are given.
Self-dual Type I [64, 32, 12]

2
-codes are constructed and tabulated.

Ci rA rB rC rD |Aut(Ci)| β in W64,2

C1 (10001101) (00010000) (01000110) (01111010) 25 0

C2 (10111001) (01111101) (01100001) (01111111) 25 16

C3 (10110011) (01101001) (11101101) (01101111) 26 16

C4 (00100011) (11010010) (11110011) (01010011) 25 32

C5 (11011000) (00001110) (11010100) (11000000) 25 48

C6 (11011000) (11110001) (01000111) (01011100) 27 80

Table 1: Construction I over F2 for n = 8

For n = 8, Theorem 3 gives self-dual codes over the binary field F2 listed in
Table 1.

Di λ rA rB rC rD |Aut(Di)| β in W64,2

D1 3 (3, 3, 1, u) (u, 0, 0, 1) (0, 0, 3, 0) (3, u, 1, 0) 25 0

D2 3 (1, 1, 1, u) (u, 1, 0, 1) (u, 3, 3, 0) (0, u, 1, 1) 25 16

D3 3 (3, 1, 3, u) (0, 1, u, 1) (u, 3, 3, u) (u, u, 1, 1) 26 16

D4 3 (3, 1, 3, 0) (0, 1, u, 1) (u, 1, 3, u) (u, 0, 1, 1) 25 32

D5 3 (1, 3, 1, 0) (u, 1, 0, 1) (0, 3, 3, u) (0, 0, 3, 1) 25 48

D6 3 (3, 1, 3, u) (u, 3, 0, 3) (u, 3, 1, 0) (u, 0, 1, 3) 27 80

Table 2: Construction I over F2 + uF2 for n = 4

In Table 2, Construction II is applied to the ring F2 + uF2 in order to construct
self-dual codes of length 32.
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Remark 2. The first extremal self-dual binary code of length 64 with a weight enu-
merator β = 80 in W64,2 is constructed in [12] by using four circulant construction
over F2 + uF2. In Tables 1 and 2, we give an alternative construction for the code
by the short Kharaghani array.

4.2. Computational results for Construction II

In this section, we give computational results for Construction II.

Ei rA rB rC rD |Aut(Ei)| β in W64,2

E1 (00000010) (01101100) (01100111) (10110000) 24 0

E2 (11101100) (10101110) (10111110) (01111010) 25 0

E3 (01110110) (10101000) (11110010) (11001001) 26 0

E4 (10010011) (01110101) (01000110) (10011110) 24 8

E5 (01111000) (01110101) (10000001) (00100100) 25 8

E6 (00110100) (01011010) (00010011) (01000011) 24 16

E7 (00110001) (01011010) (01101011) (11100011) 25 16

E8 (01000110) (11000000) (10110100) (10101001) 24 24

E9 (10100011) (11111101) (11111001) (01011010) 25 24

E10 (01000110) (11001101) (10111110) (00011100) 25 32

E11 (01100100) (10100101) (10011111) (10101100) 24 40

E12 (11110000) (00010011) (11110001) (10110101) 25 48

Table 3: Construction II over F2 for n = 8

In Table 3, extremal self-dual Type I codes of length 64 are constructed.

Fi λ rA rB rC rD |Aut(Fi)| β in W64,2

F1 3 (0, 0, 1, 0) (3, 0, 3, u) (u, u, 0, 1) (1, 0, 1, 3) 24 0

F2 3 (1, 0, 1, u) (u, 3, 1, 1) (1, 1, u, 0) (0, u, 1, 3) 24 8

F3 3 (1, 0, 3, u) (u, 1, 3, 3) (1, 3, u, u) (0, 0, 1, 1) 25 8

F4 1 (1, 0, 0, u) (0, 0, 1, 1) (3, 1, 1, 3) (0, u, 1, 1) 24 16

F5 3 (0, u, u, 1) (u, 1, 3, 3) (0, 3, 0, 0) (1, u, 1, u) 25 16

F6 3 (u, 0, 1, u) (1, 1, 3, 1) (3, 3, 1, u) (3, 1, 1, u) 24 24

F7 3 (3, u, 1, 0) (u, 1, 1, 3) (1, 3, 0, 0) (u, u, 3, 3) 25 24

F8 1 (3, 0, 0, u) (u, 0, 1, 3) (3, 1, 1, 3) (u, u, 1, 3) 25 32

F9 3 (0, 0, 1, u) (1, 1, 1, 1) (1, 3, 1, u) (3, 3, 3, u) 25 48

Table 4: Construction II over F2 + uF2 for n = 4

Now we apply the construction in Theorem 4 to the ring F2 + uF2 and give the
results in Table 4.

Construction II has an advantage over Construction I. Although the conditions
are strict, Construction II allows us to narrow down the search area. We may fix
the matrices C and D satisfying CDT −DCT = 0 and search for circulant matrices
A and B which satisfy the remaining necessary conditions. We present that in the
following example:

Example 3. Let n = 4, λ = 1 + u,C and D be λ-circulant matrices with first rows
rC = (1, 1 + u, u) and rD = (0, 0, 1, 1), respectively. Then CDT −DCT = 0. So we
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may search for λ-circulant matrices A and B that satisfy

AAT +BBT + CCT +DDT = −In

and
−ADR+BCR− CRB +DRA = 0.

For each pair of such matrices a self-dual code of length 32 over F2 + uF2 will be
obtained by Construction II. Let A and B be λ-circulant matrices with the following
first rows

rA rB β in W64,2

(1, 0, 1 + u, u) (u, 1, 1 + u, 1 + u) 8
(1 + u, u, 1, 0) (u, 1, 1, 1 + u) 24

.

Then we obtain two extremal binary self-dual [64, 32, 12]
2
-codes with automorphism

groups of order 25 as Gray images. Note that this approach reduces the search field
remarkably from 416 = 4294967296 to 48 = 65536.

Remark 3. Although constructions I and II have more strict conditions than the
construction in Theorem 2, computational results indicate that they are superior to
the method given in Theorem 2 since only one Type I [64, 32, 12]

2
-code with weight

enumerator β = 8 in W64,2 is obtained by applying the construction that uses the
Goethals-Seidel array to F2 and F2 + uF2.

4.3. New extremal binary self-dual codes of length 68

In [3], possible weight enumerators of a self-dual [68, 34, 12]
2
-code are characterized

as follows:

W68,1 = 1 + (442 + 4β) y12 + (10864− 8β) y14 + · · · ,

W68,2 = 1 + (442 + 4β) y12 + (14960− 8β − 256γ)y14 + · · · ,

where 0 ≤ γ ≤ 9 by [10]. So far, the existence of codes with weight enumerators for
γ = 0, 1, 2, 3, 4 and 6 is known. Recently, new codes in W68,2 have been obtained in
[8, 13]. These codes exist for W68,2 when

γ = 0, β = 11, 17, 22, 33, 44, . . . , 158, 165, 187, 209, 221, 231, 255, 303

or

β ∈ {2m|m = 17, 20, 88, 99, 102, 110, 119, 136, 165 or 80 ≤ m ≤ 86} ;

γ = 1, β = 49, 57, 59, . . . , 160

or

β ∈ {2m|m = 27, 28, 29, 95, 96 or 81 ≤ m ≤ 90} ;

γ = 2, β = 65, 69, 71, 77, 81, 159, 186

or

β ∈ {2m|30 ≤ m ≤ 68, 70 ≤ m ≤ 91}

or

β ∈ {2m+ 1|42 ≤ m ≤ 69, 71 ≤ m ≤ 77} ;
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γ = 3, β=101, 103, 105, 107, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 137, 141,

145, 147, 149, 153, 159, 193

or

β ∈

{

2m

∣

∣

∣

∣

∣

m = 44, 45, 47, 48, 50, 51, 52, 54, . . . , 72, 74, 75,

77, . . . , 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98

}

;

γ = 4, β ∈

{

2m

∣

∣

∣

∣

∣

m = 43, 48, 49, 51, 52, 54, 55, 56, 58, 60, 61, 62,

64, 65, 67, . . . , 71, 75, . . . , 78, 80, 87, 97

}

;

γ = 6 with β ∈ {2m|m = 69, 77, 78, 79, 81, 88} .

In this section, we obtain 27 new codes with weight enumerators for γ = 0 and
β =174, 180, 182, 184, 186, 188, 190, 192, 194; γ = 1 and β =50, 52, 184, 186, 188;
γ = 2 and β =184, 188, 190, 192, 194, 196, 198, 200, 206, 208; γ = 3 and β =98,
106; γ = 4 and β =196 in W68,2.

Theorem 5 (see [7]). Let C be a self-dual code over R of length n and G = (ri) a
k × n generator matrix for C, where ri is the i-th row of G, 1 ≤ i ≤ k. Let c be a
unit in R such that c2 = 1 and X a vector in Rn with 〈X,X〉 = 1. Let yi = 〈ri, X〉
for 1 ≤ i ≤ k. Then the following matrix











1 0 X
y1 cy1 r1
...

...
...

yk cyk rk











generates a self-dual code C′ over R of length n+ 2.

In Table 5, the codes are generated over F2+uF2 by the matrices of the following
form:

G′ =











1 0 X
y1 cy1
...

... G
yk cyk











,

where G is the generating matrix of the code C with the specified circulant matrices.
Then C68,i is the binary image ϕ (G′) of the extension.

Theorem 6. The existence of extremal self-dual binary codes is known for 492
parameters in W68,2.

Remark 4. The binary generator matrices of the codes in Table 5 are available
online at [14]. Those have automorphism groups of order 2.
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C68,i C c X γ β

C68,1 D6 1 (13u11uu3331uu10133u330u31u010031) 0 174
C68,2 D6 3 (103u303u0001333u3u03uu1u000u3313) 0 180
C68,3 D6 3 (u1331u01333u31113101100310u1uu33) 0 182
C68,4 D6 3 (001u3010uu1u00313101100310u1uu33) 0 184
C68,5 D6 3 (1u303u1uu00311103uu1uu3000uu1313) 0 186
C68,6 D6 3 (301u1u1u00u1311u3uu30u10uu0u1333) 0 188
C68,7 D6 3 (3u13u333100u03011uu1333u1u110uu0) 0 190
C68,8 D6 3 (310110310uu1u33011331u00u3300001) 0 192
C68,9 D6 3 (101010100003111u3uu1u03u000u3331) 0 194
C68,10 F1 3 (uu00333011u1330uu0u10u0u013u1100) 1 50
C68,11 F1 3 (u0uu333013u113uu00u3uuu00330310u) 1 52
C68,12 D6 1 (31013uu3133uu30311011uu33u03uu11) 1 184
C68,13 D6 3 (330330u3113uu30311u13u013003uu11) 1 186
C68,14 D6 1 (330130u3333uu3u3310330u33uu10011) 1 188
C68,15 D6 1 (3u3u1u100uu1133u301u0u3113131uu0) 2 184
C68,16 D6 3 (3u1u3u10uuu1133u301uuu3131113uuu) 2 188
C68,17 D6 3 (011u01u3330u1001330310u13u010011) 2 190
C68,18 D6 1 (1u1u10300u01311u1u100u11333130uu) 2 192
C68,19 D6 3 (0310010111uu10u131u310u310010011) 2 194
C68,20 D6 1 (10301010000333301010u01313111u00) 2 196
C68,21 D6 3 (u310u1u3130u1uu113u130u11uu30u33) 2 198
C68,22 D6 1 (u110u10331u0100111u3100310010u33) 2 200
C68,23 D6 1 (0130u3u311uu1uu1310330013u030011) 2 206
C68,24 D6 3 (301u1u1u00u1311u3010u01333133uu0) 2 208
C68,25 D1 3 (u3330030u10uu313010001uu1030u0u3) 3 98
C68,26 D1 3 (1030uu1130u31311101u13u03030uu30) 3 106
C68,27 D6 3 (u310u30313u030u311u130u130u10033) 4 196

Table 5: New extremal binary self-dual codes of length 68 by Theorem 5

5. Conclusion

Most of the constructions for self-dual codes are used to reduce the search field. In
this paper, we use the short Kharaghani array and determine the necessary condi-
tions for duality. The constructions could be used over different alphabets such as
Z4; the integers modulo 4. One may suggest such constructions by using various
arrays. By such methods we may attempt to construct codes as the extremal binary
self-dual Type II codes of length 72, which is a long standing open problem.
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