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Abstract. In this paper, we study the hyper-order of solutions of higher order linear
differential equation

f
(k) + Ak−1(z)f

(k−1) + . . . A1(z)f
′ + A0(z)f = H(z),

where k ≥ 2 is an integer, Aj (z) (j = 0, 1, . . . , k − 1) and H (z) ( 6≡ 0) are entire functions
or polynomials. We improve previous results given by Xu and Cao.
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1. Introduction and main results

We assume that the reader is familiar with usual notations and basic results of
Nevanlinna theory (see [6, 11]). We also use basic results of Wiman-Valiron theory,
(see [7]). In addition, we use the notation σ(f) to denote the order of growth of a
meromorphic function f , λ (f) and λ (f) to denote the exponent of convergence of
a sequence of zeros and a sequence of distinct zeros of f , respectively. We also by
σ2(f) denote the hyper-order of f defined by (see [11])

σ2(f) = lim sup
r→+∞

log logT (r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic function of f .
The hyper-exponent of convergence of a sequence of zeros and distinct zeros of f are
defined by (see [1])

λ2(f) = lim sup
r→+∞

log logN(r, 1
f )

log r

and

λ2(f) = lim sup
r→+∞

log logN(r, 1
f )

log r
,
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respectively, where N(r, 1
f ) and N(r, 1

f ) are the counting functions of zeros and
distinct zeros of f , respectively.

For a set E ⊂ [1,+∞), let m(E) and ml(E) denote the linear measure and the
logarithmic measure of E, respectively. Moreover, the upper logarithmic density
and lower logarithmic density of E are defined by

log dens(E) = lim sup
r→∞

ml(E ∩ [1, r])

log r
, log dens(E) = lim inf

r→∞

ml(E ∩ [1, r])

log r
.

For the second order linear differential equation

f
′′

+ e−zf
′

+Q(z)f = 0, (1)

where Q (z) is an entire function of finite order, it is well known that every solution
of equation (1) is an entire function and most solutions of (1) have an infinite order.
But equation (1) with Q(z) = −(4 + 2e−z) possesses a solution f(z) = e2z of finite
order.

Thus a natural question is: what condition onQ(z) will guarantee that every solution
f(6≡ 0) of equation (1) has an infinite order?

In [2], Chen studied the problem, whereQ(z) = h(z)ebz, h(z) is a nonzero polynomial
and b is a complex number. He proved that if b 6= −1, then every solution f(6≡ 0) of
equation (1) is of infinite order and σ2(f) = 1.

In the same paper, he also considered more general equations of second order and
proved the following two results:

Theorem 1 (see [2]). Let Aj(z)(6≡ 0) (j = 0, 1) be entire functions with σ(Aj) < 1,
a, b complex constants such that ab 6= 0 and a = cb (c > 1). Then every solution
f(6≡ 0) of equation

f
′′

+A1(z)e
azf

′

+A0(z)e
bzf = 0, (2)

has an infinite order.

Theorem 2 (see [2]). Let Aj(z)(6≡ 0), Dj(z) (j = 0, 1) be entire functions with
σ(Aj) < 1, σ(Dj) < 1 a, b be complex constants such that ab 6= 0 and arg a 6= arg b
or a = cb (0 < c < 1). Then every solution f(6≡ 0) of equation

f
′′

+ (A1(z)e
az +D1(z))f

′

+ (A0(z)e
bz +D0(z))f = 0, (3)

has an infinite order.

In 2008, Wang and Laine have investigated nonhomogeneous equations related to
(2) and (3) and obtained the following two results:

Theorem 3 (see [9]). Suppose that A0(z) 6≡ 0, A1(z) 6≡ 0, and H are entire func-
tions of order less than one, and the complex constants a, b satisfy ab 6= 0 and b 6= a.
Then every nontrivial solution f of equation (2) is of infinite order.

Theorem 4 (see [9]). Suppose that A0(z) 6≡ 0, A1(z) 6≡ 0, D0(z), D1(z), and H are
entire functions of order less than one, and the complex numbers a, b satisfy ab 6= 0
and b/a < 0. Then every nontrivial solution f of equation (3) is of infinite order.
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In [10], Xu and Cao have studied the above problem for higher order linear differ-
ential equations and proved the following two results:

Theorem 5 (see [10]). Let k ≥ 2 be an integer, P (z) = anz
n + . . .+ a1z + a0, and

Q(z) = bnz
n+ . . .+b1z+b0 be nonconstant polynomials, where ai, bi (i = 0, 1, . . . , n)

are complex numbers with anbn 6= 0 and an 6= bn. Suppose that hi(z) (2 ≤ i ≤ k− 1)
are polynomials with degree no more than n − 1 in z, Aj(z) 6≡ 0 (j = 0, 1) and H
are entire functions satisfying σ (Aj) < n, (j = 0, 1) and σ (H) < n, and ϕ is an
entire function of finite order. Then every nontrivial solution f of equation

f (k) + hk−1f
(k−1) + . . .+ h2f

′′

+A1e
P (z)f

′

+A0e
Q(z)f = H (4)

satisfies σ (f) = +∞, σ (f) = λ(f) = λ(f) = λ(f − ϕ) = +∞ and σ2(f) = λ2(f) =
λ2(f) = λ2(f − ϕ) ≤ n.

Theorem 6 (see [10]). Let k ≥ 2 be an integer. Suppose that Aj(z) 6≡ 0, Dj(z)
(j = 0, 1), and H are entire functions satisfying σ(Aj) < n, σ(Dj) < n, (j = 0, 1),
σ(H) < n, and P (z), Q(z), hi (2 ≤ i ≤ k − 1) are as in Theorem 5 satisfying
anbn 6= 0 and an/bn < 0. Then every nontrivial solution f of equation

f (k) + hk−1f
(k−1) + . . .+ h2f

′′

+
(

A1e
P (z) +D1

)

f
′

+
(

A0e
Q(z) +D0

)

f = H (5)

is of infinite order.

In this paper, we investigate the hyper-order of nontrivial solutions of equations (4)
and (5). We obtain the following two results:

Theorem 7. Let k ≥ 2 be an integer, P (z), Q(z), an, bn, hi(z) (2 ≤ i ≤ k − 1),
Aj(z) 6≡ 0 (j = 0, 1), H(≡ 0) and ϕ satisfy additional hypotheses of Theorem 5.
Then every nontrivial solution f of equation (4) satisfies σ2(f) = λ2(f) = λ2(f) =
λ2(f − ϕ) = n.

Theorem 8. Let k ≥ 2 be an integer, P (z), Q(z), an, bn, hi(z) (2 ≤ i ≤ k − 1),
Aj(z) 6≡ 0, Dj(z) (j = 0, 1) and H(≡ 0) satisfy additional hypotheses of Theorem 6.
Then every nontrivial solution f of equation (5) satisfies σ2(f) = n.

2. Preliminary lemmas

Lemma 1 (see [10]). Suppose that k ≥ 2 is an integer, A0, A1, . . . , Ak−1 and F
(6≡ 0) are entire functions of finite order. Then every solution f of infinite order of
equation

f (k) +Ak−1f
(k−1) + . . .+A1f

′ +A0f = F

satisfies σ2(f) ≤ max {σ (Aj) , σ (F ) : j = 0, 1, . . . , k − 1}.



136 N.K.Cheriet and K.Hamani

Lemma 2 (see [3]). Let f(z) be a transcendental meromorphic function and let
α > 1 and ε > 0 be given constants. Then there exist a set E1 ⊂ [1,+∞) having
finite logarithmic measure and a constant B > 0 that depends only on α and (i, j)
(i, j positive integers with i > j) such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1,
we have

∣

∣

∣

∣

f (i)(z)

f (j)(z)

∣

∣

∣

∣

≤ B

[

T (αr, f)

r
(logα r) logT (αr, f)

]i−j

.

Lemma 3 (see [5], p. 344). Let f (z) =
+∞
∑

n=0
anz

n be an entire function, νf (r) denote

the central index of f , and µ (r) denote the maximum term, µ (r) =
∣

∣aν(r)
∣

∣ rν(r).
Then

νf (r) = r
d

dr
logµ (r) < [logµ (r)]

2
≤ [logM (r, f)]

2

holds outside a set E2 ⊂ (1,+∞) that has finite logarithmic measure.

Lemma 4 (see [4]). Let P (z) = (α+ iβ) zn+. . .(α, β are real numbers, |α|+|β| 6= 0)
be a polynomial with degree n ≥ 1 and A (z) a meromorphic function with σ (A) < n.
Set f (z) = A (z) eP (z), z = reiθ, δ (P, θ) = α cos(nθ)−β sin(nθ). Then for any given
ε > 0, there exists a set E3 ⊂ [1,+∞) having finite logarithmic measure such that
for any θ ∈ [0, 2π) \H1 and for |z| = r /∈ [0, 1] ∪ E3, r → +∞, we have

(i) if δ (P, θ) > 0, then

exp {(1− ε) δ (P, θ) rn} ≤
∣

∣f
(

reiθ
)∣

∣ ≤ exp {(1 + ε) δ (P, θ) rn} ,

(ii) if δ (P, θ) < 0, then

exp {(1 + ε) δ (P, θ) rn} ≤
∣

∣f
(

reiθ
)∣

∣ ≤ exp {(1− ε) δ (P, θ) rn} ,

where H1 = {θ ∈ [0, 2π) : δ (P, θ) = 0} .

Lemma 5 (see [8]). Let f (z) be a transcendental entire function, and let νf (r) be
the central index of f and δ a constant such that 0 < δ < 1

4 . Then there exists a
set E4 of finite logarithmic measure such that for all z satisfying |z| = r /∈ E4 and

|f (z)| ≥ M (r, f) νf (r)
−

1

4
+δ, we have

f (n)(z)

f(z)
=

(

νf (r)

z

)n

(1 + o (1)) (n ≥ 1 is an integer) .

Lemma 6 (see [12]). Let f (z) be an entire function and M (r, f) =
∣

∣f
(

reiθr
)∣

∣ for
every r. Set θr → θ0 ∈ [0, 2π) as r → +∞. Then there exist a constant l0 > 0 and a
set E of positive lower logarithmic density such that

M (r, f)1/5 ≤
∣

∣f
(

reiθ
)∣

∣ (6)

for all r ∈ E large enough and all θ such that |θ − θ0| < l0.



On the hyper-order of solutions of nonhomogeneous linear differential equations 137

Lemma 7 (see [2]). Let f (z) be an entire function of infinite order and σ2 (f) =
α < +∞, and let a set E5 ⊂ (1,+∞) that has finite logarithmic measure. Then
there exists a sequence of points

{

zm = rmeiθm
}

such that |f (zm)| = M (rm, f) ,
θm ∈ [0, 2π) , lim

m→+∞

θm = θ0 ∈ [0, 2π) , rm /∈ E5, rm → +∞,

lim
rm→+∞

log νf (rm)

log rm
= +∞

and for any given ε > 0, we have for a sufficiently large rm

exp
{

rα−ε
m

}

< νf (rm) < exp
{

rα+ε
m

}

,

where νf (r) is the central index of f.

3. Proof of Theorem 7

Proof. Assume that f is a nontrivial solution of equation (4). Then by Theorem 5,
we have σ(f) = +∞ and σ2(f) = λ2(f) = λ2(f) = λ2(f − ϕ) ≤ n. We assert that
σ2(f) = n. Now we assume that σ2(f) = α < n and we prove that σ2(f) = α fails.
By Lemma 2, there exist a constant B > 0 and a set E1 ⊂ [1,+∞) having finite
logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1, we have

∣

∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣

∣

≤ Br [T (2r, f)]
j+1

(j = 1, . . . , k) (7)

Let νf (r) denote the central index of f. By Lemma 3, there is a set E2 ⊂ (1,+∞)
that has finite logarithmic measure such that for |z| = r /∈ [0, 1] ∪ E2, we have

νf (r) < [logM (r, f)]
2
. (8)

By Lemma 4, for any given ε > 0, there exists a set E3 ⊂ [1,+∞) having finite
logarithmic measure such that for any θ ∈ [0, 2π) \H2, where

H2 = {θ ∈ [0, 2π) : δ (P, θ) = 0 or δ (Q− P, θ) = 0 or δ (Q, θ) = 0}

and for |z| = r /∈ [0, 1] ∪ E3, r → +∞, we have

- if δ (P, θ) > 0, then

exp {(1− ε) δ (P, θ) rn} ≤
∣

∣

∣A1 (z) e
P (z)

∣

∣

∣ ≤ exp {(1 + ε) δ (P, θ) rn} , (9)

- if δ (P, θ) < 0, then

exp {(1 + ε) δ (P, θ) rn} ≤
∣

∣

∣
A1 (z) e

P (z)
∣

∣

∣
≤ exp {(1− ε) δ (P, θ) rn} , (10)

- if δ (Q− P, θ) > 0, then

exp {(1− ε) δ (Q− P, θ) rn} ≤

∣

∣

∣

∣

A0 (z)

A1 (z)
eQ(z)−P (z)

∣

∣

∣

∣

≤ exp {(1 + ε) δ (Q− P, θ) rn} ,

(11)
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- if δ (Q− P, θ) < 0, then

exp {(1 + ε) δ (Q− P, θ) rn} ≤

∣

∣

∣

∣

A0 (z)

A1 (z)
eQ(z)−P (z)

∣

∣

∣

∣

≤ exp {(1− ε) δ (Q− P, θ) rn} ,

(12)

- if δ (Q, θ) > 0, then

exp {(1− ε) δ (Q, θ) rn} ≤
∣

∣

∣A0 (z) e
Q(z)

∣

∣

∣ ≤ exp {(1 + ε) δ (Q, θ) rn} , (13)

- if δ (Q, θ) < 0, then

exp {(1 + ε) δ (Q, θ) rn} ≤
∣

∣

∣A0 (z) e
Q(z)

∣

∣

∣ ≤ exp {(1− ε) δ (Q, θ) rn} . (14)

By Lemma 5, for any given constant 0 < δ < 1
4 , there exists a set E4 of finite

logarithmic measure such that for all z satisfying |z| = r /∈ E4 and |f (z)| ≥

M (r, f) νf (r)
−

1

4
+δ, we have

f (j)(z)

f(z)
=

(

νf (r)

z

)j

(1 + o(1)) (j = 1, . . . , k) . (15)

Since ml(E1 ∪ E2 ∪ E3 ∪ E4) < +∞, then ml(E \ ([0, 1] ∪ E1 ∪E2 ∪ E3 ∪ E4)) is
infinite, where E is the set defined in Lemma 6. Thus by Lemma 7, there ex-
ists a sequence of points

{

zm = rmeiθm
}

such that |f (zm)| = M (rm, f) , θm ∈
[0, 2π) , lim

m→+∞

θm = θ0 ∈ [0, 2π) , rm ∈ E \ ([0, 1] ∪ E1 ∪ E2 ∪ E3 ∪ E4) , rm → +∞,

lim
rm→+∞

log νf (rm)

log rm
= +∞ (16)

and for any given ε > 0, we have for a sufficiently large rm

exp
{

rα−ε
m

}

< νf (rm) < exp
{

rα+ε
m

}

. (17)

By (16), for any sufficiently large A > 2σ (H) and m sufficiently large, we have

νf (rm) > rAm. (18)

By (8) and (18) , for m sufficiently large we obtain

M (rm, f) > exp
{

rA/2
m

}

. (19)

On the other hand, for any given ε (0 < 2ε < A− 2σ (H)) and m sufficiently large,
we have

|H (zm)| ≤ exp
{

rσ(H)+ε
m

}

. (20)
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From (19) and (20) , it follows that

|H (zm)|

M (rm, f)
→ 0 (21)

as rm → +∞.

For the above θ0, there are three cases: δ(P, θ0) > 0, δ(P, θ0) < 0 and δ(P, θ0) = 0.
Case 1. δ(P, θ0) > 0. From the continuity of δ (P, θ), we have

1

2
δ(P, θ0) < δ (P, θm) <

3

2
δ(P, θ0) (22)

for m sufficiently large. For any given ε (0 < 2ε < min {1, n− α, A− 2σ (H)}) ,
from (9) and (22) , we have

exp

{

(1− ε)

2
δ(P, θ0)r

n
m

}

≤
∣

∣

∣A1 (zm) eP (zm)
∣

∣

∣ ≤ exp

{

3 (1 + ε)

2
δ(P, θ0)r

n
m

}

(23)

for m sufficiently large.

Subcase 1.1. We first assume that θ0 satisfies η := δ(Q − P, θ0) > 0. From the
continuity of δ (Q− P, θ), we have

1

2
δ (Q − P, θ0) < δ (Q − P, θm) <

3

2
δ (Q− P, θ0) . (24)

Hence by (11) and (24) , for the above ε, we have

exp

{

(1− ε)

2
ηrnm

}

≤

∣

∣

∣

∣

A0 (zm)

A1 (zm)
eQ(zm)−P (zm)

∣

∣

∣

∣

≤ exp

{

3 (1 + ε)

2
ηrnm

}

(25)

for m sufficiently large.
From (4) we obtain

∣

∣

∣

∣

A0(z)

A1(z)
eQ(z)−P (z)

∣

∣

∣

∣

≤

∣

∣

∣

∣

f ′(z)

f(z)

∣

∣

∣

∣

+
1

∣

∣A1(z)eP (z)
∣

∣

×





∣

∣

∣

∣

f (k)(z)

f(z)

∣

∣

∣

∣

+

k−1
∑

j=2

∣

∣

∣

∣

hj (z)
f (j)(z)

f(z)

∣

∣

∣

∣

+

∣

∣

∣

∣

H (z)

f(z)

∣

∣

∣

∣



 .

(26)

Substituting (15) into (26) and from (17) , (21) , (23) and (25), for m sufficiently
large we have

exp

{

(1− ε)

2
ηrnm

}

≤ exp
{

rα+ε
m

}

r−1
m |1 + o(1)|+

+ exp

{

−
(1− ε)

2
δ(P, θ0)r

n
m

}

[

exp
{

krα+ε
m

}

r−k
m |1 + o (1)|

]

+ exp

{

−
(1− ε)

2
δ(P, θ0)r

n
m

}

×
[

M1r
d1

m exp {(k − 1) rα+ε
m

}

|1 + o(1)|+ o (1)] , (27)
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where M1 (> 0) is a constant and d1 is an entire number. This is a contradiction.

Subcase 1.2. η := δ(Q−P, θ0) < 0. From the continuity of δ(Q−P, θ0) and (12) ,
for m sufficiently large we have

exp

{

3 (1 + ε)

2
ηrnm

}

≤

∣

∣

∣

∣

A0 (zm)

A1 (zm)
eQ(zm)−P (zm)

∣

∣

∣

∣

≤ exp

{

(1− ε)

2
ηrnm

}

(28)

From (4) we obtain

∣

∣

∣

∣

∣

f
′

(z)

f(z)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

A0(z)

A1(z)
eQ(z)−P (z)

∣

∣

∣

∣

+
1

∣

∣A1(z)eP (z)
∣

∣

×





∣

∣

∣

∣

f (k)(z)

f(z)

∣

∣

∣

∣

+

k−1
∑

j=2

∣

∣

∣

∣

hj (z)
f (j)(z)

f(z)

∣

∣

∣

∣

+

∣

∣

∣

∣

H (z)

f(z)

∣

∣

∣

∣



 .

(29)

Substituting (15) into (29) and from (17) , (21) , (23) and (28), for m sufficiently
large we have

(

νf (rm)

rm

)

|1 + o(1)| ≤ exp

{

(1− ε)

2
ηrnm

}

+ exp

{

−
(1− ε)

2
δ(P, θ0)r

n
m

}

[

exp
{

krα+ε
m

}

r−k
m |1 + o (1)|

]

+ exp

{

−
(1− ε)

2
δ(P, θ0)r

n
m

}

×
[

M2r
d2

m exp
{

(k − 1) rα+ε
m

}

|1 + o(1)|+ o (1)
]

, (30)

whereM2 (> 0) is a constant and d2 is an entire number. This implies that νf (rm) →
0 as m → +∞, which is impossible.

Subcase 1.3. η := δ(Q − P, θ0) = 0. Here (6) may be used to construct another
sequence of points

{

z∗m = rmeiθ
∗

m

}

with lim
m→+∞

θ∗m = θ∗0 such that η1 := δ(Q −

P, θ∗0) > 0. Indeed, without loss of generality, we may suppose that

δ(Q − P, θ) > 0, θ ∈

(

θ0 + 2kπ

n
,
θ0 + (2k + 1)π

n

)

,

δ(Q − P, θ) < 0, θ ∈

(

θ0 + (2k − 1)π

n
,
θ0 + 2kπ

n

)

(31)

with k ∈ Z. When m is large enough, we have |θm − θ0| ≤ l0, where l0 is a small
constant. Choose now θ∗m such that l0

2 ≤ θ∗m − θm ≤ l0. Then θ0 +
l0
2 ≤ θ∗0 ≤ θ0 + l0.

For m sufficiently large, we have (6) for z∗m and δ(Q− P, θ∗0) > 0. Therefore

∣

∣

∣

∣

H (z∗m)

f (z∗m)

∣

∣

∣

∣

≤
exp

{

r
σ(H)+ε
m

}

(M (rm, f))1/5
→ 0, m → +∞ (32)
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and

exp

{

(1− ε)

2
η1r

n
m

}

≤

∣

∣

∣

∣

A0 (z
∗

m)

A1 (z∗m)
eQ(z∗

m
)−P (z∗

m
)

∣

∣

∣

∣

≤ exp

{

3 (1 + ε)

2
η1r

n
m

}

(33)

for m sufficiently large. Taking now l0 small enough, we have δ(P, θ∗0) > 0 by the
continuity of δ(P, θ). Hence

exp

{

(1− ε)

2
δ(P, θ∗0)r

n
m

}

≤
∣

∣

∣A1 (z
∗

m) eP (z∗

m
)
∣

∣

∣ ≤ exp

{

3 (1 + ε)

2
δ(P, θ∗0)r

n
m

}

(34)

for m sufficiently large. By (7), (26), (32)-(34), we obtain

exp

{

(1− ε)

2
η1r

n
m

}

≤ M3r
d3

m [T (2r, f)]k+1, (35)

where M3 (> 0) is a constant and d3 is an entire number. Thus σ2(f) ≥ n and this
contradicts σ2(f) < n.

Case 2. δ(P, θ0) < 0. From the continuity of δ (P, θ) and (10). For any given ε
(0 < 2ε < min {1, n− α, A− 2σ (H)}) , we have

exp

{

3 (1 + ε)

2
δ(P, θ0)r

n
m

}

≤
∣

∣

∣A1 (zm) eP (zm)
∣

∣

∣ ≤ exp

{

(1− ε)

2
δ(P, θ0)r

n
m

}

(36)

for m sufficiently large.

Subcase 2.1. δ(Q, θ0) > 0. From the continuity of δ (Q, θ) and (13) , for the above
ε and m sufficiently large, we have

exp

{

(1− ε)

2
δ(Q, θ0)r

n
m

}

≤
∣

∣

∣
A0 (zm) eQ(zm)

∣

∣

∣
≤ exp

{

3 (1 + ε)

2
δ(Q, θ0)r

n
m

}

. (37)

From (4) we obtain

|A0 (z) e
Q(z)| ≤

∣

∣

∣

∣

f (k)(z)

f(z)

∣

∣

∣

∣

+

k−1
∑

j=2

∣

∣

∣

∣

hj (z)
f (j)(z)

f(z)

∣

∣

∣

∣

+
∣

∣

∣A1(z)e
P (z)

∣

∣

∣

∣

∣

∣

∣

∣

f
′

(z)

f(z)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

H (z)

f(z)

∣

∣

∣

∣

.

(38)

Substituting (15) into (38) and from (17) ,(21) ,(36) and (37), for m sufficiently large
we have
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exp

{

(1− ε)

2
δ(Q, θ0)r

n
m

}

≤ exp
{

krα+ε
m

}

r−k
m |1 + o (1)|

+M4r
d4

m exp
{

(k − 1) rα+ε
m

}

|1 + o(1)|

+ exp

{

(1− ε)

2
δ(P, θ0)r

n
m

}

r−1
m exp

{

rα+ε
m

}

× |1 + o(1)|+ o(1), (39)

where M4 (> 0) is a constant and d4 is an entire number. This is a contradiction.

Subcase 2.2. δ(Q, θ0) < 0. From the continuity of δ (Q, θ) and (14) for the above
ε and m sufficiently large, we have

exp

{

3 (1 + ε)

2
δ (Q, θ0) r

n
m

}

≤
∣

∣

∣
A0 (zm) eQ(zm)

∣

∣

∣
≤ exp

{

(1− ε)

2
δ (Q, θ0) r

n
m

}

. (40)

From (4) we obtain

∣

∣

∣

∣

f (k)(z)

f(z)

∣

∣

∣

∣

≤

k−1
∑

j=2

∣

∣

∣

∣

hj (z)
f (j)(z)

f(z)

∣

∣

∣

∣

+
∣

∣

∣A1(z)e
P (z)

∣

∣

∣

∣

∣

∣

∣

f ′(z)

f(z)

∣

∣

∣

∣

+
∣

∣

∣A0(z)e
Q(z)

∣

∣

∣+

∣

∣

∣

∣

H (z)

f(z)

∣

∣

∣

∣

.

(41)

Substituting (15) into (41) and from (17) ,(21) ,(36) and (40), for m sufficiently large
we have

(νf (rm))
k
r−k
m |1 + o(1)| ≤M5r

d5

m (νf (rm))
k−1

|1 + o(1)|

+ exp

{

(1− ε)

2
δ(P, θ0)r

n
m

}

exp
{

rα+ε
m

}

r−1
m |1 + o(1)|

+ exp

{

(1− ε)

2
δ(Q, θ0)r

n
m

}

+ o (1) , (42)

where M5 (> 0) is a constant and d5 is an entire number. This is a contradiction.

Subcase 2.3. δ(Q, θ0) = 0. By using a similar argument as in Subcase 1.3, we
may again construct another sequence of points

{

z∗m = rmeiθ
∗

m

}

satisfying l0
2 ≤

θ∗m − θm ≤ l0 with lim
m→+∞

θ∗m = θ∗0 such that δ(P, θ∗0) < 0 < δ(Q, θ∗0). Replace

δ(P, θ0) with δ(P, θ∗0) in (36) and δ(Q, θ0) with δ(Q, θ∗0) in (37). Using the same
argument as in Subcase 1.3, we also have (32) for the sequence of points z∗m. From
(38) and m sufficiently large, we have

exp

{

(1− ε)

2
δ(Q, θ∗0)r

n
m

}

≤ M6r
d6

m [T (2r, f)]k+1, (43)

where M6 (> 0) is a constant and d6 is an entire number. Thus σ2(f) ≥ n and this
contradicts σ2(f) < n.
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Case 3. δ(P, θ0) = 0. We discuss three cases according to δ(Q, θ0) as follows:

Subcase 3.1. δ(Q, θ0) > 0. By an argument similar to Subcase 1.3, we can choose
another sequence of points

{

z∗m = rmeiθ
∗

m

}

satisfying l0
2 ≤ θ∗m − θm ≤ l0 with

lim
m→+∞

θ∗m = θ∗0 , such that z∗m satisfies (32) and δ(P, θ∗0) < 0 < δ(Q, θ∗0). Similarly to

Subcase 2.3, a contradiction follows as m is large enough.

Subcase 3.2. δ(Q, θ0) < 0. By the definition of δ(P, θ) in Lemma 4, we may define

δ′(P, θ) = −nα sin (nθ)− nβ cos (nθ) ,

where an = α+iβ. Since an 6= 0, we have δ′(P, θ0) 6= 0. Take z
′

m = rmeiθ
′

m satisfying

0 <
∣

∣

∣θ
′

m − θ0

∣

∣

∣ ≤ l0, we know that z
′

m satisfies (32) and δ(P, θ′m) 6= 0. By the

continuity of δ(Q, θ), we may assume that δ(Q, θ′m) < 0 < δ(P, θ′m) for a suitable l0,
0 < θ

′

m − θ0 ≤ l0. Then δ′(P, θ0) > 0, which means that for a suitable l0,

1

2
δ′(P, θ0) < δ′ (P, θ) <

3

2
δ′(P, θ0), θ ∈ (θ0, θ0 + l0) . (44)

Since we have chosen zm such that |f(zm)| = M(rm, f) and θm → θ0 as m → ∞, we

have |f(rmeiθ0)| ≥ M(rm, f)vf (rm)−
1

4
+δ for m sufficiently large. From (4), we have

∣

∣

∣

∣

∣

f
′

(z)

f(z)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

A1(z)eP (z)

∣

∣

∣

∣



|
f (k)(z)

f(z)
|+

k−1
∑

j=2

|hj(z)||
f (j)(z)

f(z)
|





+

∣

∣

∣

∣

1

A1(z)eP (z)

∣

∣

∣

∣

(

|A0(z)e
Q(z)|+

∣

∣

∣

∣

H(z)

f(z)

∣

∣

∣

∣

)

.

(45)

By (9) and (14) , for the above ε and for m sufficiently large we have

exp{(1 + ε) δ(Q, θ′m)rnm} ≤ |A0 (z
′

m) eQ(z′

m
)| ≤ exp{(1− ε) δ(Q, θ′m)rnm} (46)

and

exp{− (1 + ε) δ(P, θ′m)rnm} ≤

∣

∣

∣

∣

∣

e−P (z′

m
)

A1 (z′m)

∣

∣

∣

∣

∣

≤ exp{− (1− ε) δ(P, θ′m)rnm} (47)

for m sufficiently large. From the definition of the hyper-order, it follows that

T (2rm, f) ≤ exp{(2rm)
α+ε

} (48)

for m sufficiently large. By (7), (32) , (45)− (48), for m sufficiently large we can get

∣

∣

∣

∣

∣

f
′

(z′m)

f(z′m)

∣

∣

∣

∣

∣

≤ exp{−(1− 2ε)δ(P, θ′m)rm
n} (49)

Since θ′m is arbitrary in (θ0, θ0 + l0), for m sufficiently large, we can obtain
∣

∣

∣

∣

∣

f
′

(rmeiθ)

f(rmeiθ)

∣

∣

∣

∣

∣

≤ exp{−(1− 2ε)δ(P, θ)rnm}, θ ∈ (θ0, θ0 + l0) (50)
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Therefore, for θ ∈ (θ0, θ0 + l0), we have

ξ(rm, θ) =rm

∫ θ

θ0

∣

∣

∣

∣

∣

f
′

(rmeiθ)

f(rmeiθ)

∣

∣

∣

∣

∣

dθ ≤ rm

∫ θ

θ0

e−η2(θ)r
n

mdθ

=

∫ θ

θ0

1

η1(θ)rmn−1
e−η2(θ)r

n

md(η2(θ)r
n
m), (51)

where η1(θ) = (1− 2ε)δ′(P, θ) and η2(θ) = (1− 2ε)δ(P, θ).
Since δ(P, θ) > 0 for all θ ∈ (θ0, θ0 + l0), we can get

0 ≤ ξ(rm, θ) ≤
2

(1 − 2ε)δ′(P, θ0)r
n−1
m

(e−η2(θ0)r
n

m − e−η2(θ)r
n

m).

Thus for m sufficiently large, we can get

0 ≤ ξ(rm, θ) ≤
2

η1(θ0)
. (52)

By the proof of Lemma 2.4 in [9], we have

log |f(rmeiθ0)| − ξ(rm, θ) ≤ log |f(rmeiθ)|+ 2π.

From this and (52) it follows that

νf (rm)−
1

4
+δ′M(rm, f) = exp{−2π − 2/η1(θ0)}νf (rm)−

1

4
+δM(rm, f) ≤ |f(rmeiθ)|

(53)
for θ ∈ (θ0, θ0 + l0), where 0 < δ′ < δ < 1

4 . Therefore, we choose another sequence

of points z∗m = rmeiθ
∗

m satisfying θ∗m = l0
2 + θ0 and (32) for z∗m. Furthermore, from

(53), we have (15) for z∗m when m is sufficiently large. Thus, from (15) and (50), we
can deduce that νf (rm) → 0 as m → ∞, which is impossible.
When δ(Q, θ′m) < 0 < δ(P, θ′m) for −l0 < θ′m − θ0 < 0. Clearly ξ(rm, θ) ≤ 0 for all
θ ∈ (θ0 − l0, θ0). Similarly, we can get

νf (rm)−
1

4
+δ′M(rm, f) = exp{−2π}νf(rm)−

1

4
+δM(rm, f) ≤ |f(rmeiθ)| (54)

for θ ∈ (θ0 − l0, θ0), where 0 < δ′ < δ < 1
4 . Thus we can also get a contradiction.

Subcase 3.3. Finally, suppose that δ(Q, θ0) = 0. We now have an = cbn, c ∈
R \ {0, 1}. Then we have P (z) = cbnz

n + an−1z
n−1 + . . . + a0, Q(z) − P (z) =

(1− c)bnz
n +Rn−1(z), where Rn−1(z) is a polynomial of degree at most n− 1.

If c < 0, we may take l0 small enough such that δ(Q, θ) < 0 < δ(P, θ), provided that
either θ ∈ (θ0, θ0 + l0) or (θ0 − l0, θ0). By an argument similar to that in Subcase
3.2, we can get a contradiction.

If 0 < c < 1, we similarly obtain δ(Q − P, θ) > 0 and δ(P, θ) > 0, provided that
either θ ∈ (θ0, θ0 + l0) or (θ0 − l0, θ0) for l0 small enough. By an argument similar
to that in Subcase 1.3, a contradiction follows.

Finally, if c > 1, we obtain δ(Q−P, θ) < 0 and δ(P, θ) > 0 for either θ ∈ (θ0, θ0+ l0)
or (θ0 − l0, θ0). Furthermore, z′m = rmeiθ

′

m satisfies (32) provided that either θ′m ∈
(θ0, θ0 + l0) or (θ0 − l0, θ0). Similarly to Subcase 3.2, we get (50) and (53). By
a standard Wiman-Valiron argument, a contradiction also follows. Therefore from
these three cases it results that σ2(f) = n.
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4. Proof of Theorem 8

Proof. Assume that f(z) is a non-trivial solution of (5). We know that σ(f) = +∞.
By Lemma 1, it follows that σ2(f) ≤ n. Set σ2(f) = α and we assert that α = n.
Now we assume that α < n. Since ρ = max{ρ(Dj) : j = 0, 1} < n, then for any ε
(0 < 2ε < n− ρ), we have

|Dj(z)| ≤ exp{rρ+ε} (j = 0, 1) . (55)

Similarly to the proof of Theorem 7, we can take a sequence of points zm = rmeiθm ,
rm → ∞, such that lim

m→+∞

θm = θ0 and |f(zm)| = M(rm, f), rm ∈ E \ ([0, 1] ∪E1 ∪

E2 ∪ E3 ∪ E4) and the sequence of points satisfies (15)− (17) and (21) .

Since an/bn = c < 0, there are three cases to be discussed, according to the signs of
δ(P, θ0) and δ(Q, θ0).

Case 1. Suppose that δ(Q, θ0) < 0 < δ(P, θ0). By (9) , (14) and the continuity of
δ(Q, θ) and δ(P, θ), for any given ε (0 < 2ε < min {1, n− α,A− 2σ (H) , n− ρ}) we
have (23) and (40) for m sufficiently large. From (5), we have

∣

∣

∣A1(z)e
P (z) +D1(z)

∣

∣

∣

∣

∣

∣

∣

f ′(z)

f(z)

∣

∣

∣

∣

≤

∣

∣

∣

∣

f (k)(z)

f(z)

∣

∣

∣

∣

+

k−1
∑

j=2

|hj(z)|

∣

∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣

∣

+
∣

∣

∣(A0e
Q(z) +D0(z))

∣

∣

∣+

∣

∣

∣

∣

H(z)

f(z)

∣

∣

∣

∣

.

(56)

Combining (55) with (23) and (40), we conclude

|A0 (zm) eQ(zm) +D0(zm)| ≤ exp{rρ+2ε} (57)

and

|A1(zm)eP (zm) +D1(zm)| ≥ exp

{

(1− 2ε)

2
δ(P, θ0)r

n
m

}

(58)

form large enough. Substituting (15), (21), (57) and (58) into (56), form sufficiently
large we get

(

νf (rm)

rm

)

|1 + o (1)| ≤ exp

{

−(1− 2ε)

2
δ(P, θ0)r

n
m

}

[

exp{krα+ε
m }r−k

m |1 + o (1)|

+ M7r
d7

m exp{(k − 1) rα+ε
m } |1 + o (1)|

+ exp{rρ+2ε
m } +o (1)] , (59)

whereM7 (> 0) is a constant and d7 is an entire number. This implies that νf (rm) →
0, m → +∞, which is impossible.

Case 2. Suppose that δ(P, θ0) < 0 < δ(Q, θ0). By (10) , (13) and the continuity of
δ(Q, θ) and δ(P, θ), for any given ε (0 < 2ε < min {1, n− α, A− 2σ (H) , n− ρ}) ,
we have (36) and (37) for m sufficiently large. From (5), we have

∣

∣

∣
A0(z)e

Q(z) +D0(z)
∣

∣

∣
≤

∣

∣

∣

∣

f (k)(z)

f(z)

∣

∣

∣

∣

+
k−1
∑

j=2

|hj(z)|

∣

∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣

∣

+ |(A1(z)e
P (z) +D1(z))|

∣

∣

∣

∣

f ′(z)

f(z)

∣

∣

∣

∣

+

∣

∣

∣

∣

H(z)

f(z)

∣

∣

∣

∣

. (60)
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Combining (55) with (36) and (37), we conclude

|A1 (zm) eP (zm) +D1(zm)| ≤ exp{rρ+2ε} (61)

and

|A0(zm)eQ(zm) +D0(zm)| ≥ exp

{

(1 − 2ε)

2
δ(Q, θ0)r

n
m

}

(62)

for m large enough. Substituting (15), (21),(61) and (62) into (60), for m sufficiently
large we get

exp

{

(1− 2ε)

2
δ(Q, θ0)r

n
m

}

≤ M8r
d8

m exp{krα+ε
m } exp{rρ+2ε

m }, (63)

where M8 (> 0) is a constant and d8 is an entire number. This is a contradiction.

Case 3. Suppose that δ(Q, θ0) = 0 = δ(P, θ0). Similarly to Subcase 1.3 of the proof
of Theorem 7, we may again construct another sequence of points z∗m = rmeiθ

∗

m with
lim

m→+∞

θ∗m = θ∗0 , such that δ(P, θ∗0) < 0 and (32) holds for z∗m.

Without loss of generality, we can assume that

δ(P, θ) > 0, θ ∈

(

θ0 + 2qπ

n
,
θ0 + (2q + 1)π

n

)

and

δ(P, θ) < 0, θ ∈

(

θ0 + (2q − 1)π

n
,
θ0 + 2qπ

n

)

for all q ∈ Z. Provided m is large enough, we have |θ − θm| ≤ l0. Choosing now θ∗0
such that l0

2 ≤ θm − θ∗m ≤ l0, then θ0 − l0 ≤ θ∗0 ≤ θ0 −
l0
2 and δ(P, θ∗0) < 0. Since

δ(Q, θ∗0) > 0, a contradiction follows as in case 2 above.
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