ÜBER EINBÜRGERUNGSVERSUCHE MIT PERILLUS BIOCULATUS FABR. (HETEROPTERA, PENTATOMIDAE) IN UNGARN

Die ersten, insgesamt 388 Perillus-Eier enthaltenden Sendungen, die uns Herr Dr. Franz aus dem Institut für biologische Schädlingsbekämpfung (Darmstadt) freundlicherweise zukommen liess, trafen im Frühling 1959 im Laboratorium des Ungarischen Forschungsinstitutes für Pflanzenschutz (Keszthely, Komitat Veszprém) ein, wo sie dann weitergeführt wurden.

Auch die durch Ubergliessen mit heissem Wasser (70 °C) abgetöteten Kartoffelfäuer erwiesen sich als entsprechende Nahrung.

Am zweiten Freilassungsart wurde nach einem Monat die Anzahl der anwesenden Perillus-Individuen geschätzt und es ergab sich eine Individuenzahl von rund 7000. Es war auffallend, dass der grösster Teil verschwand, wass nur mit einer durch den Dispersionstriebl bedingten Abwanderung zu erklären ist, da bei

Im Frühling 1961 wurden blosse im Versuchsgarten des Laboratoriums im April bzw. im Mai insgesamt zwei Männchen im Freien beobachtet. Am zweiten Freilassungsor war kein einziges Exemplar aufzufinden.

Obzwar eine Einburgerung des Nützlings in Ungarn bis jetzt nicht festgestellt werden konnte; ist es gelungen durch Laboratoriumsversuche und Freilandbeobachtungen einige wichtige Züge seiner Biologie zu klären, die hinsichtlich der Beurteilung seiner zu erwartenden Wirksamkeit gewisse Schlüsse zu ziehen ermöglichen und deren Erörterung darum hier von Interesse sein dürfte.

Über die Biologie und Ökologie von Perillus bioculus sind eingehendere Angaben bei Knight (1923), Landis (1937), Franz (1957) und Franz und Szmidt (1960) zu finden. Im folgenden werden blosse unsere zur Ergänzung der bisherigen Kenntnisse dienenden Untersuchungsergebnisse behandelt.

Hinsichtlich der Beurteilung der zu erwartenden Wirksamkeit des Praedatoren ist auch die Kenntnis seines Beutej t-Spektrums von Bedeutung. Bei unseren Fütterungsversuchen konnten wir folgendes feststellen:

2) weniger gerne werden angenommen: die Puppen von Acanthoscelides obtectus Say;

Bemerkenswert ist das Verzehren der drei häufig vorkommenden Luzernenschädlinge (Ph. fornicata, S. 24-punctata und Ph. variabilis), was auf die Möglichkeit der Besiedlung der Luzernenfelder hindeutet.

Es sei noch erwähnt, dass sowohl die Larven als auch die Imagines von Perillus im Freiland die Eigelege und die jungen Larven des Kartoffelkäfers gegenüber dessen älteren Ontostadien bevorzugen. Dies ist hinsichtlich ihrer populationsdynamischen Wirkung sehr vorteilhaft.

Im Zusammenhang mit der Feststellung des wahrscheinlichen jährlichen Entwicklungssyklus des Nützlings war u. a. die Frage zu klären, ob die Photoperiode in der Auslösung der imaginalen Diapause eine Rolle spielt, oder ob diese durch andere Faktoren bedingt wird. Zu diesem Zwecke führten wir im Glashaus des Laboratoriums (Tagesdurchschnitt der Temperatur zwischen 17 und 20°C) orientierende Untersuchungen mit 8 und 20-stündiger bzw. mit natürlicher Belichtung durch. Es konnte der eindeutige Einfluss der Photoperiode auf die Aktivität von Perillus beobachtet werden. Das auf die Photoperiode ansprechende Stadium liegt am Ende der ontogenetischen Entwicklung, denn jene Imagines, die sich bis zu La bei 20-stündiger und nachher bei 8-stündiger Belichtung entwickelten, legten keine Eier, wogegen in der umgekehrten Variante Eiablage stattfand. Auf Grund der bei natürlicher Belichtung gewonnenen Ergebnisse ist es anzunehmen, dass in Ungarn schon ab Anfang August ein stets zunehmender Anteil der Imagines die Diapause beginnen wird.

Nimmt man die Verhältnisse der Imaginalen Diapause und die Dauer Entwicklung in Betracht, so können wir in Ungarn mit jährlich zwei vollen Generationen von Perillus rechnen.

Wollen wir nun zum Schluss die bisherigen Kenntnisse über die Biologie des Praedators aus dem Gesichtspunkte seiner Einbürgerung und seiner Wirksamkeit gegen den Kartoffelkäfer erwägen, so können wir folgendes sagen:

An der positiven Seite steht die bewiesene gute Überwinterung unter den gegebenen klimatischen Bedingungen, die bekannte Gefährdung der Larven und Imagines, sowie die Bevorzugung der Eier und Junglarven des Kartoffelkäfers gegenüber den älteren Ontostadien. Als negative Momente sind dagegen erstens das frühzeitige Verlassen des Winterquartiers und die sienlich breite Oligophagie zu nennen, die eine Abwanderung der überwinternten Imagines z. B. in Luzernenfelder zu Folge haben kann, wo sie zu dieser Zeit schon mehrere, gern angenommene Beutetiere finden. Weitere negative Züge sind: das Fehlen der Bevorzugung der Kartoffelpflanze als
Aufenthalts oder Eiablageort, der starke Dispersionsstrieb der Imagines, welcher ein Zerstreuen der verhältnismässig wenigen ausgesetzten Tiere ergeben kann, sowie die starke Herabsetzung der Vermehrung durch Telenomus und Chrysopa und wahrscheinlich auch durch andere Entomophagen, die die Populationsdynamik unserer einheimischen Pentatomiden in sehr beträchtlichen Masse beeinflussen.

POKUSI UDOMAĆIVANJA PERILLUS BIOCULATUS FABR. (HETEROPTERA, PENTATOMICIDA) U MAĐARSKOJ

Dr. T. Jermy,
Institut za zaštitu bilja — Budimpešta

REZUME

Autor nas u svom radu upoznaje s rezultatima pokusa uvođenja grabi juve stjenice Perillus bioculatus Fabr. protiv krumpirove zlatice. Ova stjenica potječe iz Amerike, a u posljednje vrijeme članovi radne grupe za dinamiku populacije i biološko suzbijanje krumpirove zlatice u okviru C.I.L.B. (Comission International de Lutte Biologique pod vodstvom dr J. Franzia direktora Instituta za biološko suzbijanje štetnika u Darmstadtju vrše u raznim zemljama Europe pa tako i u Mađarskoj) u FNRJ Institut za zaštitu bilja u Zagrebu istraživanja na praktičnoj primjeni stjenice Perillus bioculatus protiv krumpirove zlatice.

Iz podnesenog referata upoznajemo se s načinom užgoa spomenute stjenice i praktičnom primjenom.

U Mađarskoj su prve stjenice puštene u prirodu 1960. g. i bilo je utvrđeno da su stjenice nalazile na krumpiristištu, kamo su bile puštene i na susjednom lučeristu. Kratko vrijeme iza prvog puštanja stjenica u prirodu, vršeno je i drugo. Međutim, opaženo je da se istic stjenica razloge. Tu pojavu tumači autor time, što su stjenice puštene po razmjerno vrućem i sunčanom danu, a bolje bi ih bilo pušati po hladnijem vremenu. Iako je na pokusnom objektu ostao priličan broj stjenica, jer je tu pronađeno naka cem toko 7000 stjenica, nakon vađenja krumpira, stjenica je nestalo. U svemu su pronađena u pokusnom vrtu u prošlotu 1961. g. samo dva primjerka stjenice. Na temelju daljnjih istraživanja donosi autor ove podatke o Perillus bioculatus:

1. Stjenica podnosi zimi niske temperature do —17.3 °C, prema tome može u-glavnom dobro prezimiti.

2. U proljeće stjenica izlazi iz svoga zakloništa ranije nego što se pojavljuje novi krumpirova zlatica i počne s odlaganjem jaja. Tu pojavu smatra autor negativnim svojstvom stjenice, jer ona prelazi u proljeće na lučeristu i tu napada štetnike te biljke kao npr. Phytodecta fornicata i Subococcinella 24-punctata, a slične i sokove iz izboja lucerne i djeteline. Osim toga ona napada i uništava jaja, larve i razvite oblike i nekih drugih insekata. Prema tome ona je oligofagini predator.

3. Kao neprijatelj krumpirove zlatice, radije se hrani jajima i mladim larvama zlatice, nego odraslim larvama i kornjašima, ali rado napada i kukuljice zlatice. Pomanjkanje jaja i mladih larvi zlatice u prirodi, dovodi do razilaženja stjenice u prirodi i potrazi za drugom hranom.

4. Negativna strana primjene ovog korisnog predatilje je u tome, što ga nadopadaju neki entomofagini insekti kao: Telenomus i Chrysopa koji smanjuju gustoću nježine populacije u prirodi.

Na koncu, autor zaključuje, da prema postignutim rezultatima užgoja *Perillus bioculatus* u Mađarskoj, ne možemo očekivati neki veliki uspjeh u borbi protiv krumpirove zlatice s ovim prirodnim neprijateljem. Međutim, pokuse je potrebno nastaviti, jer su kod dosadašnjih istraživanja došli do izražaja različiti negativni i pozitivni faktori, koji ne dozvoljavaju davanje konačnog mišljenja o vrijednosti spomenute stjenice.
LITERATUR

