CROATICA CHEMICA ACTA CCACAA 70 (2) 509-517 (1997)

ISSN-0011-1643
CCA-2435 Original Scientific Paper

Delta Number, D,, of Dendrimers

Mircea V. Diudea,®* Gabriel Katona,® and Bazil ParvP

aDepartment of Chemistry, Babeg-Bolyai University,
11 Arany Janos Str, 3400 Cluj, Romania

bDepartment of Computer Science, Babes-Bolyai University,
1 Kogalniceanu Str., 3400 Cluj, Romania

Received February 16, 1996; revised July 10, 1996; accepted July 18, 1996

General formulas for the calculation of a novel Wiener-type num-
ber, D, ,! in regular dendrimers are proposed. They are derived on
the basis of the novel matrix D, ,! by using progressive vertex de-
grees and orbit numbers? as parameters. Relations of D, with the
well known Wiener,® W, and hyper-Wiener,* WW, numbers, and a
new relation (based on the Dp matrix!) for estimating WW in den-
drimers are also given.

INTRODUCTION
Wiener® has defined his »path number« W, as »the sum of distances« be-
tween all pairs of vertices i and j in an acyclic graph G. He calculated W
by summing up the »bond contribution« of all edges e in G. Randié* extended

this definition to »path contributions«, resulting in the hyper-Wiener, WW,
number. Condensing the two descriptors, one can write

I=1G)= Ze/p L, = Ze/p Ni s Npei 1)
with

NL,e * NR,e = N(G) (2)

* Author to whom correspondence should be addressed.
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In the above relations, Ny, and Ny denote the number of vertices lying
to the left and to the right of edge/path e/p and the summation runs over
all edges/paths in the graph. The meaning of I, ¢f. Eq. (1), is the number
of all »external« paths that include all the paths, of length e/p, in acyclic
graphs.

Edge/path contributions I,, are just the entries in the Wiener matri-
ces, W, and W, 58 Thus, I is the half sum of entries in these matrices

I=(1/22,2; Wyl (3)

I being W for W, and WW for W,,. Lukovits et al.”® derived formulas for
calculating I in cycle-containing graphs.

A second main definition of I is based on the distance matrix, D, as Ho-
soyal® and Diudea! proposed

1=(1/22,;2; Doply (4)

where D, is just the classical D matrix and D, is the »distance path« ma-
trix.! The meaning of I, cf. Eq. (4), is the number of all »internal« paths, of
length e/p, included in all the shortest paths in the graph. Eq. (4) is valid
both for acyclic and cyclic structures.

Another definition relates W to the eigenvalues of Laplace-Kirchhoff ma-
trix, a,;11714
> 13

N
W=N) l/x (5)

i=2

a relation valid only for acyclic structures. For other definitions, modifica-
tions and computational methods of W, see Refs. 15,16.

Klein, Lukovits and Gutman'!” have decomposed WW by a relation equi-
valent to

WW = (Tr(D,2) /2 + W)/ 2 (6)

where Tr(Dez) is the trace of distance matrix raised to the second power. Re-
lation (6) is valid for cycle-containing graphs when W is evaluated by the
Hosoyal® relation (4).

Wiener-type numbers are seen!” as approximate measures of the expan-

siveness of graphs. They show good correlation with various physico-chemi-
cal and biological properties'®2! of organic compounds.
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In this paper, general formulas for evaluating the novel number D, in
dendrimers are derived and exemplified on several types of regular den-
drimers. Relations of D, with W and WW and a novel relation (based on the
Dp matrix!) for calculating WW in dendrimers are also given.

NOVEL WIENER-TYPE NUMBER, Dj

Diudea! has recently given a novel definition for WW. Accordingly, it can
be calculated by using the Dp matrix!

WW =2 [Dpl; = Y. [‘Deg g 1} ™

i<y i

The expansion of the right member enabled decomposition of WW into
two terms

WW =W +D, 8

where W is the Wiener number and the last term is the »non-Wiener« part
of the hyper-Wiener number, denoted D,

D1..
D,= > [D,);; = > ([ 2“Jj (€)]
‘ i<y i<j
where D, is the »Delta« matrix, defined according to Eq. (9). D, means the
number of all paths (larger than unity) included into all the shortest paths
in the graph.
In matrix form, WW can be written as

> D)= 2. [DJ;+ 2. [D,); (10)
igj i<j iy
Relations (7) to (10) are valid for any graph, since they are based on D, .
matrix.
The number D, can be related to the Tr(D,?) by

D, = (Te(D2) - 2W) / 4 (11)

Note that the subscript A does not refer to the »detour« matrix, A, of
Amié and Trinajsti¢ (Ref. 21a) but simply suggest the difference between
WW and W.
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W, D4 AND WW NUMBERS IN REGULAR DENDRIMERS

Dendrimers are hyperbranched macromolecules, synthesized by repeat-
able steps, either by » divergent growth « or »convergent growth« approaches
(see Ref. 2). These rigorously tailored structures are mainly organic com-
pounds but inorganic components can be also included.???? They show a
spherical shape, which can be functionalized,?*28 for various purposes. Re-
views in the field are available.?%-31

Some definitions in dendrimer topology are needed:

The vertices of a dendrimer, except for the external end points, are
branching points. The number of edges emerging from each branching point
is called?® progressive degree, p (i.e. the edges that enlarge the number of
points of a newly added orbit). It equals the classical degree, k2, minus one:
p =k —1.If all the branching points have the same degree, the dendrimer
is called regular. Otherwise, it is irregular.

A dendrimer is called homogeneous if all its radial chains (i.e. chains
that start from the core and end in an external point) have the same
length.?! In graph theory, they correspond to the Bethe lattices.??

It is well known?? that any tree has either a monocenter or a dicenter
(i.e. two points joined by an edge). Accordingly, the dendrimers are called
monocentric and dicentric, respectively. Examples are given in the Figure.
The numbering of orbits (generations®3!) starts with zero for the core and
ends with r (i.e. the radius of dendrimer, or the number of edges from the
core to the external nodes).

A regular monocentric dendrimer, of progressive degree p and generation
r is herein denoted by D,, whereas the corresponding dicentric dendrimer
by DD,, .

SYk
PN

a b

Figure. Monocentric (a) and dicentric (b) regular dendrimers

In a previous work,3* we reported the following relations for calculating
WW in regular dendrimers
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WW(D,,) = {2p%(p® - 1)*r? + p>(p® - 1) (p?—8p - 5)r
+(@+1)@E -1 [p(p?+10p +3)-2]} /2(p - 1)* (12)

WW(@DD,,,) = {4p¥*%(p — 1)%r2 + 4p¥*2(p —4) (p — V)r + p¥*+%(p% - 3p + 16)
~ptp2 + 10p+5)+(p+ 1)} /(p-1)* (13)
These relations were obtained according to Eq. (6), by using the LC (la-
yer matrix of cardinality).®> By the layer counter, j = D,,, the matrix LC is re-
lated to the distance matrix, their entries being the distance degrees and it it-

self a collection of distance degree sequences. The LC matrix (with the column
j =0 omitted) of a regular dendrimer, in the line form,?* can be written as

A=2-2){(p+1piD;, 1-2)p"}
j=12,...,r A (14)

B=(2-2p9p + 17 {(p + L)piV; E}
j=12,..,r-s
s=12,..,r-2 (15)

C=(2 —z)p(s'Z)(p +1F{(r-s)(p+1); E}
s=r-1,r (16)

E = {(p(r—s))j; (p(r—s+k))j; (p(r—s+k))j; (zpr)j}
j=r—s+1 j=r—-s+2k j=r-s+2k+1 j=r+s

k=12,.., s~z a7

where A, B and C denote the type of rows (starting from the core) within
the LC matrix of a dendrimer and E is a common part within several rows
of LC. Parameter z enables the use of Eqgs. (14) to (17) (and the following
ones) both for monocentric (z=1) and dicentric (z=0) dendrimers.

Thus, the LC matrix can serve as a basis for evaluating the Wiener-re-
lated numbers. By taking into account the layer counter j, expansion of the
above LC matrix offers the parameters in Eq. (8): W, D, and WW (denoted
by I in Eq. (18))

I={A;r+By+ €I 2 (18)
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W number:
Ay=@-2)[2 @+ Dpi)j+ 1 -2)p'(r + 1] (19)
=1

’ r-2 r-s
By = (2—2)p + 1 2 [0 (2 (o + Dp¥=Y) + Eyp)] (20)

s=1 J=1
Cw = (2-2)p+1F) ptD [(r-s)p + 1) + Ey] (21)

s=r-1

Ey=p"9(r-s+1)+2p’(r+s)
§-z

+ 2 prR [(r—s + 2B) + (r — s + 2k + 1)] (22)
k=1 .

Evaluation of sums in Egs. (19) to (22) results in the following analytical
relations for D,, (z=1) and DD, , (z = 0), respectively

WD,,) =@+1) ¥ (2 -Dr-p¥(2p + 1)+ 2p"(p + 1) - 11/ (p — 1) (23)

4p@+2 (p— Dr + @pr+D-1) (p + 1)

W(DD,,) = +p® D (-1

(24)

D, number:

Ap = (2-2) D@+ p¥ G -1)/2+ (1 -2)p"(r+ Dr/ 2] (25)
J=1

r-2 r-s

Bp =@2-2)(@+1F Y [p*? Q. @+ pi2jG-1/2+Ep)]  (26)
s=1 Jj=1

Cp, = @-2)(p+1F Y p9 Ep, @7)

s=r-1

Ep =pr2(r-s+1)(r-s)/2+2pr+8)(r+s—-1)/2+

A
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Evaluation of sums in Egs. (25) to (28) results in the following analytical
relations:

D,D,,) = {2p%(p% - 122 — pZ(p% - 1) (p? + 8p + 3)r
+(@P+ 1)@ -1 [p'(5p%+8p + 1) - 2pl}/ 2(p - 1)* (29)

DA(DDp,r) = {4p2r+2(p _ 1)2,.2 _ 12p2r+2(p -1r +p2r+2(5p +9)
-p™*(5p2 + 10p + D+ p(p + 1)} / (p - 1) (30)

WW number:

Agw=2=2) D @+DpijG+1)/2+ 1 -2p’r+1)(r+2)/2] (31)
=1

Jj=

r-2 r-s ’
Byw=©C-2)p+1F D> 2 Q. @+ piYiG+1)/2+Eyy)] (32)
s=1 j=1
Cyw=(2-2)(p+1F > pI(r-s) (@ + 1) + Eyyl (33)
s=r-1
TABLE

Topological Data for Regular Dendrimers

p r w Dy WW
z=0 z=1 z=0 z=1 z=0 z=1
1 1 10 4 5 1 15
2 35 20 35 15 70 35
3 84 56 126 70 210 126
4 165 120 330 210 495 330
5 286 220 715 495 1001 715
2 1 29 9 18 3 47 12
2 285 117 382 120 667 237
3 1981 909 4214 1626 6195 2535
4 11645 5661 34534 14766 46179 20427
5 62205 31293 239046 108630 301251 139923
3 1 58 16 39 6 97 22
2 1147 400 1695 462 2842 862
3 16564 6304 38982 12684 55546 18988
4 207157 82336 677910 240348 885067 322684
5 2392942 975280 10093917 3762066 12486859 4737346
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Eyw=p"r-s+1)(r-s+2)/2+20+s)r+s+1)/2 +

Sz

Zp(”s“k) [(r—-s+2k)(r-s+2k+1)/2+(r-s+2k+1)(r-s+2k+2) /2] (34)
k=1

Evaluation of sums in Eqgs. (31) to (34) leads to Egs. (12) and (13) pre-
sented above, thus proving that the two ways for calculating the number
WW are correct. Values for the three numbers in regular dendrimers with
p=1-3 and r=1-5 are listed in the Table.

Note that the relations for W (Eqgs. (23) and (24)) are equivalent to the
relations reported by Gutman et al.?® and Diudea®” and give identical nu-
merical values. For p = 1, dendrimers reduce to line graphs (i.e. normal al-

kanes)

Analytical relations and their numerical evaluation were made using the
MAPLE V Computer Algebra System (Release 2).
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SAZETAK
Delta broj, Di, dendrimera

Mircea V. Diudea, Gabriel Katona i Bazil Parv

PredloZene su formule za ra¢un novog indeksa, D,, Wienerova tipa, koje su iz-

vedene uz pomoé pripadne matrice uporabom progresivnih stupnjeva évorova i bro-
jeva orbita kao parametara. Izvedena je veza indeksa D, s poznatim Wienerovim,
W, i hiper-Wienerovim, WW, indeksima, te jedna nova relacija za procjenu indeksa
u dendrimerima.





