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The possibility of interlinking buckminsterfullerene molecules via
c-bonds to form novel nanostructures is considered. That is, each
»node« of such a super-structure is itself a buckyball. Particular at-
tention is directed to regular polyhedral nanostructures as well as the
self-similar truncated icosahedral nanostructure. A systematic consid-
eration of geometric constraints is presented, and an informative per-
turbative development of the n-MOs and their eigenspectra is made.
A truncated icosahedral construction yields a buckyball buckyball,
and iteration of this construction leads toward a buckyball fractal.

INTRODUCTION

The area of nanotechnology is currently of great interest.! Chemically the
structuring of molecular frameworks becomes of central concern, so that there
are several possibilities®3* for molecular »tinkertoy« sets. The Cq, Buckmin-
sterfullerene molecule® may itself be viewed as a highly symmetric »uniquely
elegant« nano-ball. But moreover each buckyball may be viewed as a unique
type of nano-socket component to be used as a building block in constructing
larger nanostructures — here an important aspect of this uniqueness con-
cerns the 60 equivalent positions from which to make external bonds,
thereby allowing for the possibility of many different arrangements, to a
much greater extent than for previously proposed molecular »sockets« (up
to the complexity of cubane? and icosahedral? -CB;,H;,C— units). Indeed
buckyball dimers (with two adjacent tetrahedral sp3-hybridized atoms on
one buckyball c-bonded to two like atoms on the other buckyball) have been
considered theoretically,” and buckyball polymer chains (each buckyball



520 H. ZHU AND D. J. KLEIN

having a pair of sp®>hybridized atoms on opposite sides of the ball) have
been synthesized® and studied theoretically.” But more elaborate supercycle-
containing arrays of interconnected buckyballs may be conceived, as we do
here. Indeed along a similar line of reasoning a triangular net!%!! of bucky-
balls has recently been proposed as a theoretical possibility. And there is
some suggestion!? and even evidence”!? that solid phases with inter-fuller-
ene cycles are formed under suitable experimental high-pressure conditions.
Indeed all these earlier works’ 12 focus on one type of interconnection, such
as we consider here — though there are other possibilities.

To interconnect buckyballs into predesignated structures special atten-
tion needs to be taken to avoid radicaloid structures and strain. The radi-
caloid nature of a so-bonded buckyball may be simply estimated from an ex-
amination of the n-network of the remaining sp%-hybridized atoms — clearly
as a first criterion one must introduce only even numbers of sp®-hybridized
atoms. As regards strain the angles between the o-bonds from a buckyball
to its different neighbors need to be properly arrangable, and whether this
can be done is but a matter of geometric examination. Further as we have
noted earlier' with the introduction of (not too many) externally c-bonded
sp>-hybridized atoms some absolute isotropic (Gaussian) curvature strain is
relieved — and the more uniformly these sp3-hybridized atoms are spread out
the less the absolute anisotropic curvature strain tends to be.

Of the various possible predesignated structures those based on regular
polyhedra and perhaps also the truncated icosahedron (of buckminsterfuller-
ene itself) offer intriguing target structures. In these cases each buckyball
in such a structure is equivalent, each being connected to an equal number
v of other buckyballs: v=23 for the tetrahedron, cube, dodecahedron, and
truncated icosahedron; v =4 for the octahedron; and v =5 for the icosahe-
dron. This then is the problem proposed here: to determine which such su-
perpolyhedra are constructible (comprehensively within indicated presump-
tions of little strain); to check for possible radicaloid behavior; and to
indicate some few of the consequent features of the n-network eigenspec-
trum. The super-polyhedron constructibility conditions and numerical tests
are addressed in section 2 (p. 521) and 3 (p. 523), respectively, while novel
splitting patterns in the n-electron eigenspectrum are found in sections 4 (p.
524) and 5 (p. 528). '

As a further extension of such super-structures, we apply (in section 6,
p. 530) such ideas to the truncated icosahedron itself to generate a (Cgy)go,
and indicate some features of its n-spectrum in accord with the idea of sec-
tions 4 and 5. Next we seek to extend the whole constrution process using
mth stage buckyballs as sockets to construct (m + I)th stage buckyballs.
Such continued iteration leads (as is seen in section 7, p. 532) toward a frac-
tal dimension D ~ 2.8775. These icosahedral structures of course have I
symmetry and local C; or C, symmetry for atoms.
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SUPER-STRUCTURES

Ordinarily a pair of buckyballs is not to be exclusively connected together
by a single c-bond (in order to avoid reactive radicaloid structures), and here
focus is directed to the case where interconnections between neighbor pairs of
buckyballs are via pairs of bonds coming from neighbor pairs of atoms. We de-
fine a bond-directrix from one buckyball to a neighbor to be the line segment
between their centers, and to avoid internal strain within the buckyballs the
directrices are to be midway between the pair of bonds interconnecting the
associated pair of buckyballs, as in Figure 1. Thence one seeks the ideal an-
gles between different possible pairs of directrices to see which might accom-
modate to the ideal angles of the overall superpolyhedra under construction.
A buckyball geometry can be obtained by truncation of an icosahedron. By
choosing its three orthogonal two-fold axes to lie along the Cartesian axes,
we have the coordinates of the icosahedron's twelve vertices: +(7,1,0)p,
+0,7,1)p, £(1,0,0)p, +(r,-1,0)p, +(0,7,-1)p, and +(-1,0,7)p where 2p is the
length of its edges and 7 = V5 + 1)/2. To arrange Cg, vertices with a distance
d, along a bond separating a pentagon and hexagon, the truncation places
an atom d, from each icosahedron apex with a distance dy, between the pairs
of vertices so placed on each icosahedron edge — so that 2p = 2d + d},, and
thereby determining the buckyball's coordinates.!® Accordingly, the possible
angles are listed in Table I for the 48 symmetry inequivalent pairs of direc-
trices. Each directrix appearing there is labelled by the bond it bisects, each
bond label being given in terms of its two component sites, which in turn
are identified by the numbering of Figure 2. Also in Table I each bond (pro-
viding a directrix label) is identified as of type p-h or h-h as the bond occurs
at the fusion of a pentagon with a hexagon or of a hexagon with a hexagon.
Notably the angle between directrices (unless both are of type h-h) is in gen-
eral not determined by the icosahedral symmetry of the buckyball, unless
a choice is made for the bond lengths — the answers seem to be but slightly
sensitive for reasonable ratios of the two bond lengths, so that we here
choose all of the bond lengths equal in column 3 for directrix angle ¢, and
experimental results'® in column 4 (¢') for corresponding angles. It is seen

Figure 1. The directrix between the pair of bonds interconnecting the associated pair
of buckyballs, with centers o and o'.
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TABLE 1
The directrix angles for equal (¢) and experimental (¢) bond lengths

h-h h—h ¢ = ¢' h_p h_p ¢ ¢1
(2-12) 36.00 (2-3) 19.19 19.51
(3-15) 60.00 (1-2) 31.29 31.83
(13-14) 72.00 (15-16)  36.00 35.52
(1-9) (16-7) 90.00 (14-15)  41.11 40.84
(32-33) 108.00 (12-13)  54.07 53.90
(34-35) 120.00 (11-12)  60.20 60.24
(50-51) 144.00 (9-10)  66.80 66.86
(52-60) 180.00 (13-30)  70.72 70.79
" (11-29)  179.35 79.71
g e ¢ ¢ (35-36)  83.62 83.05
(1-2) 20.55 90.42 (10-26)  85.31 85.68
(2-3) 39.68 3985 | (3,4 (31-32)  94.69 94.32
(11-12)  41.81 4153 (25-26)  96.38 96.95
(3-4) 4819 4847 (32-50)  100.65  100.26
(12-13)  54.64 54.61 (31-48)  109.28  109.21
(13-30)  72.00 72.24 (27-28)  113.20  113.14
(14-15)  74.36 74.09 (28-47)  119.80  119.76
(1-9) (15-16)  80.41 80.24 (27-45) 12593  126.10
(14-33)  90.00 90.00 (46-47)  138.89  139.16
(16-34)  99.59 99.76 (45-46)  144.00  144.48
(33-34) 10564  105.91 (59-60) 14871  148.17
(31-32)  108.00  107.76 (58-59)  160.81  160.49
(32-50)  125.36  125.39 (57-58)  180.00  180.00
(35-36)  131.81 13153
(49-50)  138.19  138.47
(35-51)  140.32  140.15
(51-52)  159.45  159.58

from the truncation construction that the directrix angles between h-h and
h-h are independent of the bond lengths.

From Table I it is seen that only a few angles are appropriate for any
one of the polyhedra under consideration. Whether or not the additional
(v—2) directrices in any one of these few cases can be chosen to accommodate
to the v-member sets of directrix angles required at the buckyball is now
treated by inspection, thence giving a comprehensive determination of all
possible realizations of the desired super-polyhedra (within the assumptions
indicated). Of course Table I applies in constructing different possible super-
lattices as well. Of note is the linear chain® and triangular lattice.l%!! But
there are other possibilities too.



BUCKYBALL SUPER-POLYHEDRA 523

58 57

Figure 2. The site numbering here utilized for the buckyball.

SUPER-POLYHEDRA

The different super-polyhedra are designated via the choice of n direc-
trices within a component buckyball. Choices for such v-member sets (for de-
gree-v super-polyhedra) of directrices in turn being indicated by bonds as in-

TABLE II

Graph-theoretic invariants for each buckyball in different super-polyhedra

Polyhedra Bond positions n-Fragment Hiickel VB-related
symmetry gap/3 REPE/f K Kg K9 REPE
Cube 1-9;16-17;30-31 Cs 0.7970 0.04939 1204 9232 4212 0.1412

Dodeca- 1-9;32-33;38-39 Csy 0.5615 0.04787 1342 9152 4404 0.1266
hedron

Icosa- 7-8;10-11;13-14; Csy 0.4989 0.03750 213 1050 510 0.0990
hedron 16-17;19-20

»Tetra- 3-4;11-12;14-33 Cs 0.3556 0.02812 152 636 408 0.0819
hedron«
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dicated in Table II, where also we report various graph-theoretic invariants
for the remnant n-networks of 60-2v vertices. These graph-theoretic invari-
ants include:

e the count K of Kekulé structures (»dimer covering« representing n-elec-
tron pairing patterns), done by way of Kasteleyn's method;!?

e the conjugated-circuit counts K, for circuits of size ¢ (K,/K being the av-
erage number of c-circuits with alternating double and single bonds),
done by way our extension!® of Kasteleyn's method;

e the tight-binding (Hiickel) n-electron resonance energy per n-center (with
our parameterization!® of earlier schemes?’); and

e the Hiickel HOMO-LUMO gap (in units of the electron-hopping integral j3).

It is seen that all of the n-network fragments so arising give nonradi-
caloid species, both as judged by the existence of Kekulé structures (or dou-
ble-bond pairing patterns) and as judged by the existence of the nonzero
HOMO-LUMO gaps. By inspecting the directrix angles, it is found that a
super-cube, a super-dodecahedron, and a super-icosahedron can be built such
that there are internal strain-free connections between adjacent buckyballs.
The angles between directrices of h-h and h-h types do not depend on the
bond-length ratio of h-h/h-p as indicated in Table I. These three polyhedra
may be derived from »localized« 1,2-addition across h-h bonds, though for
(hydrogenation of) a single buckyball 1,2-addition produces the thermodynami-
cally most favored isomer at all levels of calculation?! and experimental ob-
servation.?? From the resonance energy per electron (REPE) under Hiickel
(tight-binding) MO and resonance-theoretic frameworks, the cube is the most
stable while the icosahedron where there are 5 h-h n-bonds destroyed in form-
ing the super-polyhedron is the most unstable. These are related to the re-
sults?? for CgoH,,. For further comparison, we also construct an (only slightly)
imperfect »tetrahedron« having directrix angles between two h-p bonds strained
from ~ 60.2°. The REPE and HOMO-LUMO gap indicate that it is a somewhat
less favored structure both kinetically and thermodynamically. Notably four
suitably oriented directrices to form a regular octahedron were not found.

In Figure 3 we show an example of a buckyball polyhedron based on the
cube. The geometry is optimized by using the SYBYL molecular force field,
which yields similar interball bond lengths to those of tight-binding dynam-
ics.!! Notably in the regions of interconnection between buckyballs there is
distortion to lessen the interaction between the n-networks of different com-
ponent buckyballs, thereby suggesting a perturbative approach.

INTER-t-NETWORK INTERACTIONS

The results of the preceding section develop the m-electron spectra of
each buckyball as through there is no interaction between the n-networks
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Figure 3. An example of a buckyball polyhedron based on the cube.

of different buckyballs. To correct for this approximation one could do a full-
blown quantum-chemical computation on each full superpolyhedron. But
some interesting insight is obtained if instead one treats the problem at a
simple perturbative level. To this end we consider the region of bonding be-
tween two adjacent buckyballs, with atoms a and b of one buckyball c-bonded
to atoms a’ and b’ of an adjacent buckyball. See Figure 4 where also we in-
dicate the four n-centers 1, 2, 3, 4 adjacent to a, b on one buckyball as well
as 1, 2/, 3', 4’ adjacent to a’, b’ on the other buckyball. First evidently there
will be some direct coupling between i and i’ measured by a resonance (or
electron-hopping) integral B'. Next there will be some coupling between each
of the indicated m-orbitals on a buckyball and the o-bonding and o*-anti-
bonding orbitals involved in the interconnection of the two buckyballs. The
resonance-integral coupling to the c-bonding orbital is identified as 8", and
to a first approximation the coupling to the c*-antibonding orbital is of the
same magnitude but with correlated signs as indicated in Figure 5.

Now with these basic resonance integrals in hand we pursue a degener-
ate perturbation treatment. Each buckyball is viewed to have a zero-order
n-orbital spectrum with no coupling between buckyballs. Since each bucky-
ball in the superpolyhedron (of any regular or semiregular type) is equiva-
lent, these zero-order eigenvalues are degenerate. If there is no additional
degeneracy (between n-MOs of a single buckyball component with sp3-hy-
bridized centers deleted), then the treatment is most straightforward — and
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X

Figure 4. Arrangement and labelling at and near the interconnecting sites of two
buckyballs.

this we now presume, delaying the case with internal degeneracy (as actu-
ally also occurs) to the next section. Then for a regular superpolyhedron
with n buckyballs each buckyball is equivalent, so that each n-energy with-
out internal degeneracy is n-fold degenerate. Degenerate perturbation the-
ory then may be implemented through effective Hamiltonians each defined
on an n-dimensional zero-order eigenspace. With H;, and V the zero-order

Figure 5. Labelling of the »resonance integrals« coupling the n-orbitals of two neigh-
boring buckyballs.
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Hamiltonian and the perturbation, respectively, the standard result for the
effective Hamiltonian through second-order is

o~
—H,

where O is the projector onto the zero-order eigenspace of energy g, while
O~ =1-0. The pB’-couplings give no contribution to the first-order term
OVO (since they do not couple between n-orbitals), but they do make a con-
tribution in the second-order term. The f’-couplings which we imagine are
weaker than B”-couplings make a contribution to OVO but are here ne-
glected in the second-order term.

To set up the effective Hamiltonian A we now consider its matrix ele-
ments. First the only diagonal part of less than second-order is

V)0 (1)

H=0Hy+V+ Vg

OH()O = 801 (2)

Next the only off-diagonal part which arises in the already indicated ap-
proximations is between nearest neighbor buckyballs. Thus letting

y=2.¢x and y=>c;x; 3)
i i
denote the degenerate zero-order n-MOs on two adjacent buckyballs, we
have

4
(W|OVO|yy = (y|VIy)y=B'D ¢, c; @

l
(with the notation of Figure 4). Further the " part of the second-order term
is

O
<W|0V" V”OIW’>—

1 1
[(cy + co)(c'y +€'g) + (c3 + cy(c's + c'4)](/3")2[80~80 - 80_86*] (5)

where ¢; and ¢« are the energies of the - and o*-orbitals between the two
(primed and unprimed) buckyballs. Now for all the constructions of Table II
(and later of Table IV) each site i of Figure 4 turns out to be equivalent to
site i/, so that ¢; = ¢/;. Further summing (4) and (5) we obtain the total coup-
ling element between neighboring buckyballs as

- 86*

B”Zc + (B2 [(cy + c9)? + (c3 + ¢, )21[

T T —————— 6
(0 8)(80 80-*)] ( )
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Farther-neighbor coupling occurs only in higher orders of perturbation the-
ory than included here.

Thus there results a simple description of the perturbed form of the
eigenspectrum. Each nondegenerate n-level of a single buckyball component
is split up into a n-fold manifold of levels with a pattern characteristic of
the particular n-apex regular polyhedron under consideration. That is, the
pattern is that of the eigenvalues to the (graph-theoretic) adjacency matrix
for the regular polyhedron. The strength of the interaction governing the
scale of the splitting is different for each zero-order level, and is given in
equation (6). An example of such treatment will be given in the following
section.

The treatment here applies to extended structures as well as polyhedral
ones. Thus for a polymer chain®® of buckyballs, there should be a 0-order
pattern for a Cy,, Csg graph with each (typically non-degenerate) level should
show a fine splitting into a linear-chain (polyacetylene-like) band. Indeed
such can be percieved to some extent in Springborg's’ computated energy-
level density plots, though a higher resolution might help.

INTERACTIONS WITH INTERNAL DEGENERACY

It remains to consider the modification to the results of the preceding
section when there is 0-order degeneracy of n-levels within individual bucky-
ball components. In fact, this must rather frequently happen since (as seen
from Table II) the symmetry groups often are such as to give 2-dimensional
irreducible representations (or pairs of complex-conjugate 1-dimensional co-
representations) and consequent 2-fold internal degeneracies, whence the
degenerate perturbation-theoretic Hamiltonian matrix becomes doubled in
dimensionality.

As an example consider the case of Cg or C3, symmetry groups. Then
there will be degenerate n-MOs vy, and y_ transforming under rotation by
27/3 as

Cay, = 1t y, )

where n = ¢/?”3, Then for an n-apex superpolyhedron one has in 0-order a
2n-fold degeneracy (assuming no further »accidental« degeneracy). The 2n-
dimensional degenerate perturbation-theoretic matrix problem still has
nonzero matrix elements just between adjacent buckyballs, but there is
some question as to how to develop the problem so as to manifest its full
symmetry. First noting that y; = y_, we may obtain a set of real 0-order
eigenvectors
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Vo= (y, +y)/\2
v, = Cy, = (ny, + n*y) /2 (8)

v, = Cy, = (n*y, + ny) /N2

Evidently these are symmetrically equivalent, though linearly dependent
since

Vat+t¥pty. =0 9

Then each of y,, v, and v, should have larger magnitude amplitudes near
one corresponding interconnection region to a neighboring buckyball. Thence
the interaction matrix elements between adjacent pairs of buckyballs can be
developed in a systematic fashion, following the approach of the preceding
section. But in place of a single matrix element B as in (6) between y and
v’ in two buckyballs I and I' there will be an array of matrix elements be-
tween y,, v, and y, on I v/, v/, and ', on I'. See Figure 6. Then the dif-
ferent matrix elements are

4
Bxy = Byx =p chxi Cyi +
i

Ec—Eqge
(B2 [(cx + €'39)(Cyy + €y) + (€'yg + C'yy)(Cys + €))] (20-25) (Bo=202) i

where the c,; and ¢',; are amplitudes for y, and y/, (x = a, b, and c¢). Because
of (9) there are just three independent matrix elements here, say B,,, By,
and B,,.

Thus again there results a still somewhat simple description of even this
portion of the eigenspectrum. Each E-level of a single buckyball component
is split up into a 2n manifold of levels with a pattern characteristic of a
»decoration« of the n-apex regular polyhedron under study, the decoration
involving the replacement of each of the n-apices by 3 new graph vertices
with interconnections as in Figure 6. That is, the pattern is that of the gen-
eralized eigenvalue problem

AdeeQ = )8decC (11)

where A% is the weighted adjacency matrix for the decorated graph with
the weights being as indicated in (10), and S is an overlap matrix associated
with the linear dependence of (9). That is, the sole nonzero elements of S
are 1 on the diagonal and —1/2 between distinct y,, v, associated to the same
buckyball. Further the n eigenvalues of 0 associated to the n 0-eigenvalue
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Figure 6 Decoration construction, replacing each vertex of a superpolyhedron by 3
new vertices, as well as a corresponding edge replacement as indicated.

eigenvectors to S9¢ are recognized to be due to the linear dependence, and
so are discarded from the level pattern. The advantage to using (11) including
this linear dependence »nuisance« is that the distinct matrix elements are
few and this form explicitly manifests the geometric symmetry of the super-
polyhedron.

Finally the treatment of the icosahedron superpolyhedron with C5, sym-
metry is similar. A decoration replacing each apex of the icosahedron by 5
vertices arises. Further too the perturbative approach of this and the pre-
ceding section should be applicable in constructions based on other sockets,
e.g., the —CB;oH,,C— units of Ref. 3.

BUCKYBALL BUCKYBALLS

There is growing interest in the realization and development of well-de-
fined nanostructures which are »self-similar«. Here we view a buckyball as
a type of nano-socket component to be used in constructing a larger super-
buckyball (Cgy)gg, which might be called the buckyball buckyball (just as we
might term the structure of Figure 3 a buckyball cube). But in turn this
might be used in construction an even larger super-superbuckyball
((Cgo)g0)eo €tc. Again, the interconnections between neighbor pairs of bucky-
balls are via pairs of bonds coming from neighbor pairs of atoms as dis-
cussed in section 2 (p. 521). According to the directrix angles shown in Table
I, an infinite sequence of self-similar super-buckyballs can be constructed
ideally (internally strain-free) step by step. But we delay consideration of
these higher-order iterations to section 7 (p. 532).
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For the first super-buckyball (Cgg)gp, the three bonds for inter-connec-
tions are, for example, 16-17; 22-23; and 28-29, where two of the angles be-
tween these three bonds are 120° and one is 108°. For this stage we have
the simplest circumstance (with no symmetry-mandated internal degenera-
cies) and thus can seek to treat inter-n-network interaction as described in
section 3 (p. 523). This structure is that of 60 buckyballs locating at the ver-
tex positions of an (enlarged) truncated icosahedron. We estimate?® g’ ~ 0.1 3,
B'~03p, esxa+25p, e¢ca~ra—2.58 and a~0.5p and proceed via (6).
The well-known?4?® truncated-icosahedron splitting pattern occurs with
each level more finally split over a range ~ +3B; on either side of the 0-order
level. The non-degenerate levels may repeat this same pattern on a finer
scale (as discussed in section 4), while the symmetry-degenerate?® levels
yield a related fine-splitting (as discussed in section 5). But since the argu-

TABLE III

Splitting parameters for the buckyball buckyball

3 &g B; Entry 3 &g B Entry
1 -2.862 0.0333 Yes 28 0.129  -0.0106 Yes
2 2712 0.0039 Yes 29 0.309  -0.0170 No
3 -2.596 0.0141 No 30 0.343 —0.0009 No
4  -2.550 0.0167 No 31 0.488 0.0081 Yes
5 -2.302 -0.0056 Yes 32 0.687 0.0086 Yes
6 -2.213 0.0054 Yes 33 0.815 0.0074 No
7 -2.182 -0.0003 Yes 34 0.830 0.0088 No
8  -2.027 0.0118 Yes 35 0.944 0.0446 No
9 -1.898 0.0034 Yes 36 0.986 0.0048 No
10 -1.728 0.0006 Yes 37 1.333 —0.0098 Yes
11 -1.585  -0.0076 No 38 1.370 0.0017 Yes
12 -1.571 0.0002 No 39 1.414 0.0045 Yes
13 -1.530 0.0061 Yes 40 1486  -0.0008 No
14 -1.506 -0.0003 Yes 41 1.504  -0.0069 No
15 -1.355 -0.0071 Yes 42 1.584  -0.0013 No
16 -1.199 0.0013 Yes 43 1.595  -0.0037 No
17  -1.000 -0.0018 No 44 1.693 0.0129 No
18  -1.000 -0.0129 No 45 1.761 0.0379 No
19 -1.000 -0.0121 No 46 1.954 0.0644 No
20  -0.935 0.0015 No 47 1.970 0.0267 No
21  -0.894 -0.0204 No 48 2.241 —-0.0004 No
22 -0.892 -0.0005 No 49 2.304  -0.0721 No
23 -0.701 0.0018 Yes 50 2.334  -0.0046 No
24  -0.679  -0.0027 Yes 51 2.553 —0.0026 No
25  -0.585 0.0001 No 52 2.577 —0.0086 No
26  -0.567 -0.0102 No 53 2.601 -0.0034 No

27 -0.345 0.0012 Yes 54 2.606 —-0.0037 No




532 H. ZHU AND D. J. KLEIN

ments of section 4 and 5 are based on perturbation theory the predicted
quantitative details can fail if the 0O-order levels are overly close together
compared to the induced (perturbative) splittings. Thence we check for this,
marking the entry in Table III with »No« to indicate such failure — otherwise
we mark the entry »Yes«. Notably several entries seem to need further cor-
rections — perhaps most prominently the three »accidentally« degenerate levels
at gy = —f§ — a value for Hiickel-orbital energy where degeneracy frequently
occurs for »non-symmetry-related« but understood reasons.?® It is seen that
the level-splitting patterns are predicted to be nonoverlapping for somewhat
less than half the 0-order n-levels. Notably this nonoverlapping occurs more
frequently for occupied than unoccupied n-levels,as may be anticipated from
the factor [(g; — &,)(¢; — £.,)]™ in (5) upon noting that £, is more centrally
located in the unocccupied-level range than ¢, is in the occupied level range.
But even when the splitting patterns interpenetrate one may anticipate that
what often results appears much like a superposition of the different sub-
spectra, because the states arising from different zero-order eigenspaces re-
main quite noninteracting over all but ~4 (out of 60) sites of a buckyball.

THE BUCKYBALL FRACTAL

As already suggested we seek to repeat (over and over) the buckyball su-
per-construction our considerations of the angles for diretrices indicating no
interball (or inter super-ball) strain. For the next super-superball ((Cgp)g0)s0
we shall select 6 buckyballs from within each superball component to con-
nect to its neighbors in the same way, and these 6 buckyballs each have
v = 4 bond regions for interconnections, say, 16-17; 22-23, 28-29; and 52-60.
This type of buckyball is identified as Cgy(4), while those with just v =3 in-
ter-connecting bond regions (as in the preceding paragraph) are identified
as Cgo(3). Therefore, each superball contains two types of components: Cg((3)
and Cgy(4). For the (m+1)th stage ball, the numbers of n-centers for Cgy(3)
and Cgy(4) in the corresponding superball may be developed in much the
same manner to obtain them recursively from the mth stage numbers:

ng+l) = 60 (V&m) -3.2m)

VD = 60 (WM + 3 - 2m) (12)

Solution of these recursions, with the requisite initial conditions, gives

ng+1) o 0(m+1) 180

D = —%9 (607 — 2m) (13)
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TABLE IV
Graph-theoretic invariants for buckyball components in higher-level buckyballs

Bond positions Hiickel VB-related
gap/f REPE/p K Kg Ko REPE
Ceo - 0.7566 0.04594 12500 83160 59760 0.1200

Ceo (3) 16-17;22-23;28-29 0.4735 0.04834 1161 7756 4278 0.1270
Cgo (4) 16-17;22-23;28-29;52-60 0.4928 0.04904 601 4148 1710 0.1300

The various graph-theoretic invariants for the remnant n-networks of
60 — 2v vertices now are given in Table IV. The results via both Hiickel MO
and resonance theory pictures indicate that all structures at each stage are
nonradicaloid and thermodynamically favorable. To obtain the distance d,,
between the centers of mth stage buckyballs in an (m+1)th stage buckyball
consider the length of the long horizontal line in Figure 7. Letting r,, denote
the radius of the mth stage buckyball (from its center to the center of an
(m-1)th stage ball) we see that

d, = ri-d, /2% + d,,_; + {r2—(d,,_1/2)? (14)
m m m-1

But from Figure 7, one sees that r,, and d,, ; are just the (circum) radius
and an edge length for the polyhedron. Then by way of the truncation con-
struction for the semiregular case one may obtain

Figure 7 Arrangement considered for equation (8). Here two mth stage buckyballs
have surfaces containing (m-1)th stage buckyballs as indicated. The lengths of the
sides of the solid-lined square are d,,_1.
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I = 17+10/9d,, ; (where 7 = (\6+1)/2) so that

d, = {142 1+31/36}d,, , (15)

and

d,, = {142 r+31/36}"1d, (16)

where d; is a first-stage interatomic distance (which is a suitable average
since in fact the first stage is not precisely semiregular).

Now the iteration of the buckyball construction leads toward a fractal
structure.?” Granted the description’® of the buckyball as »uniquely elegantx,
surely too this fractal must be »uniquely elegant«. The fractal dimension is

m)
D = lim log v log 60

moo 108dn 100 1.9 [1131/36)

which of course is a fundamental geometro-architectural characteristic. It or
related dimensions also enter into various?®2° physico-chemical spectral
properties. The energy-level splitting considerations of section 4 (p. 524) and
5 (p. 528) still apply, though there are separate 0-order manifolds associated
to the v=3 and v=4 buckyball. Further the buckyball-buckyball levels
should be even more finely split upon formation of the buckyball buckyball
buckyball (with somewhat similar consideration applying) — and indeed
there should be a hierarchy of ever finer splittings on proceeding to ever
higher stages, with?? the splitting strength falling off in an exponential fash-
ion. But this and other fractality manifestations are left to future work.

~2.8775 amn

CONCLUSION

It is seen that there are a sizable variety of interesting constructions
composed from o-bonded buckyballs. All regular polyhedra other than the
octahedron were achieved. Also the self-similar buckyball buckyball was
achieved along with a fractal-potent hierarchy of ever larger higher-stage
buckyballs. Evidently, the buckyball offers a quite versatile socket for the
construction of nano-super-structures, only a portion of which have been
identified here, utilizing a somewhat systematized procedure (indicated in
section 2 (p. 521) and 3 (p. 523)).

Moreover, the result of inter-cage coupling on the n-electron eigenspec-
trum is elucidated (in section 5 (p. 528) and 6 (p. 530)). The spectrum for
individual cages undergoes a splitting dictated by the polyhedral structure
of the superpolyhedron into which the individual cages are placed.
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SAZETAK
Buckminsterfullerenski supra-poliedri
Hongyao Zhu i Douglas J. Klein

Razmatrana je moguénost medusobnog spajanja molekula buckminsterfullerena
c-vezama u nove nanostrukture. Narodita je paZnja usmjerena na pravilne poliedarske
nanostrukture i fraktalne krnje ikozaedarske nanostrukture. Sustavno su razmotrena
njihova geometrijska svojstva, a raéun smetnje primijenjen je na njihove n-molekul-
ske orbitale i vlastite vrijednosti. Slaganje krnjih ikozaedarskih struktura daje buck-
minsterfullerenski buckminsterfulleren, a ponavljanja takvog slaganja daju fraktalne
buckminsterfullerenske nanostrukture.





