PRIMJER PROVEDBE ALGORITMA IZRADE KORISNIČKE POGONSKE KARTE HIDROAGREGATA AN EXAMPLE OF APPLYING ALGORITHM TO CREATE THE APQ OF A HYDROGENERATOR-TURBINE UNIT

Prof. emer. dr. sc. Ivan Ilić, prof. dr. sc. Zlatko Maljković, prof. dr. sc. Ivan Gašparac, mr. sc Milutin Pavlica, mr. sc. Dubravka Ilić-Zubović, Vladimir Jarić, dipl.ing., Sveučilište u Zagrebu, Fakultet elektrotehnike i računarstva, Unska 3, 10000 Zagreb, Hrvatska Doc. dr. sc. Alfredo Višković, HEP d.d., Ulica grada Vukovara 37, 10000 Zagreb, Hrvatska Radivoj Belobrajić, dipl.ing., HEP Proizvodnja d.o.o., PP HE Zapad, Eugena Kumičića 13, 51000 Rijeka, Hrvatska

U radu je prikazana provedba metodologije određivanja korisničke pogonske karte (KPK) na primjeru hidroagregata br. 3 u HE Vinodol. Kao predložak sustavnom određivanju granica dopuštenog rada agregata poslužio je blok dijagram koji na pregledan način ocrtava tijek provedbe pojedinih radnji potrebnih za tvorbu KPK. Svi međukoraci su dokumentirani, a dobiveni rezultati prikazani tablično i grafički. Svaka od konačno određenih granica je ucrtana u KPK promatranog agregata. S obzirom na složenost provedbe proračuna graničnih uvjeta koje nameću elektromagnetska i toplinska zbivanja u čeonom prostoru, u radu je na konkretnom primjeru iz prakse prikazana potpuno nova metodologija utvrđivanja graničnih vrijednosti uzdužne komponente magnetske indukcije, temeljeno na rezultatima mjerenja indukcije i pripadne nadtemperature u trajnom kapacitivnom radu generatora.

The work describes the application of the methodology of defining the actual PQ diagram (APQ) on the example of Hydrogenerator-turbine unit No. 3 at Vinodol HPP. Used as a basis for determining the unit's operating tolerances was a block diagram which provides a clear survey of the sequence of steps required to create an APQ. All intermediate steps are documented and the obtained results are shown in tables and graphics. Each of finally defined limits is imported into the APQ of the observed unit. Considering the complexity of calculating the limit conditions imposed by electromagnetic and thermal occurrences in the end region, in a concrete example from practice the present work describes an entirely new methodology of determining the limit values of the longitudinal magnetic induction component, based on the results of measuring induction and pertaining over-temperature in the generator's permanent capacitive operation. Ključne riječi: čeoni prostor, granice dopuštenog rada, hidrogenerator, pogonska karta, sinkroni

Key words: end region, heating, hydrogenerator, operating tolerances, PQ diagram, synchronous generator, vibrations

1 UVOD

Kako bi primjena teorijskog članka [1] u praksi bila što jednostavnije ostvariva, u ovom članku daje se primjer izrade korisničke pogonske karte (KPK) za hidroagregat br. 3 u HE Vinodol.

Blok dijagram sa slike 15 [1] na vrlo pregledan način ocrtava tijek provedbe pojedinih radnji nužnih za iscrtavanje KPK, pa će zato poslužiti kao vodič u pripremi podloga i sustavnom određivanju granica dopuštenog rada agregata. Stoga se taj dijagram prenosi u ovaj članak kao slika 1, kako bi se s njim ostvarila što jednostavnija komunikacija tijekom razrade pokaznog primjera.

Za potrebe izrade KPK hidroagregata br. 3 u HE Vinodol prikupljeni su podaci o fizikalnim veličinama i parametrima bitnim za tvorbu pogonske karte. Nakon prikupljanja dostupnih podataka, tj. podataka proizvođača sastavnih elemenata agregata: turbina (T) + sinkroni generator (SG) i blok-transformatora (BT), te rezultata prethodnih mjerenja, donose se odluke o provedbi mjerenja koja mogu dati odgovore na pitanja o sposobnostima SG s obzirom na elektromagnetske, mehaničke i toplinske prilike. Blok dijagram sa slike 1, upućuje u desno krilo svog algoritma, prema kojem se donosi odluka za provedbu proračuna i mjerenja za koja je potrebna ugradnja davača.

Kroz pokazni primjer metodologije tvorbe KPK prikazan je detaljni postupak određivanja nužnih parametara, ali i graničnih vrijednosti pojedinih fizikalnih veličina, bitnih za KPK. Kako bi se bitno dogradila postojeća metodologija klasične pogonske karte SG ugrađivanjem ograničenja koja su uvjetovana elektromagnetskim i toplinskim prilikama u čeonom prostoru, te proširenjem ove karte uvođenjem u nju blok-transformatora, obavljene su sve radnje koje konkretna primjena SG zahtijeva. Time je ostva-rena mogućnost promatranja i pogonskog praćenja svake pojedine proizvodne jedinice na mjestu priključka na VN mrežu, s jedne strane, ali su ostvarene i mogućnosti za tvorbu Automatskog Programa POgonske KArte (APPOKA) uz pomoć uobičajenih računalnih tehnologija, s druge strane.

Vibracijama, koje se u KPK ne unose kao ograničavajući činitelj, posvećuje se posebna pažnja kao mogućim mehaničkim čimbenicima koji bi mogli ugroziti nesmetan rad SG. Radi preventive, ukazuje se na način njihova mjerenja i na analizu rezultata mjerenja s naznakama graničnih vrijednosti.

1 INTRODUCTION

In order to make the application of the theoretical article [1] in practice as easy as possible, in this article is an example of creating the actual PQ diagram (APQ) for the Hydrogenerator-turbine unit No. 3 at Vinodol HPP.

The block diagram in Figure15 [1] provides a very clear survey of steps required for APQ plotting, so it will be used as a guide in preparing documents and systematic determination of the unit's operating tolerances. Therefore, this diagram is carried over to this article as Figure 1 in order to achieve the simplest possible communication during the elaboration of the demonstrative example.

For the needs of creating the APQ of Hydrogeneratorturbine unit No.3 at Vinodol HPP data have been collected on the physical quantities and parameters essential for making the PQ diagram. Once the available data, i.e., manufacturer's data on the components of the unit: turbine (T) + synchronous generator (SG) and block transformer (BT)) have been obtained, along with the results of previous measurements, decisions are made concerning measurements to be undertaken with a view to receiving answers to questions regarding the SG's capabilities to cope with electromagnetic, mechanical and thermal conditions. The block diagram in Figure 1 refers to the right portion of its algorithm, according to which a decision is taken to perform calculations and measurements for which sensors installation is required.

Through a demonstrative example of the APQ formation methodology the detailed process of determining required parameters is shown, as well as that of determining the limit values of individual physical quantities essential for APQ. In order to substantially upgrade the existing methodology of the classical PQ diagram of the SG by installing limitations imposed by electromagnetic and thermal occurrences in the end region and the extension of the diagram as a result of introducing a block transformer into it, all steps have been taken as required by concrete SG application. Thereby a possibility has been created of observation and on-line monitoring of each individual production unit at the place of connection to HV network, on one hand, but, on the other hand, a possibility has also been created to form the automatic PQ diagram program (APPOKA) by means of conventional computer technologies.

Special attention is paid to vibrations, which are not entered in APQ as a limiting factor, and which are potential mechanical agents that may jeopardize SG's unimpeded operation. To prevent this from happening, the method of their measurement is I, konačno, u radu su date sve podloge za pripremu i provedbu mjerenja ključnih parmetara i fizikalnih veličina. Obavljena su i mjerenja za konkretni primjer generatora G3 u HE Vinodol, čime su, za tvorbu KPK, dobiveni bitno pouzdaniji podaci u odnosu na podatke dobivene proračunima temeljenim na pretpostavkama. Time, kako KPK, tako i metodologija njene tvorbe i za sve ostale primjene u praksi, dobivaju na vjerodostojnosti i pouzdanosti. highlighted, and so is the analysis of measurement results, with indications of limit values.

Finally, the work provides a complete basis for preparing and carrying out measurements of key parameters and physical quantities. Measurements have also been performed for the concrete example of G3 generator at Vinodol HPP, to the effect that for APQ formation much more reliable data have been obtained compared with data obtained through calculations based on assumptions. Thus both APQ and the methodology of its formation, as well as for all other applications in practice, gain in credibility and reliability.

Pogonska karta 3 (***) KPK

2 PRORAČUNI I MJERENJA BEZ UGRADNJE DAVAČA

Za generator G3 u HE Vinodol. provedeni su analitički i numerički proračuni usmjereni ka dobivanju čvrstih podloga koje zahtijeva KPK. Provedena su i kontrolna mjerenja ključnih fizikalnih veličina, kako bi se njihov realni suodnos u pogonskim prilikama što točnije odslikao.

2 CALCULATIONS AND MEASUREMENTS WITHOUT SENSOR INSTALLATION

For G3 generator at Vinodol HPP analytical and numerical calculations have been made with a view to obtaining solid documents as required by APQ. Control measurements of crucial physical quantities have also been made to get a picture as accurate as possible of their real interaction in operating conditions.

2.1 Rezultati analitičkih proračuna

Za analitički proračun parametara i karakteristika SG korišten je programski paket tvrtke ANSOFT RMXpert. Nakon unosa potrebnih podataka o dimenzijama SG i njegovih nazivnih podataka snage i napona, te podataka koji će definirati uzbudu, računalo izbacuje listu izlaznih podataka. Iz ove se liste uzimaju podloge (fizikalne veličine i parametri) koje su osnova za crtnju KPK, i upisuju u tablicu 3.

2.2 Rezultati numeričkih proračuna

Za provedbu numeričkih proračuna uz pomoć metode konačnih elemenata (MKE) potrebno je što jasnije postaviti zadaće, čijim se rješavanjem dolazi do točnijih rezultata o parametrima i elektromagnetskim svojstvima SG nego što se postiže analitičkim proračunom. Za konkretni primjer korišten je programski paket tvrtke ANSOFT Maxwel. Nakon postavljanja pojedinačnih zadaća vrši se priprema za unos podataka prema zahtjevima programskog paketa, što predstavlja najosjetljiviji i stručno vrlo zahtjevan posao. Računalo izbacuje liste izlaznih podataka i svojstava o očekivanom ponašanju, odnosno elektromagnetskim prilikama u stroju. Na temelju dobivenih rezultata obavlja se analiza, usporedba s poznatim podacima i svojstvima stroja, te se ocjenjuje fizikalna vjernost rezultata numeričkih proračuna. Nakon kritičkog prihvaćanja rezultata prelazi se na njihovo unošenje u podloge za izradu KPK.

Za konkretni primjer, rezultati dobiveni pomoću MKE upisani su u tablicu 3.

2.3 Rezultati mjerenja (bez ugradnje davača)

2.3.1 Snimanje karakteristika praznog hoda i kratkog spoja

Snimanje karakteristike praznog hoda i kratkog spoja, bez obzira na relativno jednostavne postupke mjerenja, tehnološki predstavlja zahtjevnu zadaću, kako u pripremi, tako i pri provedbi. U pravilu ovu vrstu snimanja treba obavljati kvalificirana i dobro uvježbana ekipa ispitivača prema uobičajenim shemama [1] i odgovarajućim prilagodbama koje uvjetuje objekt na kojem se obavljaju mjerenja.

Rezultati pokusa praznog hoda pri nazivnoj brzini vrtnje, u pravilu, nisu dovoljni jer se, zbog moguće pojave previsokih napona, ili prenisko podešene prenaponske zaštite, uzbudna struja ne smije ili ne može povećavati iznad određene granice koju određuje maksimalno dopušteni napon na stezaljkama generatora. Kako bi se snimio i zasićeni dio karakteristike, što znači da treba doseći barem $1,25 U_n$ pri nominalnoj brzini,

2.1 Results of analytical calculations

ANSOFT RMXpert software package has been used for the analytical calculation of the SG's parameters and characteristics. After importing required data on the SG's dimensions and its rate power and voltage data, as well as data which will define excitation, the computer will turn out a list of output data from which physical quantities and parameters essential for APQ plotting will be taken and entered in Table 3.

2.2 Results of numerical calculations

For numerical calculations by means of the finite elements method (FEM) tasks must be set as clearly as possible, the solving of which will lead to results on the SG's parameters and electromagnetic properties more accurate than those obtained by an analytical calculation. For the example in question the ANSOFT Maxwel software package has been used. After individual tasks have been set, preparations are made for importing data as required by the software package, which is actually the most sensitive and technically highly demanding job. The computer turns out lists of output data and properties on the expected behavior or the electromagnetic conditions prevailing in the machine. Based on the results obtained, an analysis is made including a comparison with the machine's known data and properties, and the physical quantity of the results of numerical calculations is evaluated. A critical acceptance of the results is followed by their importing into documents for creating APQ.

In the specific example, results obtained by using FEM are entered in Table 3.

2.3 Measurement results (without sensor installation) 2.3.1 Screening the no-load and short-circuit characteristics

Screening the no-load and short-circuit characteristics, apart from relatively simple measurement procedures, is a technically demanding task, in both the preparatory and the implementing phase. This type of screening should be as a rule performed by a qualified and well-trained team in accordance with established diagrams [1] and appropriate adjustments imposed by the facility where measurements are performed.

The no-load test results at the rated rotation speed are as a rule insufficient because, due to a possible occurrence of over-voltage or over-voltage protection set too low, the excitation current must not or cannot be raised above a certain limit determined by the maximum permissible voltage on the generator terminals. In order to also screen the saturated part pokus se obavlja i pri sniženoj brzini vrtnje. Pokus praznog hoda pri sniženoj brzini vrtnje obavlja se pri npr. 90 % n_n , a provodi se kao i pokus praznog hoda pri nazivnoj brzini vrtnje. Na slici 2 je prikazana karakteristika praznog hoda snimljena pri nominalnoj brzini vrtnje (crvena) i pri sniženoj brzini vrtnje i preračunata na nazivnu brzinu vrtnje (plava).

of a characteristic, meaning that at least 1,25 U_n should be reached at rated speed, the test is conducted at a lower rotation speed. The no-load test at a lower rotation speed is conducted at, for example, 90 % n_n , and in the same way as the no-load test at the rated rotation speed. Figure 2 shows the no-load characteristic screened at the rated rotation speed (red) and a lower rotation speed and converted into the rated rotation speed (blue).

Slika 3

Short-circuit

HPP

Karakteristika kratkog

spoja generatora G3 u HE Vinodol Figure 3

characteristic of G3 generator at Vinodol

Iz karakteristike praznog hoda (slika 2) treba očitati iznose uzbudnih struja $I_{\rm f0}$ i $I_{\rm fg}$. Očitani su, i pohranjeni u tablicu 3, sljedeći iznosi: $I_{\rm f0}$ = 400 A, $I_{\rm fg}$ = 334 A.

The excitation current values $I_{\rm f0}$ and $I_{\rm fg}$ should be read out on the no-load characteristic (Figure 2). The following amounts are read out and stored in Table 3: $I_{\rm f0} = 400$ A, $I_{\rm fg} = 334$ A.

Snimanje karakteristike kratkog spoja dalo je rezultate prikazane na slici 3.

The screening of the short-circuit characteristic has yielded the following results, shown in Figure 3.

Iz karakteristike kratkog spoja, tj. ovisnosti $I = f(I_p)$ (slika 3) za nazivnu struju generatora I_n očitana je uzbudna struja $I_{fk} = 420$ A, što se kao parametar pohranjuje u tablicu 3. From the short-circuit characteristic, i.e., function $I = f(I_{f})$ (Figure 3), for the generator's rated current I_{n} the excitation current $I_{fk} = 420$ A has been read out, which as a parameter is stored in Table 3.

2.3.2 Mjerenja uz pomoć postojećeg sustava monitoringa

Ukoliko postoji sustav monitoringa, treba provjeriti da li omogućava bilo koju vrstu mjerenja koja bi mogla pomoći u određivanju parametara i fizikalnih veličina za određivanje KPK.

Kako je već u teorijskom članku [1] obrazlagano. za potpunu KPK potrebno je što točnije odrediti ključne parametre, ponašanje ključnih fizikalnih veličina, te toplinska stanja stroja za različite pogonske prilike. Ukoliko postoji izvedbena dokumentacija o ustrojstvu sustava monitoringa i upute o korištenju sustava, ne samo za nadzor, nego i za dodatna mjerenja, treba utvrditi mogućnosti njegovog korištenja i za određivanje bilo kojeg podatka od koristi za KPK. Ukoliko su ugrađeni davači bilo koje vrste, potrebno je provjeriti njihovu funkciju i mogućnost korištenja za potrebe KPK. Ako postoje davači temperature (toplinske sonde), posebno bi bilo od koristi provođenje mjerenja toplinskih stanja u specifičnim pogonskim uvjetima.

3 MJERENJA NAKON UGRADNJE DAVAČA

3.1 Pripremne radnje na generatoru

Blok dijagram iz slike 1, u svom daljnjem tijeku, nudi ugradnju sondi sa svrhom dobivanja podloga za što točniju i pouzdaniju KPK.

Radi određivanja parametara generatora potrebnih za crtanje pogonske karte, potrebno je na samom stroju obaviti određena mjerenja. Priprema mjerenja sastoji se u umjeravanju (baždarenju), pripremi za ugradnju i ugradnji tri grupe davača:

- magnetske sonde (Hall sonde) kojima se mjeri indukcija na ključnim mjestima u generatoru,
- termosonde (Pt-1000) za mjerenje temperatura određenih dijelova stroja,
- sonde za mjerenje vibracija (akcelerometri) uz pomoć kojih se utvrđuje (ne)ispravnost čeonog dijela statorskog paketa za normalan rad generatora.

2.3.2 Measurements by means of the existing monitoring system

If there is a monitoring system in place, it should be checked if it allows any type of measurements that may help determine the parameters and physical quantities required for APQ definition.

As already explained in the theoretical article [1], a complete APQ requires maximum accuracy in determining the key parameters, the behavior of crucial physical quantities, and the machine's thermal conditions in different operating circumstances. Given the existence of as-built design documents on the monitoring system structure and the system utilization instructions not only for supervision but also for additional measurements, a possibility should be explored of using the system also for obtaining any other data which may be useful for APQ. If sensors of any type are installed, their function and usability for the needs of APQ should be checked. If temperature sensors (thermal probes) exist, it would be particularly useful to measure heat conditions under specific operating conditions.

3 MEASUREMENTS AFTER SENSOR INSTALLATION

3.1 Preparatory steps on the generator

In its continuation the block diagram from Figure 1 offers to install probes for the purpose of getting the basics for a more accurate and reliable APQ.

In order to define the generator's parameters required for plotting the PQ diagram, some measurements must be taken on the machine itself. Preparatory steps for measuring include calibration, installation preparations and installation of the following three groups of sensors:

- magnetic probes (Hall probes) to measure induction at the generator's key points,
- thermal probes (Pt-1000) to measure the temperature of certain parts of the machine,
- vibration probes (accelerometers) to determine the operating ability of the stator package end region for normal operation of the generator.

Slika 4 Smještaj Hall sondi u čeonom prostoru i zračnom rasporu generatora G3 u HE Vinodol Figure 4 Arrangement of Hall probes in the end region and air gap of G3 generator at Vinodol HPP

3.1.1 Ugradnja Hall sondi za mjerenje indukcijePreporučena mjesta za ugradnju Hall sondi (slika4) su:

- Hall sonde za mjerenje aksijalnog polja, na statorskom paketu (D sonde, 4 kom.) – ugrađuju se na površinu paketa između poluprstiju, pomaknute u radijalnom smjeru za 1/3 visine zuba, počevši od njegovog vrha (slike 4a i 4b),
- Hall sonde za mjerenje radijalnog polja u zračnom rasporu (E sonde, 4 kom.) – poželjno je na krajnji statorski paket ugraditi tri sonde u uzdužnoj simetrali zuba (na krajevima i u sredini, te još jednu sondu u sredini utora (slike 4b i 4c).

3.1.2 Ugradnja akcelerometara za mjerenje vibracija

Preporuku za izbor mjesta postavljanja akcelerometara za mjerenje aksijalnih vibracija paketa statora u čeonom prostoru daje slika 5. Izbor mjesta postavljanja je u skladu s namjerama mjerenja vibracija limova paketa statora u mogućim kritičnim radnim točkama, s obzirom na ubrzano starenje izolacije između limova zbog dodatnog zagrijavanja uzrokovanog aksijalnom komponentom magnetske indukcije u čeonom prostoru stroja. **3.1.1** Installation of Hall probes for induction measurement

Recommended places for installation of Hall probes (Figure 4):

- Hall probes for axial field measurement, on the stator package (D probes, 4 pcs) – installed on the package surface between the half-fingers, displaced radially by one third of the tooth height, beginning with the tooth tip (Figures 4a and 4b),
- Hall probes for radial field measurement in the air gap (E probes, 4 pcs) – it is desirable to install three probes on the end stator package in the longitudinal centerline of the tooth (at ends and in the middle, plus another probe in the middle of the slot (Figures 4b and 4c).

3.1.2 Installation of accelerometers for vibration measurement

Figure 5 gives a recommendation for the choice of places where accelerometers should be installed for measuring the axial vibrations in the stator package end region. The choice of installation places conforms with the intended vibration measurement of the stator package sheet-metal strips in potentially critical operating points, in view of accelerated aging of insulation between sheet-metal strips due to additional heating caused by the axial component of magnetic induction occurring in the end region of the machine.

464

3.1.3 Ugradnja sondi za mjerenje temperature Mjesta na kojima se prati zagrijanje generatora (slika 6) analogna su mjestima na kojima se ugrađuju Hall sonde za mjerenje aksijalnog magnetskog polja u čeonom prostoru, ali na nekom drugom zubu:

termo sonde (GTS sonde, 4 kom.) – ugrađuju se na površinu paketa statora između poluprstiju, i to na vrh zuba, te još tri sonde pomaknute za 1/3 visine zuba u radijalnom smjeru.

3.1.3 Installation of temperature measurement probes

Places where the generator heating is monitored (Figure 6) are analogous to places where the Hall probes are installed for measuring the axial magnetic field in the end region, but on some other tooth:

thermal probes (GTS, 4 pcs) - are installed on the surface of the stator package between the half-fingers on the tooth tip, plus three probes radially displaced by one third of the tooth height.

Mjesta ugradnje termo sondi između tlačnih prstiju u generatoru G3 u HE Vinodol Figure 6 Places to install thermal

Slika 6

probes between pressure fingers in G3 generator at Vinodol HPP

3.2 Provedba i rezultati mjerenja

3.2.1 Provedba mjerenja

Nakon ugradnje mjernih davača (sondi) treba, prema blok dijagramu, pristupiti mjerenjima 2.1, koja sadrže toplinska, električna i magnetska mjerenja, radi određivanja graničnih pozicija u KPK, te mjerenja aksijalnih vibracija u čeonom prostoru paketa (na krajnjim limovima paketa statora, poželjno i na glavama namota).

3.2 Taking measurements and measurement results **3.2.1** Taking measurements

Upon installation of test sensors (probes), measurements 2.1 according to the block diagram should be conducted, which include thermal, electrical and magnetic measurements to define APQ limit positions, and measurements of axial vibrations in the end region of the package (on end sheet-metal strips of the stator package, preferably on the coil heads as well).

Slika 5 Mjesta ugradnje

Na generatoru G3 provedena su sljedeća mjerenja:

- mjerenje radijalne komponente indukcije
 Hall sondama E1 E4, postavljenim u zračni raspor (slika 4), u praznom hodu, kratkom spoju i izabranim pogonskim točkama,
- mjerenje aksijalne komponente indukcije Hall sondama D1 – D4 postavljenim u čeoni prostor (slika 4) u praznom hodu, kratkom spoju i u izabranim pogonskim točkama,
- mjerenje aksijalnih vibracija ACC1 i ACC2 postavljenim u čeoni prostor (slika 5), u praznom hodu, kratkom spoju i za izabrane radne točke,
- mjerenja sa svrhom određivanja međusobnih odnosa i iznosa pojedinih fizikalnih veličina za izabrane radne točke pogonske karte,
- mjerenje temperature pomoću mjernih sondi postavljenih u čeonom prostoru (slika 6), a za razna pogonska stanja, u skladu s mjerenjima aksijalne komponente indukcije i mjerenjima zagrijavanja paketa statora u ovisnosti o vrsti i veličini opterećenja armaturnog i uzbudnog namota.

3.2.2 Tablični pregled rezultata mjerenja

Tablični pregled rezultata predstavlja podlogu za određivanje onih svojstava hidrogeneratora koja su od važnosti za KPK. U tablici 1 dan je pregledan skup rezultata mjerenja na G3, a što predstavlja podloge za:

- utvrđivanje iznosa i raspodjele aksijalne komponente magnetske indukcije u čeonom prostoru (B_{*}),
- određivanje utjecaja protjecanja uzbudnog namota, a vezano uz to i utjecaj protjecanja namota armature, na magnetske prilike u čeonom prostoru : parametri k_A i σ,
- određivanje toplinskog stanja čeonog prostora uz pomoć toplinskih sondi.

Tablica 1 sadrži samo one rezultate mjerenja koji su nužni za prezentaciju u pokaznom primjeru. Na temelju odabranih rezultata mjerenja u 16 točaka (u pravilu se, radi temeljitije statističke obrade, uzimaju rezultati mjerenja dobiveni u 2 do 3 puta više pogonskih točaka od prikazanih 16 u tablici 1), može se dobiti dovoljno pouzdana slika elektromagnetskih zbivanja u čeonom prostoru generatora, a uz to i informacije o toplinskom stanju čeonih limova paketa statora. Poželjna je i kontrola vibracija, kako bi se moglo dati zeleno svjetlo za potpunu primjenu KPK u praksi.

Nakon temeljite popune tablice rezultatima mjerenja u što širem i raznolikijem spektru radnih točaka, može se prijeći na obradu elektromagnetskih i toplinskih prilika, a s tim u vezi i pripadnih ograničenja u KPK generatora. The following measurements have been conducted on the G3 generator:

- measurement of the radial induction component by means of E1 – E4 Hall probes placed in the air gap (Figure 4), at no-load, short-circuit, and selected operating points,
- measurement of the axial induction component by means of D1 – D4 Hall probes placed in the end region (Figure 4), at no-load, short-circuit and selected operating points,
- measurement of axial vibrations ACC1 and ACC2 placed in the end region (Figure 5), at no-load, short-circuit and selected operating points,
- measurements intended to determine the correlations between and amounts of individual physical quantities for selected PQ diagram operating points,
- temperature measurement by means of probes placed in the end region (Figure 6) for different operating conditions in accordance with the measurement of the axial induction component and the measurement of the stator package heating in dependence on the type and amount of the armature and excitation coil load.

3.2.2 Table of measurement results

The table of measurement results is a basis for determining the hydrogenerator properties relevant to APQ. Table 1 summarizes G3 measurement results, which provides a basis for:

- determining the amount and arrangement of the axial magnetic indduction component in the end region (B_{A}) ,
- determining the excitation coil flux impact as well as, in relation to it, the armature coil flux impact on the magnetic conditions in the end region: parameters k_{λ} and σ ,
- determining the thermal status of the end region by means of thermal probes.

Table 1 contains only those measurement results which are essential for demonstration in the concrete example. Based on selected measurement results in 16 points (normally, for more detailed statistical processing, measurement results are taken which are obtained in operating points twice or thrice as many as 16 points shown in Table 1), a fairly reliable picture can be obtained of electromagnetic developments in the generator's end region, plus information about the thermal status of the stator package end region sheet-metal strips. Also desirable is a vibration control to give green light for a full-scale application of APQ in practice.

After filling the table with measurement results in a broad and diverse range of operating points, the electromagnetic and thermal conditions, as well as the pertaining limitations in the generator APQ, can be processed.

0.03,00 0.23, 13,41 8,57 0,973 0,98 15,76 14,2 9,32 20, 0,486 0,4 0,434 0,4 0,434 0,4	17,59 13,41 8,57 7 0,953 0,973 0,98 8 16,1 15,76 14,2 1 1,9 9,32 20, 1 1,9 9,32 20, 1 0,9486 0,44 0,434 0 0,434 0,434 0,4 1 - - - 1 - - - 1 0,434 0,434 0,4	Z4 Z02,1/2 41,0,03 005,80 62.25 67 33,15 17,59 13,41 8,57 98 0,837 0,953 0,973 0,98 13 17,38 16,1 15,76 14,2 33 -13,51 1,9 9,32 20, 81 0,541 0,501 0,486 0,4 87 0,476 0,4144 0,434 0,4 97 0,476 0,444 0,434 0,4 97 0,476 0,444 0,434 0,4 97 - - - 98 - - - -	0,4 z10,z4 z02,1/2 470,03 005,80 823 ,1 -1,067 33,15 17,59 13,41 8,57 1 -1,067 33,15 17,59 13,41 8,57 46 -0,23 17,38 16,1 15,76 14,2 23 -13,51 1,9 9,32 20, 38 0,381 0,541 0,486 0,4 38 0,381 0,541 0,436 0,4 5 - - - - - 51 - - - - - - 51 -	z sinzs sinzy sin	1 9,67 10,72 10,87 9,68 9,84 10,36 10,64 10,25 5 1677 1403 1515 2199 2031 1769 1793 799 34 0.83 0.858 0.769 0.905 0.943 0.938 -0.033	5 1677 1403 1515 2199 2031 1769 1793 799 34 0.83 0.858 0.769 0.905 0.943 0.938 -0.033	34 0.83 0.858 0.769 0.905 0.943 0.994 0.938 -0.033		26 -33,95 30,88 39,73 -25,23 -19,4 6,2 20,29 -91,89	3 349 420 430 350 360 394 414 386	65 318,34 723,3 823,65 451,72 470,23 621,36 753,82 194,45	28 43,36 16,24 14,025 50,45 44,109 28,574 22,78 -1,2761	88 0,727 0,96 0,9702 0,6368 0,718 0,8782 0,922 0,9998	27 23,58 22,49 22,01 33,58 32,88 31,73 31,11 -0,16	2 -15,36 13,48 18,47 -15,37 -11,06 3,74 11,71 -14,21	6 0,568 0,503 0,492 0,586 0,579 0,549 0,531 0,396	1 0,494 0,428 0,417 0,504 0,491 0,452 0,434 0,453	43 - 42 - 47 49 26	25,38 - 30,4 - 29,02 30,16 33,22 19,7	34,73 - 37,73 - 40,69 41,63 44,43 19,6
	17,59 17,59 16,1 1	24 202.1/2 470,03 67 33,15 17,59 98 0,837 0,953 93 17,38 16,1 33 -13,51 1,9 81 0,541 0,501 87 0,476 0,444 87 - - 87 0,476 0,444 98 - -	0,4 z10,24 z02,1/2 470,03 ,1 -1,067 33,15 17,59 1 0,9998 0,837 0,953 46 -0,23 17,38 16,1 23 -10,33 -13,51 1,9 23 -10,33 -13,51 1,9 38 0,381 0,541 0,501 38 0,437 0,476 0,444 5 - - - ,14 - - - ,0437 0,476 0,444 5 - - - ,14 - - - -	snz1 snzz 10,59 10,91 988 1295 0,867 0,584 29,92 54,26 410 433	10,59 10,91 988 1295 988 1295 0,867 0,584 29,92 54,26 29,92 54,26 410 433	988 1295 0,867 0,584 29,92 54,26 410 433	0,867 0,584 29,92 54,26 410 433	29,92 54,26 410 433	410 433		0/02/00 00/00	13,41 8,5728	0,973 0,988	15,76 14,27	9,32 20,2	0,486 0,46	0,434 0,41		- 	- 1
-1,045 -1,1 -1,067 33,15 1 1 0,9998 0,837 -0,36 -0,46 -0,23 17,38 -0,386 0,23 -10,33 -13,57 0,386 0,381 0,541 0,541 0,386 0,388 0,381 0,476 0,425 0,438 0,437 0,476 - 25 - - - 25 - - - 25 - - - 19,05 - -	-1,045 -1,1 -1,095 1 1 0,999 -0,36 -0,46 -0,2 -0,386 0,338 0,338 0,386 0,438 0,43 0,425 0,438 0,43 0,425 0,438 0,43 - 25 - - 22,14 - - 19,05 -	-1,045 -1 1 1 1 -0,36 -0, 11,87 0,3 0,386 0,3 0,425 0,4 - 22, - 22, - 19,		snut 10,93 1075 -0,015 -0,015 -30,89 434 800,9	10,93 10,93 10,93 10,55 -0,015 -0,015 -0,89 1434 800,9	1075	-0,015 - 90,89 : 434 : 800,9	90,89 434 800,9	434 800,9	800,9		-1,492	0,9997	-0,49	20,48	0,383	0,404		-	
000,9 019,4 590,4 210,44 204,1 -1,492 -1,045 -1,1 -1,067 33,15 0,9997 1 1 0,9998 0,837 0,9997 1 1 0,9998 0,837 -0,49 -0,36 -0,46 -0,23 17,38 20,48 11,87 0,23 -10,33 -13,55 0,333 0,386 0,388 0,381 0,641 0,404 0,425 0,438 0,437 0,476 0,404 0,425 0,438 0,437 0,476 - 25 25,14 - - - 25,14 - 2 - - 22,14 - - - - - 22,14 - - - - 22,14 - - - - 19,05 - -	-1,492 -1,045 -1,1 -1,09 0,9997 1 1 0,99 -0,49 -0,36 -0,46 -0,2 -0,43 11,87 0,233 -10,3 20,48 11,87 0,23 -10,3 0,383 0,386 0,38 0,38 0,404 0,425 0,438 0,43 0,404 0,425 0,438 0,43 - - 25,14 - - - 22,14 - - - 22,14 - - - 19,05 -	au0,9 0.19,2 395 395 -1,492 -1,045 -1 0,9997 1 1 1 -0,49 -0,36 -0, 0, 20,48 11,87 0,3 0,3 0,383 0,386 0,3 0,3 0,404 0,425 0,4 0,4 - - - 22 - - - 22 - - - 22 - - - 19	- 1,492 - 1,492 - 0,9997 - 0,9997 - 0,499 - 0,409 - 0,404 - 0,383 - 0,404 - 0,404	$U (kV)$ $I_{a} (A)$ $\cos \varphi$ $\varphi (^{\circ})$ $I_{m} (A)$	$U (kV)$ $I_{a} (A)$ $\cos \varphi$ $\varphi (^{0})$ $I_{m} (A)$	$I_{a} (A)$ $\cos \varphi$ $\varphi (^{\circ})$ $I_{f_{0}} (A)$	$\cos \varphi \\ \varphi (^{0}) \\ I_{i_{0}} (A)$	φ (°) $I_{\eta_0}(A)$	<i>I</i> _m (A)		<i>I</i> _f (A)	δ _{mj} (°el.)	cos ô	P_{Σ} (MW)	Q_{Σ} (Mvar)	$B_{\rm mD1}$ (T)	$B_{\rm 1D1}$ (T)	$\vartheta_{\rm GTS3}$ (K)	$\vartheta_{\text{paket}}(\mathbf{K})$	ϑ_{namot} (K)

 $\vartheta_{mass}^{orss}(K)$ – nadtemperatura najtoplijeg mjesta u čeonom limu paketa statora (termo sonda GTS3) / over-temperature of the hottest place in the stator package end region sheet metal (thermal probe GTS3) $\vartheta_{mast}(K)$ – nadtemperatura jarma paketa statora (termo sonda) / over-temperature of the stator package yoke (thermal probe) $\vartheta_{mast}(K)$ – nadtemperatura namota statora (termo sonda) / over-temperature of the stator coil (thermal probe) $\vartheta_{mast}(K)$ – nadtemperatura namota statora (termo sonda izmedu dva sloja armaturnog namota) / over-temperature of the stator coil (thermal probe between two armature coil layers)

4 ODREĐIVANJE PARAMETARA POMOĆU REZULTATA PROVEDENIH MJERENJA

Provedbom analitičkih i numeričkih proračuna računskim putem su određeni gotovo svi parametri, nužni za izradu korisničke pogonske karte. U provedbi proračuna nužna su određena zanemarenja, pa je točnost dobivenih rezultata upitna. Ova činjenica upućuje na zaključak, da parametre treba odrediti iz rezultata ciljano provedenih mjerenja na pripadnom stroju, ako to dozvoljavaju pogonske prilike. U tablici 1 su prikazani rezultati provedenih mjerenja, koji mogu biti podloga za izračun parametara i za ocjenu njihove ovisnosti o magnetskim prilikama u stroju.

4.1 Određivanje uzdužne reaktancije

Karakteristike pokusa praznog hoda (slika 2) i kratkog spoja (slika 3) daju podloge za određivanje nezasićene reaktancije generatora X_d kao i kratkospojnog omjera k_c :

4 DETERMINING PARAMETERS BY MEANS OF MEASUREMENT RESULTS

Once the analytical and numerical calculations are finished, nearly all parameters required for the creation of the APQ are defined. The calculations require certain omissions, so that the accuracy of obtained results is questionable. This fact suggests that parameters should be defined from the results of targeted measurements conducted on the respective machine, operating conditions permitting. Table 1 shows the measurement results which may serve as a basis for the computation of parameters and an evaluation of their dependence on magnetic conditions prevailing in the machine.

4.1 Determining the longitudinal reactance

The characteristics of the no-load (Figure 2) and short-circuit (Figure 3) test provide the basic elements for determining the unsaturated reactance of generator X_d and the short-circuit ratio k_c :

$$X_{d} = \frac{I_{fk}}{I_{fg}} = \frac{420}{334} = 1,26 \text{ (p.u.)},$$

$$k_{c} = \frac{I_{f0}}{I_{fk}} = \frac{400}{420} = 0,9524.$$
(2)

Kratkospojni omjer se može uzeti kao mjera promjene nezasićene sinkrone reaktancije u zasićenu, što daje rezultat: The short-circuit ratio can be taken as a measure of change of an unsaturated synchronous reactance into a saturated one, which gives:

$$X_{dzas} = \frac{1}{k_o} = 1,05(p.u.).$$
 (3)

Razlika između nezasićene i zasićene sinkrone reaktancije iznosi 16,7 %.

4.2 Određivanje poprečne reaktancije

Uz pomoć izraza, dobivenog iz fazorskog dijagrama SG s izraženim polovima (slika 7) dobiva se izraz za poprečnu sinkronu reaktanciju:

4.2 Determining the transverse reactance

The expression for the transverse synchronous reactance is obtained by means of an expression obtained from the phasor diagram of SG with projecting poles. (Figure 7):

The difference between the unsaturated and satu-

rated synchronous reactance amounts to 16,7 %.

$$X_q = \frac{U \cdot \sin \delta}{I \cdot \sin(90^\circ - \varphi - \delta)}.$$

(4)

Korištenjem rezultata mjerenja iz tablice 1, ali samo za kuteve opterećenja bitno veće od nule (zbog bitno veće relativne pogreške pri mjerenju malih kuteva δ), dobivaju se dvije grupe rezultata za X_a. Jasno se očituje razlika između poprečne sinkrone reaktancije pri radu s induktivnim u odnosu na rad s kapacitivnim opterećenjem. U kapacitivnim radnim točkama je generator manje magnetski zasićen zbog manjeg induciranog napona u odnosu na induktivne radne točke, pa je za magnetski zasićeni generator poprečna (zasićena) sinkrona reaktancija ($X_{amin} = 0,5$) čak, u ovom konkretnom slučaju, i do 34 % niža od nezasićene (X_{qmax} = 0,76). Sva ova tumačenja različito dobivenih sinkronih reaktancija u poprečnoj osi za razna pogonska stanja zasnivaju se na klasičnom fazorskom dijagramu. Ako se ne želi prihvatiti da su tako velike razlike u iznosima reaktancija za poduzbudni i naduzbudni rad dovoljno fizikalne, tada valja tražiti nove načine prikaza fazorskog dijagrama, jer po svemu sudeći klasični fazorski dijagram za hidrogeneratore nije potpuno korektan. Ova se tvrdnja temelji na iskustvu autora na sličnim proračunima na temelju mjerenja za nekoliko postojećih hidrogeneratora u elektranama HEP-a.

By using the measurement results from Table 1, but only for load angles essentially greater than zero (due to a much greater relative error occurred in the measurement of small angles δ), two groups of results are obtained for X_a . A clear difference is shown between the transverse synchronous reactance in operation with inductive load and in operation with capacitive load. In the capacitive operating points the generator is magnetically less saturated due to a lower induced voltage in relation to the inductive operating points, so that for a magnetically saturated generator the transverse (saturated) synchronous reactance ($X_{qmin} = 0,5$) is, in this specific case, as much as up to 34 % lower than the unsaturated reactance ($X_{max} = 0,76$). All these interpretations of different obtained synchronous reactances in the transverse axis for different operating conditions are based on the classical phasor diagram. In case of refusal to accept the notion that such great differences in reactance amounts for under-excitation and over-excitation operation are sufficiently physical, then new ways of presenting the phasor diagram should be sought, because all indications are that the classical phasor diagram for hydrogenerators is not entirely correct. This argument is based on the author's experience with similar calculations based on measurements for several existing hydrogenerators in HEP power plants.

Slika 7 Fazorski dijagram SG s istaknutim polovima Figure 7 Phasor diagram of a SG with projecting poles

Tablica 2 – Izračun poprečne sinkrone reaktancije na temelju rezultata mjerenja, prema tablici 1 Table 2 – Estimate of transverse sundtronous reactance based on measurement results according to

$U(\mathbf{k}\mathbf{V})$	U(nu)	δ(°)		$I(\mathbf{p},\mathbf{u})$	(°)	a (°)	<i>X</i> (n 11)	<i>X</i> (p 11)	P (MW)	O (Myar)
0 (KV)	C (p.u.)	0()	$I_{a}(A)$	I_{a} (p.u.)	φ()	u()	M _{qind} (p.u.)	A _{qkap} (p.u.)	1 (101 10)	Q (ivivai)
9,78	0,931	33,15	1295,0	0,673	-38,9	95,70	-	0,76	17,38	-13,51
10,33	0,984	17,59	899,7	0,467	5,3	67,11	0,69	-	16,10	1,90
10,59	1,009	13,41	987,9	0,513	29,9	46,67	0,63	-	15,76	9,32
10,91	1,039	8,573	1295,0	0,673	54,3	27,16	0,50	-	14,27	20,20
9,67	0,921	43,36	1677,0	0,871	-34,0	80,59	-	0,74	23,58	-15,36
10,72	1,021	16,24	1403,0	0,729	30,9	42,88	0,58	-	22,49	13,48
10,87	1,035	14,03	1515,0	0,787	39,7	36,24	0,54	-	22,01	18,47
9,68	0,922	50,45	2199,0	1,142	-25,2	64,78	-	0,69	33,58	-15,37
9,84	0,937	44,11	2031,0	1,055	-19,4	65,29	-	0,68	32,88	-11,06
10,36	0,987	28,57	1769,0	0,919	6,2	55,22	0,63	-	31,73	3,74
10,64	1,013	22,78	1793,0	0,931	20,3	46,92	0,58	-	31,11	11,71

Na osnovi opisanih analiza može se napisati da su za promatrani stroj karakteristične vrijednosti poprečne sinkrone reaktancije za induktivna opterećenja stroja $X_{qind} = 0,59$, a za pretežno kapacitivna $X_{qkap} = 0,72$ (tablica 2).

4.3 Određivanje parametara k_{λ} i σ

U [1] dana je uputa o načinu utvrđivanja parametara $k_{\rm A}$ i σ . U svrhu određivanja tih parametara odabrano je 16 radnih točaka, za koje su rezultati provedenih snimanja prikazani u tablici 1. Proračun je proveden samo za jednu točku čeonog dijela paketa statora, za točku na kojoj se nalazi Hall sonda D1 (slika 4), koja je mjerila najveće iznose aksijalne komponente indukcije $B_{\rm Amax}$.

Prema spomenutoj uputi, u prvom koraku proračuna treba, uz pomoć koeficijenta k_2 , odrediti parametar σ koji najbolje oslikava utjecaj rasipnog polja struje armature na stvaranje uzdužne komponente B_A u odnosu na utjecaj uzbudnog protjecanja što ga izražava parametar k_A . Koeficijent k_2 , prema (41) [1], određen je kao:

Based on the described analyses, it can be written that for the observed machine the characteristic values of transverse synchronous reactance for inductive loads are $X_{qind} = 0,59$, for largely capacitive loads $X_{qkap} = 0,72$ (Table 2).

4.3 Determining the parameters k_{λ} and σ

In [1] contains an instruction about how to determine the parameters $k_{\rm A}$ and σ . For the purpose of determining these parameters, 16 operating points were selected, for which the results of screening are shown in Table 1. Calculation has been made only for one point of the stator package end region, for the point where a Hall probe D1 is placed (Figure 4), which has measured the highest axial component induction amounts $B_{\rm Amax}$.

According to the mentioned instruction, the first step, by means of coefficient k_2 , is to define the parameter σ which best describes the influence of the armature current stray field on the formation of the longitudinal component B_A in relation to the influence of excitation flux expressed by parameter k_A . Coefficient k_2 , according to (41) [1], is defined as:

$$k_{2} = \frac{\sqrt{(\sigma I_{f})^{2} + {I_{f0}}^{2} - 2\sigma I_{f} I_{f0} \cos \delta}}{B}.$$

Za svaku radnu točku iz tablice 1 se pretpostavi iznos parametra σ između 0 i 1 u odgovarajuće malim koracima, te se za svaki pretpostavljeni σ računa odstupanje $a_{\rm rel}$ parametra k_2 od njegove srednje vrijednosti metodom najmanjih kvadrata Odabire se onaj σ (kao $\sigma_{\rm opt}$) za koji je odstupanje $a_{\rm rel}$ parametra k_2 od njegove srednje vrijednosti najmanje (slika 8). For each operating point from Table 1 a parameter amount σ is assumed between 0 and 1 in appropriately small steps, and for each assumed σ a deviation $a_{\rm rel}$ of parameter k_2 from its mean value is calculated by the method of least squares. That σ is selected (like ($\sigma_{\rm opt}$) for which deviation $a_{\rm rel}$ of parameter k_2 from its mean value is the least, Figure 8.

(5)

Provedena računica daje sljedeće rezultate za parametre:

The calculation gives the following results for parameters:

(6)

(7)

$$\sigma_{opt} = 0,19$$

 $k_A = 1 - \sigma_{opt} = 0.81$

4.4 Tablični prikaz veličina potrebnih za izradu KPK Tablica 3 sadrži popis i karakteristične vrijednosti svih veličina potrebnih za izradu KPK sinkronog hidroagregata. **4.4 Table of values required for making the APQ** Table 3 contains a list and characteristic values of all parameters required for making the APQ of the synchronous hydrogenerator-turbine unit.

Tablica 3 – Popis veličina potrebnih za izradu KPKTable 3 – List of quantities required for making APQ

Komponenta / Component	Oznaka i veličina parametra ili fizikalne veličine / Symbol & value of parameter or physical quantity	p.u.	Naziv parametra ili fizikalne veličine / Designation of parameter or physical quantity	Parameter određen / Parameter determined:
		SNAGA	/ P O W E R, K O R I S N O S T / E F F I C I E N C Y	
Turbina /	$P_{\rm T} = 32 \text{ MW}$	0,914	maksimalna snaga turbine / maximum turbine power	iz dokumentacije / from documentation
Turbine	$P_{\min} = 0 \text{ MW}$	0	minimalna snaga turbine / minimum turbine power	iz dokumentacije / from documentation
	$\eta_{\rm G} = 0,9809$	0,981	korisnost generatora / efficiency of generator	anal. proračunom / by anal.
	$P_{\text{max}} = P_{\text{T}} \cdot \eta_{\text{G}} = 31,5 \text{ MW}$	0,9	maksimalna djelatna snaga generatora / maximum real power of generator	pogl. 4.2 / section 4.2 [1]
	$S_n = 35 \text{ MVA}$	1	nazivna prividna snaga / rated apparent power	iz dokumentacije / from
	$\cos \varphi_n = 0.9$	0,9	faktor snage / power factor	iz dokumentacije / from
SG / SG	$P_{\rm n} = 31,5 {\rm MW}$	0,9	nazivna djelatna snaga / rated real power	iz dokumentacije / from
	$S_1 = I_{max} \cdot U_1 = S_n$	1	snaga generatora uz maksimalnu struju i sniženi napon / generator power with	pogl. 4.2 / section 4.2 [1]
	$S_{2} = I_{max} \cdot U_{n} = 1,053 \cdot 1$	1,053	snaga generatora uz maksimalnu struju i nazivni napon / generator power with	pogl. 4.2 / section 4.2 [1]
	$S_3 = I_n \cdot U_3 = 1 \cdot 1,05$	1,05	snaga generatora uz nazionu struju i povišeni napon / generator power with rated	pogl. 4.2 / section 4.2 [1]
	$S_1 = S_{111} = S_2 = 1,053$	1,053	$S_{\mu} = \max \{S_{\mu}, S_{\mu}, S_{\mu}\}$	pogl. 4.2 / section 4.2 [1]
	NAPOI	NI I STRI	JJE ARMATURE / ARMATURE VOLTAGES AND CURRENTS	
	$U_{2} = U_{3} = 10,5 \text{ kV}$	1	nazivni napon generatora (linijski) / generator rated voltage (line)	iz dokumentacije / from
	n = 0.95	0,95	koeficijent sniženja napona / voltage decrease coefficient	iz dokumentacije / from
	$U_1 = 0.95 \cdot U_2 = 9.975 \text{ kV}$	0,95	$U_1 = v_1 \cdot U_2 = 0.95$ (p.u.) minimalni nazivni napon / minimum rated voltage	iz dokumentacije / from
	n = 1.05	1,05	koeficijent povišenja napona / voltage increase coefficient	iz dokumentacije / from
	$U_{2} = 1,05 \cdot U_{2} = 11,025 \text{ kV}$	1,05	$U_{2} = \nu \cdot U_{1} = 1.05$ (p.u.) maksimalni nazivni napon / maximum rated voltage	iz dokumentacije / from
	I _m = 1 925 A	1	struja and utity and utitize	iz dokumentacije / from
SG / SG	$I_1 = S_p / U_1$	1,053	struja armature za nazivno opterećenje uz sniženi napon / armature current for	pogl. 4.2 / section 4.2 [1]
	$I_2 = S_1 / U_2$	1	struja armature za nazivno opterećenje uz nazivni napon / armature current for	pogl. 4.2 / section 4.2 [1]
	$I_2 = S_p / U_2$	0,952	struja armature za nazivno opterećenje uz povišeni napon / armature current for	pogl. 4.2 / section 4.2 [1]
	I = I.	1.053	rated load with increased voltage $I = \max\{I_{i}, I_{i}, I_{i}\} = I_{i}$	pogl. 4.2 / section 4.2 [1]
	$\delta = 26.3^{\circ}$,	max SF 2 32 1 nazivni kut opterećenia / rated load angle	miereniem / by measurement
	$A = 61 \ 903.6 \ \text{A/m}$		struini oblog za nazivno opterećenie / current shield for rated load	anal. proračunom / by anal.
	NAPC		RUE UZBUDE / EXCITATION VOLTAGES AND CURRENTS	estimate
	U.= 95.8 V		napon uzbude pri nominalnom onterećeniu / excitation voltage with normal load	anal. proračunom / by anal.
	/ = 684.4 A		struia uzbude za nominalni teret / rated load excitation current	anal. proračunom / by anal.
	I = 400 A		struia uzbude praznog boda / no-load excitation current	estimate
	I = 334 A		struja uzbude praznog hoda za nezasićeno stanje / no-load excitation current for	miereniem / by measurement
SG / SG	$I_{fg} = 420 \text{ A}$		unsaturated state	mjerenjem / by measurement
5 4 7 54	I = 883 A		struja uzbude kod cos $\varphi = 0$ induktivno / excitation current at cos $\varphi = 0$	anal. proračunom / by anal.
	I = 70 A		inductive	estimate iz dokumentacije / from
	R = 0.2976	0.298	polymier kružnice za / circle radius for $F = 0 \cdot R = IP \cdot (X - Y) \cdot (2 \cdot Y + Y)$	documentation
	{-1.09127:0}	0,200	pomak središta za / center shift for E = 0 · {- $L^{p_c}(X + X) / 2 \cdot X + X \cdot 0$	pogl. 4.3 / section 4.3 [1]
	(1)03127,0)		REAKTANCIE / REACTANCES	
	X - 1.26	1.26	sinkrona reaktancija u uzdužnoj osi (nezasićena) /synchronous reactance in the	mjerenjem ZESA / by ZESA
SG / SG	$X_{\rm dmj} = 1,20$	0.72	longitudinal axis (unsaturated) sinkrona reaktancija u poprečnoj osi (pretežno kap. opterećenja) /synchronous	measurement mjerenjem ZESA / by ZESA
507.50	$X_{dzas} = 1,05$	1,05	(reactance in the transverse axis (largely capacitive loads) sinkrona reaktancija u uzdužnoj osi (zasićena) /synchronous reactance in the longitudinal axis (saturated)	measurement mjerenjem ZESA / by ZESA measurement

	X = 0.59	0 59	sinkrona reaktancija u poprečnoj osi (pretežno ind. opterećenja) / synchronous	mjerenjem ZESA / by ZESA
	X = 0.0955	0.096	reactance in the transverse axis (largely inductive loads)	anal. proračunom / by anal.
	$X_{\sigma} = 1.182$	1 182	uzdužna reaktancija reakcije armature / longitudinal armature reaction	anal. proračunom / by anal.
	$X_{da} = 1,102$	0.694	reactance poprečna reaktancija reakcije armature / transverse armature reaction	estimate anal. proračunom / by anal.
	$X_{qa} = 0.054$	1 277	reactance sinkrona reaktancija u uzdužnoj osi / synchronous reactance in the longitudinal	estimate anal. proračunom / by anal.
	$X_{d} = 1,277$	1,277	axis sinkrona reaktancija u poprečnoj osi / svnchronous reactance in the transverse	estimate anal. proračunom / by anal.
	$A_{q} = 0,789$	0,789	axis	estimate iz dokumentacije / from
	$k_{c} = 0.894$	0,894	kratkospojni omjer / snort-circuit ratio (t_m / t_n)	documentation anal, proračunom / by anal,
	$k_{c} = 0,903$	0,903	kratkospojni omjer / short-circuit ratio (I_m/I_{tk})	estimate miereniem ZESA / by ZESA
	k _c = 0,95	0,95	kratkospojni omjer / short-circuit ratio (I_m/I_k)	measurement
	P _ 0.569T: P _ 0.404T		CEONI PROSTOR / END REGION	mieroniem 7ESA / by 7ESA
	$B_{\text{Amax}} = 0,5081, B_{\text{A1}} = 0,4941$ za OP sn23		$B_{\rm A}$ – uzuzita komponenta induccije u centar prostoru / rongitudina induction component in the end region	measurement
	$\kappa_{\rm A} = 0.89$ Za točku / for point D1	0,89	$k_{\rm A}$ – parameter utjecaja uzbudnog protjecanja na / parameter of excitation hux impact on $B_{\rm A}/k_{\rm A}$	measurement + calculation
	$\sigma = 0.19$ Za tocku / for point D1	0,19	$s = 1 - \kappa_A$, parameter utgecaja protjecanja namota armature na / parameter or armature coil flux impact on B_A	measurement + calculation
SG / SG	<i>k</i> ₂		k_2 – pomocna varijabla pri određivanju parametara σ i k_A / k_2 – auxiliary variable in defining parameters σ and k_A	calculation, acc. to (5)
	R _T = 5,24		radijus kružnice dopuštenog zagrijavanja čela paketa statora / circle radius of permissible heating of the stator package end region	mjerenjem ZESA+račun / by ZESA measurement + calculation
	$k_{\rm topl} = 6,52$		koeficijent zagrijavanja / heating coefficient	računom / by calculation
	q ₀ = 3,43		pomak središta kružnice po osi Q u KPK / circle center shift along the Q-axis in APQ	računom / by calculation
			ZAGRIJAVANJE / HEATING	
	Klasa / Class $F \mapsto \theta_{a,dop} = 155 \ ^{\circ}C$		klasa izolacije namota armature / armature coil insulation class	iz propisa / from regulation
	$J_{\rm a.dop}$ = 100 K		dopuštena nadtemperatura namota armature / permissible over-temperature of armature coil, $J_{\text{donst.}}$	iz propisa / from regulation
	J _{a.sn23} = 35 K		nadtemperatura namota armature u kapacitivnom radu u RT sn23 $\vartheta_{a kap} / armature coil over-temperature in capacitive operation at WP sn23 \vartheta$	mjerenjem u RT sn23 / measurement in OP sn23
Stator /	$J_{\rm Fe,dop}$ = 100 K		dopuštena nadtemperatura željeza paketa statora $\vartheta_{dop Re}$, uključivo čeoni prostor / permissible over-temperature of stator package iron, ϑ_{ren} , including the end region	
Otatol	J _{Fe.sn23} = 25,4 K		ostvarena nadtemperatura željeza u jarmu paketa statora, $\vartheta_{\text{Fe},\text{sn23}}$, ϑ_{akap} / realized over-temperature of iron in the stator package voke, ϑ_{res} , ϑ_{res}	mjerenje sondom / probe measurement
	J _{Fe.čp.sn23} = 43,0 K		ostvarena nadtemperatura željeza paketa statora, čeoni prostor, u RT sn23 $\vartheta_{\alpha,kap}/\tau$	mjerenje sondom GTS3 / GTS3 probe measurement
	<i>Θ</i> _{GTS1} = 70,4 °C		temperatura krajnjeg lima na mjestu najbližem rasporu (GTS1) / end sheet- metal stripe temperature at the place closest to the gap (GTS1)	mjerenje sondom GTS1/ GTS1 probe measurement
Rotor /	Class $F \mapsto \theta_{f,dop} = 155 \ ^{\circ}C$		klasa izolacije namota uzbude / excitation coil insulation class	iz propisa / from regulation
Rotor	J _{fdop} =100 K		dopuštena nadtemperatura namota uzbude $\vartheta_{dopuzh.n}$ / permissible over-	iz propisa / from regulation
MAG	NETSKA INDUKCIJA U K	ARAKTER	ISTIČNIM TOČKAMA / MAGNETIC INTRODUCTION AT CHARACT	ERISTIC POINTS
	<i>B₅</i> = 0,9468 T		indukcija u zračnom rasporu u PH / induction in the air gap in PH	anal. proračun / anal. estimate
Zračni	<i>B</i> ₂₀ = 0,9586 Т		indukcija u zračnom rasporu u PH / induction in the air gap in PH	mjereno na mjestu E1 /
raspor	$B_{\rm evo} = 0.0840 {\rm T}$		indukcija u zračnom rasporu u kratkom spoju kod $I_{\rm an}$ / induction in the air gap	mjereno na mjestu E1 /
prostor / Air	<i>B</i> = 0.3875 T		aksijalna indukcija u čeonom prostoru u PH na poziciji D1 / axial induction in	mjereno na mjestu D1 /
gap and end	$B_{\rm rm} = 0.4 \mathrm{T}$		maksimalni iznos aksijalne indukcije u čeonom prostoru u PH / maximum	num. pror. MKE / FEM numer.
Tegion	$B_{\rm c} = 0.05 {\rm T}$		amount of axial induction in the end region in PH maksimalni iznos aksijalne indukcije rasipnog polja armature pri $I_{\rm an}$ / maximum	num. pror. MKE / FEM numer.
	Aomax = 0,000 T		amount of axial induction of the armature stray field at I _{an}	estimate
Padna točka 5 ((P = 11 MW = 14 Myz	r) pokus za	grijavanja lipani 2005 * (working point 5 ($P = 11$ MW $Q = -14$ MV	r) booting tost Juno 2005*
Nauna lucka J ((r = 11 WW, Q = -14 WVa	1), pokus za	grijavarija, liparij 2003. 7 working politi 5 ($r = 11$ www. $g = -14$ www	mjerenjem (vib1) / by
Paket	$v_{sr.max} = -2.98 \text{ mm/s}$		srednja vrijednost maksimanih brzina / mean value of maximum speeds srednja vrijednost efektivnih brzina [dopušteno 4 mm/s **] / mean value of	measurements (vib1) mjerenjem (vib1) / by
statora / Stator	$v_{\text{sref}} = 2,98 \text{ mm/s}$		effective speeds [permitted 4 mm/s **] srednja vrijednost maksimalnih amplituda / mean value of maximum	measurements (vib1) mjerenjem (vib1) / by
package	$a_{\rm srmax} = 0,7$ mm		amplitudes efektivna vrijednost amplituda [dopušteno 50 mm **] / effective value of	measurements (vib1) mjerenjem (vib1) / by
	$a_{\rm sref} = 6,7 \text{mm}$		amplitudes [permitted 50 mm **]	measurements (vib1)
Radna točka 7 (P = 22 MW, $Q = -15$ Mva	r), pokus za	grijavanja, lipanj 2005.*7 working point 7 ($P = 22$ MW, $Q = -15$ Mva	r), rieating test, June 2005*
Paket	$v_{\rm sr.max} = 5,15$ mm/s		srednja vrijednost maksimalnih brzina / mean value of maximum speeds	measurements (vib1)
statora /	$v_{\rm sr.ef} = 3,64$ mm/s		effective speeds [permitted 4 mm/s **]	measurements (vib1)
package	$a_{srmax} = 8,2 \text{ mm}$		amplitudes	measurements (vib1)
	$a_{\rm sref} = 5.8 {\rm mm}$	measurements (vib1)		

			TRANSFORMACIJA / TRANSFORMATION	
	$S_{\rm n}$ = 35 MVA	1	nazivna snaga / rated power	iz dokumentacije / from documentation
Blok-	$U_{\rm n}$ = 115,5/10,5 kV	1,05/1	nazivni napon / rated voltage	iz dokumentacije / from documentation
transformator / Block	<i>I</i> _n = 175/1924,5 A	1/1	nazivna struja / rated current	iz dokumentacije / from documentation
transformer	u _k =9,16 %	0.0916	napon kratkog spoja / short-circuit voltage	iz dokumentacije / from documentation
	Ynd5		spoj / connection	iz dokumentacije / from documentation

ZESA – Fakultet elektrotehnike i računarstva, Zagreb, Zavod za elektrostrojarstvo i automatiku / Faculty of Electrical Engineering and Computing, Zagreb, Department of Electric Machines, Drives and Automation

- odabrane su radne točke 5 i 7, jer parametri vibracija u radnoj točki 5 odgovaraju prosječnim vrijednosti svih radnih točaka, dok su u radnoj točki 7 izmjerene najveće vrijednosti / working points 5 and 7 have been selected, because the vibration parameters in working point 5 correspond to average values of all working points, whereas in working point 7 max. values have been measured
- ** dopuštene vrijednosti parametara vibracija su prema standardu ISO 10 816-5/2000-04-01/ permissible vibration parameter value comply with ISO 10 816-5/2000-04-01 standard

5 TVORBA KPK

Koristeći teorijske podloge [1] i podatke o parametrima i relevantnim fizikalnim veličinama u točki 4.4 moguće je nacrtati KPK. Radi davanja što instruktivnijeg tijeka tvorbe pogonske karte, prikazuje se postupak izrade KPK za konkretni hidroagregat.

Slika 9 prikazuje početak crtanja KPK na način da su u nju ucrtane infrastrukturne veličine:

- *P* i *Q* osi,
- granice maksimalne i minimalne radne snage $P_{\rm max}, P_{\rm min},$
- polukružnica kao toplinska granica zagrijavanja armaturnog namota,
- konstrukcija Pascalove krivulje minimalne i maksimalne uzbudne struje, te
- položaj nominalne radne točke U_{n} , I_{n} , S_{n} , φ_{n} .

Slika 10 proširuje sliku 9 konstrukcijom teorijske i praktične granice stabilnosti uz pomoć pripadnih Pascalovih krivulja.

5.1 Granica maksimalne i minimalne radne snage Maksimalna i minimalna snaga turbine, te djelatna nazivna snaga generatora prema tvorničkim podacima (točka 4.4.) iznose:

- maksimalna snaga turbine $P_{\text{Tmax}} = 32$ MW,
- minimalna snaga turbine $P_{\text{Tmin}} = 0$,
- djelatna snaga generatora $P_n = 31,5$ MW, tj. u per unit sustavu $p_n = 31,5/35 = 0,9$.

Kako je $P_{\rm n} < P_{\rm Tmax}$, maksimalnu snagu pogonskog stroja prema [1] crta se kao pravac $P_{\text{max}} = P_{\text{n}}$ (slika 9).

5 FORMING THE APQ

APQ can be plotted by using theoretical bases of [1] and data on parameters and relevant physical quantities in section 4.4. The process of creating APQ is demonstrated for a concrete hydrogeneratorturbine unit in order to make the demonstration as instructive as possible.

Figure 9 shows the start of plotting APQ by entering in it the infrastructure values:

- P and Q axes,
- limits of maximum and minimum active power $P_{\max}, P_{\min},$
- a semi-circle as a thermal limit of armature coil heating.
- the construction of Pascal's curve of minimum and maximum excitation current, and
- the position of nominal operating points $U_{n'}I_{n'}S_{n'}\varphi_{n'}$.

Figure 10 extends Figure 9 by the construction of a theoretical and practical stability limits by means of appurtenant Pascal's curves.

5.1 Maximum and minimum active power limits

The maximum and minimum power of the turbine and the real rated power of the generator according to manufacturerís data (section 4.4) are as follows:

- maximum turbine power $P_{\text{Tmax}} = 32$ MW,
- minimum turbine power $P_{\text{Tmin}} = 0$, the generatoris real power $P_{\text{n}} = 31,5$ MW, or in the per unit system $p_n = 31,5/35 = 0,9$.

As $P_{\rm n} < P_{\rm Tmax}$, the maximum power of the powergenerating machine according to [1] is plotted as a line $P_{\text{max}} = P_{\text{n}}$ (Figure 9).

Granicu u pogonskoj karti određenu minimalnom snagom pogonske turbine ucrtava se kao pravac $P = P_{\text{Tmin}}$ (slika 9). Za turbinu generatora G3 vrijedi da je $P_{\text{Tmin}} = 0$ MW.

5.2 Granica zbog zagrijavanja namota statora

centrom u ishodištu pogonske karte (slika 9).

Granicu dopuštenog zagrijavanja statorskog paketa treba odrediti sukladno uputama iz [1]. Prema podacima generatora iz točke 4.4 koeficijenti povišenja i sniženja napona iznose:

The limit in the PQ diagram, determined by the minimum power of the driving turbine, is plotted as a line $P = P_{\text{Tmin}}$ (Figure 9). For the turbine of G3 generator it holds that $P_{\text{Tmin}} = 0$ MW.

5.2 Limit due to stator coil heating

The limit of permissible stator package heating ought to be defined as instructed in [1]. According to generator data in section 4.4, the voltage increase/ decrease coefficients are as follows:

)

$$v_x = 0.95$$
,(8) $v_p = 1.05$,(9)Sto daje:which gives: $U_1 = v_s \cdot U_n = 0.95$,(10) $U_3 = v_p \cdot U_n = 1.05$.(11)Iz tih podataka određuje se maksimalna struja
generatora kao:Based on these data, the maximum generator cur-
rent is defined as: $I_{max} = I_1 = \frac{S_n}{U_1} = \frac{1}{0.95} = 1.053$.(12)Prema [1], radijus polukružnice određuje:According to [1], the semi-circle radius defines: $S_2 = I_{max} \cdot U_n = \frac{S_n}{v_s} = 1.053 \cdot S_n = S_{max}$,(13)Sto se crta kao polukružnica polumjera S_{max} swhich is plotted as a semicircle of S_{max} radius having

(Figure 9).

its center in the originating point of the PQ diagram

5.3 Ograničenja zbog maksimalne i minimalne uzbude

Slika 9

prostora)

Figure 9

region)

granica KPK hidroagregata (T+ G3) u HE Vinodol (bez

Postupak određivanja

granica stabilnosti i zagrijavanja čeonog

Determining the

unit (T+ G3) at

limits of the APQ of

hydrogenerator-turbine

Vinodol HPP (without

stability and heating

limits of the end

Granicu dopuštenog zagrijavanja uzbudnog namota kao i ograničenje rada generatora zbog minimalne uzbude treba odrediti sukladno uputi iz [1].

Maksimalnu uzbudnu struju uvjetuje E_{max} iskazan u (18) [1].

Minimalnu uzbudnu struju uvjetuju ograničene mogućnosti uzbudnog sustava, što se iskazuje kroz $E_{\rm min}$ iskazan u (19) [1].

5.3 Limitations due to maximum and minimum excitation

The limit of permissible heating of the excitation coil and the generator operation limitation due to minimum excitation is to be defined as instructed in [1].

Maximum excitation current is determined by E_{max} , expressed in (18) [1].

Minimum excitation current is caused by limited possibilities of the excitation system, expressed through E_{\min} , stated in (19) [1].

In the concrete case, (17) [1] amounts to:

$$E_{\max} = \frac{1,26}{\nu_i} \cdot \left\{ \frac{0,9}{\sin \delta_i} - 0,595 \cdot \nu_i^2 \cdot \cos \delta_i \right\}$$

U određivanju pripadnog kuta opterećenja δ_i se (16) [1] svodi na:

In determining the pertaining load angle δ_i (16) [1] amounts to:

$$tg \delta_i = \frac{0.9}{1,3889 \cdot v_i^2 + 0.436}.$$
 (15)

Tablica 4 prikazuje primjer određivanja $E_{\rm max}$ i $E_{\rm min}$ za promatrani generator. $E_{\rm max}$ se odabire kao najveća od tri izračunate vrijednosti, a $E_{\rm min}$ se uobičajeno uzima kao 10 % te vrijednosti.

Table 4 gives an example of how $E_{\rm max}$ and $E_{\rm min}$ are defined for the observed generator. $E_{\rm max}$ is chosen as the greatest of three computed values, whereas $E_{\rm min}$ is usually taken as 10% of that value.

Za konkretan slučaj se (17) [1] svodi na:

(14)

Table 4 – Res	ults of E_i estimat	te for rated load	pterecenje					
ν _i	<i>U_i</i> (p.u.)	<i>I_i</i> (p.u.)	<i>S_i</i> (p.u.)	tg δ_i	δ_i (°el.)	<i>E_i</i> (p.u.)	E _{max} (p.u.)	E _{min} (p.u.)
0,95	0,95	1,0526	1,0000	0,53271	28,0	1,91		
1,00	1,00	1,0526	1,0526	0,49318	26,3	1,89	1,91	0,19
1,05	1,05	1,0000	1,0500	0,45749	24,6	1,88		

Nakon određivanja E_{\max} i E_{\min} treba odrediti granicu koju uvjetuje dopuštena maksimalna struja uzbude. U tu svrhu se mora konstruirati Pascalova krivulja prema opisu u 4.3 [1]. Da bismo dobili krivulju konstantne uzbude za $E=E_{\max}$, odnosno $I_{\rm f}=I_{\max}$ potrebno je prethodno ucrtati kružnicu za E=0 sa

središtem na apscisi u točki $\begin{pmatrix} -\frac{U^2}{2} \cdot \frac{X_4 + X_4}{X_4 \cdot X_4}, 0 \\ polumjera R = \frac{U^2}{2} \cdot \frac{X_4 - X_4}{X_4 \cdot X_4} \end{cases}$ (slika 9). Daljnji tijek

crtanja Pascalovih krivulja za $E_{\rm max}$ i $E_{\rm min}$ prikazan je na slici 9.

5.4 Ograničenja zbog praktične granice statičke stabilnosti

Za postavljanje praktične granice stabilnosti (PGS) potrebno je konstruirati krivulje konstantne uzbude (počevši npr. s 0,1 E_{max} , a zatim u koracima po 0,1 do 0,6 E_{max}). Tangenta na tjemena ovih krivulja (tj. paralela s osi Q) daje točke teorijske granice stabilnosti (TGS). Povežu li se ove točke glatkom krivuljom, dobiva se TGS, kao što je prikazano na slici 10. Prema uputi iz točke 4.5 [1], spuštanjem svake točke TGS na pojedinoj krivulji konstantne uzbude, tj. spuštanjem od svakog tjemena po pojedinoj krivulji konstantne uzbude za 0,1 S_n , dobivamo nova sjecišta koja predstavljaju točke PGS, kao što je prikazano na slici 10. After defining E_{\max} and E_{\min} it is necessary to define the limit determined by the maximum permissible excitation current. For this purpose, Pascal's curve ought to be constructed as described in 4.3 [1]. In order to obtain the constant excitation curve for $E = E_{\max}$, or $I_f = I_{\max}$ we must first draw a circle for E = 0 with the center on the abscissa in the point

$$\left(-\frac{U^2}{2} \cdot \frac{X_d + X_q}{X_d \cdot X_q}, 0\right) \text{ of radius } R = \frac{U^2}{2} \cdot \frac{X_d - X_q}{X_d \cdot X_q}$$

(Figure 9). Further plotting of Pascal's curves for $E_{\rm max}$ and $E_{\rm min}$ is shown in Figure 9.

5.4 Limitations due to the practical static stability limit

Setting the practical stability limit (PSL) requires the construction of the constant excitation curve (beginning, for example, with 0,1 $E_{\rm max}$, and then in steps by 0,1 to 0,6 $E_{\rm max}$). The tangent to the vertexes of these curves (i.e., the parallel with the *Q*-axis) gives the points of the theoretical stability limit (TSL). TSL is obtained if these points are linked by a smooth curve, as shown in Figure 10. As instructed in section 4.5 [1], lowering each TSL point on a constant excitation curve, i.e., lowering each vertex on a constant excitation curve by 0,1 S_n , will yield new intersections which represent PSL points, as shown in Figure 10.

5.5 Granica dozvoljenog zagrijavanja čeonog prostora Odnos parametara k_A i σ (točka 4.3) ukazuje na minoran utjecaj protjecanja namota armature na magnetske prilike u čeonom prostoru u odnosu na dominaciju utjecaja uzbudnog protjecanja. Ovaj rezultat potvrđuju i numerički 2D proračuni (slike 7a i 7b [1]). Ujedno se može zaključiti da je nepotrebno određivati parametre k_A i σ za ostale točke čeonog dijela paketa statora, jer su rezultati mjerenja indukcije u njima bitno manji u odnosu na točku D1, jer položaj D1 odgovara poziciji oko maksimalnog iznosa B_A .

5.5 Permissible end region heating limit

The relation between parameters k_A and σ (section 4.3) indicates a minor influence of the armature coil flux on the magnetic conditions in the end region relative to the dominant influence of excitation flux. This result is also confirmed by numerical 2D calculations (Figures 7a and 7b [1]). It can also be inferred that it is unnecessary to define parameters k_A and σ for the other points of the stator package end region, because the induction measured there is significantly smaller in relation to point D1, since the position of D1 corresponds to the position around a maximal amount B_A .

Fazorski dijagram za poduzbuđeno stanje, koje odgovara radnoj točki (RT) sn23 iz tablice 1, prikazan je na slici 11, a temeljen je na istovrsnom dijagramu u slici 11 [1].

Nakon određivanja parametara $k_{\rm A}$ i σ moguće je izračunati pomak središta kružnice radijusa $R_{\rm T} = k_{\rm topl} \cdot U^2 \cdot k_{\rm c}$, (39) [1] po osi *x* od ishodišta, što određuje (40) [1] za slučaj RT sn23 iz tablice 1: Phasor diagram for the under-excited state, which corresponds to the operating point (OP) sn23 in Table 1, shown in Figure 11, is based on the diagram of the same type in Figure 11 [1].

After defining parameters $k_{\rm A}$ and σ it is possible to calculate the shift of the center of the circle of radius $R_{\rm T} = k_{\rm topl} \cdot U^2 \cdot k_{\rm c}$, (39) [1] along the *x*-axis from the originating point, which is determined by (40) [1] for a case OP sn23 in Table 1:

$$q_0 = \frac{U^2 \cdot k_A \cdot k_c}{1 - k_A} = \frac{0.848 \cdot 0.81 \cdot 0.95}{1 - 0.81} = 3,43.$$
⁽¹⁶⁾

Slika 12

Određivanje radne točke u fazorskom dijagramu čeonog prostora u kojoj bi se postigla indukcija B_{A1dep} Figure 12 Determining the operating point in the phasor diagram of the end region, where induction B_{A1dep} would be achieved

Da bi se odredio radijus $R_{\rm T}$ potrebno je utvrditi toplinsko ponašanje stroja u onim radnim točkama koje su relevantne za ocjenu zagrijanosti čeonog prostora. U tablici 1 RT sn23 predstavlja reprezentanta najvećeg kapacitivnog opterećenja s obzirom na zagrijanost čeonih limova paketa statora. Nadtemperatura za ovu radnu točku, na mjestu postavljene termo sonde GTS3, iznosi 43 K. Budući da je izmjerena nadtemperatura paketa statora bitno manja od dopuštene, to bi trebalo, barem približno, odrediti povećanje kapacitivnog opterećenja koje bi dalo uzdužnu komponentu indukcije do B_{Adop} . Pretpostavi li se dopuštena nadtemperatura statorskog paketa iznosa 70 K, dakle bitno ispod dopuštene nadtemperature statorskog namota za klasu F, moguće je odrediti položaj radne točke istog faktora djelatne snage (cos φ) kao kod sn23. U tu svrhu može poslužiti slika12, s tim da se povećavanjem I_a ostvari B_{Adon} .

Pripadna točka dopuštenog zagrijavanja prema slici 12 [1] se može pomaknuti u PQ dijagramu za ono opterećenje koje bi izmjerenu nadtemperaturu In order to define radius $R_{\rm T}$ it is necessary to establish the thermal behavior of the machine in those operating points which are relevant for evaluating the amount of heat in the end region. In Table 1 OP sn23 represents the highest capacitive load regarding the temperature of the stator package end region sheetmetal strips. Over-temperature for this operating point, where GTS3 thermal probe is placed, amounts to 43 K. Since the measured over-temperature of the stator package is significantly lower than permissible, it would be required to determine, at least approximately, the capacitive load increase which would provide the longitudinal induction component up to B_{Adop} . Presuming that the permissible stator package over-temperature is 70 K, i.e., significantly below the permissible stator package coil over-temperature for class F, it is possible to determine the position of the operating point of the same $\cos \varphi$ as with sn23. Figure 12 may serve for this purpose, provided that B_{Adop} is achieved by I_{a} increase.

The pertaining point of permissible heating according to Figure 12 [1] can be shifted in the PQ diagram od 43 K povećalo do dopuštene granice zagrijanja. Računa li se povećanje zagrijanja krajnjeg lima proporcionalno s kvadratom promjene uzdužne komponente indukcije, potrebno je najprije ocijeniti povećanje ove komponente uzrokovano povećanjem struje armature, odnosno povećanjem rasipnog polja u čeonom prostoru. U RT sn23 osnovni harmonik B_{A1} iznosi 0,494 T, a na slikama 11 i 12 prikazan je fazorski dijagram odnosa relevantnih veličina vezanih uz B_A i tu radnu točku.

Što se tiče dopuštenog povećanja B_{A} , ono bi smjelo iznositi:

 $\frac{B_{A1dop}}{B_{A1sn23}} = \sqrt{\frac{70}{43}} = 1,28$,

što daje:

 $B_{Aden} = 1,28 \cdot 0,494 = 0,63 \text{ T}.$

Radna točka za B_{A1dop} bila bi (slika12), uz pretpostavku da se krajnji lim zagrijava dominantno od gubitaka uzrokovanih samo uzdužnom komponentom indukcije:

$$I_{aB_{aba}} = 2,5 \cdot I_{ab}$$

Unese li se u pogonsku kartu radna točka koja odgovara I_{aBAdoo} , dobit će se podloga za određivanje granice koju uvjetuje lokalno zagrijavanje čeonih limova paketa statora po uputi iz točke 4.6.3 [1]. Položaj pretpostavljene RT sa strujom 2,5 $\cdot I_{an}$, odnosno pripadajućom snagom $S_{_{\rm BAdop}}$ prikazan je na slici 13. Korištenjem središta kružnice s pomakom q_0 od ishodišta pogonskog dijagrama i $S_{\rm \scriptscriptstyle BAdop}$ kao jedne od točaka te kružnice, lako se nacrta granična krivulja (kružni luk od $S_{\rm BAdop}$ do osi Q_{kan}) koju uvjetuje dopušteno zagrijavanje čeonog prostora uzrokovano lokalnim gubicima od uzdužne komponente magnetske indukcije B_{Adop} . Opisanim postupkom je određen i radijus $R_{\rm T} = 5,24$, što omogućava određivanje koeficijenta ktopl korištenjem (39) [1]:

by the amount of load which would increase the measured over-temperature of 43 K up to the permissible heating limit. If the heating of end sheet-metal strip is taken proportional to the square of the change in the longitudinal induction component, it is necessary to first evaluate the increase in this component caused by the armature current increase, or by the stray field increase in the end region. In the OP sn23 the basic harmonic $B_{\rm A1}$ amounts to 0,494 T, whereas Figures 11 and 12 show a phasor diagram of correlations between relevant values associated with $B_{\rm A}$ and that operating point.

As for the permissible increase in $B_{_{\rm A}},$ it may amount to:

$$\frac{1}{2} = 1,28$$
, (17)

which gives:

(18)

(19)

Provided that the end sheet-metal strip is dominantly heated as a result of losses caused only by the longitudinal induction component, the operating point for B_{Aldon} would be (Figure 12):

If an operating point corresponding to $I_{\rm aBAdop}$ is entered in the PQ diagram, a base will be obtained for defining the limit dependent on local heating of the stator package end region sheet-metal strips, as instructed in section 4.6.3 [1]. The position of the assumed OP with power 2,5 \cdot $I_{\rm an}$, or the pertaining power $S_{\rm BAdop}{}\!\!\!\!\!$, is shown in Figure 13. By using the center of the circle with a shift q_0 from the originating point of the operating diagram and $S_{_{\rm BAdop}}$ as one of the points of that circle, it is easy to draw the limit curve (circular arc from $S_{\rm BAdop}$ to the axis $Q_{\rm kap}$) dependent on the permissible heating of the end region caused by local losses from the longitudinal component of magnetic induction B_{Adop} . Also defined by the described procedure is radius $R_{\rm T} = 5,24$, by which coefficient k_{tool} can be defined by using (39) [1]:

$$k_{\text{topl}} = \frac{R_i}{U^2 \cdot k_c} = \frac{5,24}{0,92^2 \cdot 0,95} = 6,52$$
.

(20)

Provedenim postupcima određene su sve potrebne fizikalne veličine i parametri koji opisuju toplinsko stanje i dopuštene granice zagrijavanja čeonog prostora. U konkretnom slučaju, za koji je proračun proveden (generator G3 u HE Vinodol), očit je pomak granice dopuštenog zagrijavanja, uzrokovanog gubicima od uzdužne komponente magnetske indukcije B_A , izvan zone pogonskog korištenja KPK, što navodi na zaključak o neugroženosti čeonog prostora tog generatora za rad u bilo kojoj radnoj točki pogona, uključujući i rad duboko u kapacitivnom području. By means of the procedures carried out, all the required physical quantities and parameters describing the thermal state and the permissible limits of the end region heating have been defined. In the concrete case, for which the calculation has been made (G3 generator at Vinodol HPP), what is obvious is a shift of the permissible heating limit caused by losses from the longitudinal component of magnetic induction B_A , outside the zone of the operating use of APQ, which suggests that the end region of that generator is not endangered for operation in any operating point, including operation deep inside the capacitive area.

5.6 KPK generatora G3 u HE Vinodol

Nakon određivanja svih ograničenja koja se postavljaju generatoru određenih i poznatih svojstava pri njegovom radu u EES-u, što je za generator G3 u HE Vinodol proračunima i ispitivanjima utvrđeno i u slikama 7 do 12 iskazano i obrazloženo, moguće je iscrtati KPK sa svim ili samo dijelom detalja, prema pogonskim potrebama korisnika pogonske karte. Slika 14 daje prikaz KPK generatora G3 na način da su jasno uočljive sve granice u okviru kojih se dopušta njegova eksploatacija u pogonu. Ukoliko postoji potreba za bilo kojim detaljem, taj se može pronaći u jednoj ili više spomenutih slika, kojima treba dodati još i slike karakteristika praznog hoda i kratkog spoja (slike 2 i 3).

Očito je da je granica dopuštenog zagrijavanja čeonog prostora na temelju zagrijavanja samo zbog aksijalnog polja kod ispitivanog generatora daleko izvan bilo koje moguće pogonske radne točke, što znači da je konstrukcija generatora suvremenog tipa sa zahvatima u čeonom prostoru kojima se smanjuje djelovanje aksijalnog polja, te da su ugrađeni materijali (lim paketa statora) povoljnih svojstava s obzirom na gubitke od

5.6 APQ of G3 generator at Vinodol HPP

After defining all limitations set for a generator of specific and known properties in its network operation, which for the G3 generator at Vinodol HPP has been defined through calculations and tests expressed and explicated in Figures 7 to 12, it is possible to plot APQ with all or only some details, depending on the workshop needs of the user of the PQ diagram. Figure 14 shows the APQ of G3 generator by clearly marking all the limits within which its exploitation in operation is allowed. Should there be a need for any detail, this can be found in one or more mentioned Figures, to which those should be added (Figures 2 and 3) which show the no-load and short-circuit characteristics.

It is obvious that the permissible end region heating limit based on the heating due only to the axial field is with the tested generator far beyond any possible operating point, meaning that the generator design is of an advanced type with interventions in the end region intended to reduce the action of the axial field and that materials (stator package sheetmetal strip) are installed with favorable properties considering the eddy currents formed by the longitudinal component of magnetic induction. The vrtložnih struja što ih stvara uzdužna komponenta magnetske indukcije. Zato je realno smatrati granicu zbog zagrijavanja statorskog namota (kružnica u II. kvadrantu) kao granicu dopuštenog trajnog zagrijavanja i čeonog prostora, jer se radi o statorskim dijelovima paketa i konstruktivnim elementima statora.

Pokazni primjer je došao u fazu Mjerenje 3 po dijagramu toka, slika 1. Na temelju detaljno određene KPK generatora G3 u HE Vinodol, može se izvršiti analiza njegovih fizikalnih (elektromagnetskih, mehaničkih i toplinskih) svojstava sa svrhom optimiranja korištenja u EES-u HEP-a. limit due to the heating of the stator coil (circle in quadrant II) is hence realistic to consider a permissible permanent heating limit of also the end region, because it is a matter of stator parts of the package and the stator's structural elements.

The demonstrative example has reached the Measurement 3 stage according to the flowchart, Figure 1. Based on a precisely defined APQ of G3 generator, an analysis can be made of its physical (electromagnetic, mechanical and thermal) properties with a view to optimizing its use within HEP's power supply system.

Da bi se dobio potpuni uvid u ulogu generatora u EES-u, potrebno je njegovu KPK dopuniti uključivanjem blok-transformatora, što rezultira KPK proizvodne grupe.

5.7 KPK hidroagregata s blok-transformatorom

Pogonska karta hidroagregata s blok-transformatorom (T+G3) i BT određuje se na sličan način kao pogonska karta generatora. Jedinu promjenu u oblikovanju KPK (T+G3) i BT unosi reaktancija blok-transformatora (BT), izražena njegovim naponom kratkog spoja u_k . Za konkretni primjer ukupna reaktancija za G3 i BT u HE Vinodol iznosi (točka 4.4): In order to gain a complete insight into the role of the generator within the network, its APQ should be replenished by the inclusion of the block transformer, which will result in the production unit's APQ.

5.7 APQ of the hydrogenerator-turbine unit with the block transformer

The APQ of the hydrogenerator-turbine unit with the block transformer (T+G3) and BT is plotted according to instructions given for plotting the generator's PQ diagram. The only change in forming the APQ (T+G3) and BT is brought by the reactance of the block transformer (BT), expressed by its short-circuit voltage u_k . In the concrete example, the total reactance for G3 and BT at Vinodol HPP is (section 4.4):

$$X_{duk} = X_{dpen} + X_{BT} = 1,26 + 0,0916 = 1,3516$$
, (21)

$$X_{quk} = X_{qum} + X_{RT} = 0,72 + 0,0916 = 0,8116$$
. (22)

Slika 9 pokazuje određivanje sastavnica KPK za (T+G3). Unesu li se novi parametri X_{duk} i X_{quk} , dobit će se odgovarajuća konstrukcija KPK za (T+G3) i BT, što prikazuje slika 15. S obzirom da je promjena reaktancija relativno malena (X_{duk} se povećao za 7,3 % a X_{quk} za 12,7 %, što se odrazilo na odgovarajući pomak i smanjenje polukružnice E = 0), to se slike 9 i 15 bitno ne razlikuju.

Na sličan način treba preoblikovati sliku 10 u sliku 16. Usporede li se te dvije slike, očito je da se granica statičke stabilnosti PGS pomaknula udesno, što ukazuje na smanjenje područja stabilnog rada u kapacitivnom dijelu pogonske karte.

Da bi KPK za (T+G3) i BT bila cjelovita, potrebno je unijeti ograničenja koja uvjetuje dopušteno povišenje napona statorskog namota, o čemu su u [1] dana obrazloženja i osnovne upute za obradu pogonske karte.

Udaljenost središta kružnice, kojom se u KPK za (T+G3) i BT ucrtavaju naponska ograničenja zbog minimalno i maksimalno dopuštenog napona namota armature, prema slici 14 [1], iznosi $u_m^2/x_{\rm RT}$, što u konkretnom primjeru iznosi:

Figure 9 shows how APQ components for (T+G3) are defined. If new parameters X_{duk} and X_{quk} are entered, an appropriate APQ structure for (T+G3) and BT will be obtained, as shown in Figure 15. As the reactance change is relatively small (X_{duk} has risen by 7,3 % and X_{quk} by 12,7 %, which is reflected on a corresponding shift and decrease in semi-circle E = 0), Figures 9 and 15 will not greatly differ.

Figure 10 should be similarly transformed into Figure 16. A comparison between these two figures clearly shows that the static stability limit has shifted to the right, which indicates a reduction in the stable operation area in the capacitive part of the PQ diagram.

In order to make APQ for (T+G3) and BT comprehensive, it will be necessary to enter limitations resulting from the permissible stator coil voltage increase, about which explications and basic instructions for the creation of the PQ diagram are given in [1].

The distance of the center of the circle, with which voltage limitations are entered in the APQ of (T+G3) and BT due to minimum and maximum permissible armature coil voltage, is according to Figure 14 [1] $u_m^2/x_{\rm BT}$, which in the concrete example amounts to:

$$\frac{u_{\rm m}^2}{x_{\rm BT}} = \frac{1^2}{0,0916} = 10,92 \,,$$

gdje je:

um – napon mreže (pu),

 x_{BT} – kratkospojna reaktancija blok-transformatora (pu).

Budući da su ispunjeni uvjeti za primjenu (45) i (46) [1], može se za duljinu radijusa (slika 14 [1]) pisati: where:

 $u_{\rm m}$ – network voltage (pu),

x_{BT} – short-circuit reactance of the block transformer (pu).

Since requirements have been meet for the application of (45) and (46) [1], for the length of the radius (Figure 14 [1]) it can be written:

$$\frac{u_{\text{gmmax}} \cdot u_m}{x_{\text{BT}}} = \frac{1,0977 \cdot 1}{0,0916} = 11,98,$$

$$\frac{u_{\text{gmmix}} \cdot u_m}{x_{\text{BT}}} = \frac{0,993 \cdot 1}{0,0916} = 10,84.$$
(25)

U slici 17 prikazana su ograničenja s obzirom na dopušteni minimalni i maksimalni napon armaturnog namota. Granica dopuštenog maksimalnog napona se nalazi izvan zone ostalih ograničenja, dok se granica dopuštenog minimalnog napona nalazi Figure 17 shows limitations due to the minimum and maximum permissible armature coil voltage. The maximum permissible voltage limit lies beyond the zone of other limitations, whereas the minimum permissible voltage limit lies in the APQ's ca-

(23)

u kapacitivnom kvadrantu KPK, što znači da je kapacitivni pogon pri ovom naponu ograničen do linije označene kao granica zbog dopuštenog minimalnog napona namota armature. Međutim, generator, u pravilu, nikada ne radi kapacitivno opterećen, ako je napon mreže snižen, odnosno, generator nikada ne radi izrazito induktivno opterećen, ako je napon mreže povišen.

Na kraju pokaznog primjera se daje slika 18, koja predstavlja integralni prikaz svih ograničenja u KPK hidroagregata (T+G3) i BT, osim ograničenja zbog zagrijavanja čeonog prostora, jer je ono, u ovom slučaju (slika 14), potpuno izvan aktivnog dijela KPK. pacitive quadrant, which means that the capacitive operation at this voltage is limited up to the line marked as a limit due to the minimum permissible armature coil voltage. However, the generator, as a rule, never operates under a capacitive load if the network voltage is decreased, or, the generator never operates under a markedly inductive load if the network voltage is increased.

At the end of the demonstrative example Figure 18 is given, which represents an integrated account of all limitations in the APQ of hydrogenerator-turbine unit (T+G3) and BT except for the limitations due to the end region heating, because in this case (Figure 14) that is entirely outside the active part of APQ.

Slika 15

Postupak određivanja granica KPK hidroagregata (T+G3) i BT u HE Vinodol (bez granica stabilnosti i zagrijavanja čeonog prostora) Figure 15 Defining the limits of the APQ of hydrogenerator-turbine unit (T+G3) and BT at Vinodol HPP (without stability and heating limits in the end region)

Slika 16

KPK hidroagregata (T+G3) i BT u HE Vinodol, (postavljanje granica stabilnosti TGS i PGS) Figure 16 APQ of the hydrogenerator-turbine unit (T+G3) and BT at Vinodol HPP, (setting TSL and PSL stability limits)

Slika 17

KPK hidroagregata (T+G3) i BT u HE Vinodol (postavljanje granica zbog dopuštenog minimalnog i maksimalnog napona namota armature) Figure 17 APQ of hydrogenerator-

turbine unit (T+G3) and BT at Vinodol HPP (setting the limits due to minimum and maximum permissible armature coil voltage)

Slika 18

KPK hidroagregata (T+ G3) i BT u HE Vinodol s ucrtanim svim granicama dopuštenog rada, osim granice koju uvjetuje dopušteno zagrijavanje čeonog prostora generatora Figure 18

APQ of hydrogeneratorturbine unit (T+ G3) and BT at Vinodol HPP with all entered operating tolerances, except for the limit dependent on the permissible heating of the generator's end region

5.8 Kontrola vibracija

Nakon prikaza položaja pojedinih ograničenja u pogonskoj karti, potrebno je, ne unoseći podatke i ograničenja u KPK, provjeriti mehaničko stanje generatora s obzirom na veličinu i karakter vibracija, posebno u čeonom prostoru hidrogeneratora. Iskustvo je pokazalo da na krajevima paketa ponekad, nakon dužeg vremena eksploatacije, dolazi do oštećenja i lomova zuba. Pojava se pripisuje posljedicama prekomjernog zagrijavanja paketa i periodičkim silama u aksijalnom smjeru. Uslijed prekomjernog zagrijavanja iznad dopuštenih vrijednosti za klasu izolacije dolazi do omekšanja izolacije među zubima, a uslijed aksijalnih sila i do istiskivanja omekšane izolacije između limova. Na taj način oslobađa se prostor među zubima, što omogućava pojavu prisilnih vibracija krajnjih razdvojenih zuba paketa. Posljedica je visokociklički zamor (high cyclic fatigue) materijala, koji nakon dužeg vremena može izazvati lomove zubi. S obzirom na prekratko rapoloživo vrijeme za ispitivanje

5.8 Vibration control

After showing the position of particular limitations in the PQ diagram, it is necessary, without entering data and limitations in the APQ, to check the generator's mechanical state relative to the amount and nature of vibrations, especially those in the hydrogenerator's end region. Experience has shown that at the package ends sometimes, after a longer period of exploitation, damage and teeth fractures occur. This is attributed to the effects of overheating of the package and to periodic forces in axial direction. Due to excessive heating above permissible values for the respective insulation class, insulation between the teeth is softened, whereas due to axial forces the softened insulation is extruded between the sheet-metal strips. That is how space between the teeth is freed, which gives rise to forced vibrations of the detached extreme package teeth. The result is high cyclic fatigue, which after a longer period of time may lead to teeth fracture. In view of the short available time for testing the cyclic fatigue of the teeth, it was

zamora zuba, odlučeno je da se na dva mjesta mjere aksijalne vibracije na tlačnim prstima, kako bi se ocijenila opasnost od pojave zamora. Rezultati mjerenja su pokazali da je ta vjerojatnost relativno velika u slučaju pojave pregrijanja paketa u čeonom prostoru.

Aksijalne vibracije mjerene su na dva mjesta (slika 5) na tlačnim prstima na koje se direktno prenose vibracije zuba statorskog paketa. Vibracije su mjerene pri ispitivanju zagrijavanja statorskog paketa u deset pogonskih ciklusa (deset točaka, gdje svakom pogonskom ciklusu odgovara jedna točka), a svaki pogonski ciklus definiran je s djelatnom snagom i jalovom snagom u poduzbuđenom i naduzbuđenom stanju. Za pokazni primjer izabrana su dva pogonska ciklusa (točka 4.4, vibracije): radna točka 5 (tablica 3). kod koje parametri vibracija imaju prosječne vrijednosti i radna točka 7 (tablica 3). kod koje su parametri vibracija najintenzivniji (slika 19). Na osnovi provedenih mjerenja može se zaključiti da nisu dostignute veličine parametara vibracija, koje bi mogle ograničiti rad po aktualnoj KPK.

Prosječne temperature čeonog prostora nisu bile dovoljno visoke da bi izazvale mehanizme proklizavanja među limovima zubi paketa i dovele do mogućnosti oštećenja zubi. To je moguće očekivati na mjestima eventualnih lokalnih pregrijanja (topla mjesta). Kada efektivne brzine aksijalnih vibracija tlačnih prsti prijeđu 6 mm/s, za očekivati je moguća oštećenja zubi uz temperature veće od 100 °C. To je na temelju ovih mjerenja pokazatelj za ograničenje djelatne snage generatora i ograničenja u pogonskoj karti (slika 20). decided to measure axial vibrations on the pressure fingers on two places, in order to evaluate the fatigue risk. The measurement results have shown that such probability is relatively high in the case of package overheating in the end region.

Axial vibrations have been measured at two places (Figure 5) on pressure fingers to which the vibrations of the stator package tooth are directly transmitted. Vibrations were measured while testing the stator package heating in ten operating cycles (ten points where one point matches each operating cycle), and each operating cycle was defined by active and inductive power in under-excited and over-excited states. For the demonstrative example two operating cycles were selected (section 4.4, vibrations): operating point 5 (Table 3), where the vibration parameters have average values, and operating point 7 (Table 3), where the vibration parameters are the most intense (Figure 19). Based on performed measurements, it can be concluded that vibration parameter values have not been attained which may impose operating limitations under the existing APQ.

Average temperatures of the end region were not high enough to trigger the slip mechanisms between the package teeth sheet-metal strips and thus pose a risk of teeth damage. It can be expected at places of possible local overheating (hot spots). When the effective speeds of axial vibrations exceed 6 mm/s, possible teeth damage can be expected at temperatures higher than 100 °C. Based on these measurements, this is an indicator for a limitation of the generator's active power and for limitations in the PQ diagram (Figure 20).

Vrijednosti maksimalnih i efektivnih brzina u ovisnosti o radnim točkama Figure 19 The values of maximum and effective speeds in dependence on the operating point

Slika 19

Slika 20

Vrijednosti efektivnih brzina u ovisnosti o radnim točkama unutar granica prihvatljivosti prema ISO 10 816-5/ 2000-04-01 Figure 20 The values of effective

speeds in dependence on the operating points within acceptability limits according to ISO 10816-5/2000-04-01

Na slici 20, kod $v_{\rm ef} = 4$ mm/s (zeleni pravac) gornja je granica prihvatljivosti, a kod svih efektivnih brzina koje su veće postoji opasnost oštećenja zbog vibracija. Crvenom crtom ograničeno je područje mirnog rada strojeva kroz dugi period, a $v_{\rm ef} = 1,6$ mm/s. U području: 1,6 mm/s < $v_{\rm ef} < 4$ mm/s moguća su oštećenja zubi uz pregrijanje na granici klase izolacije paketa. In Figure 20, the upper acceptability limit stands at $v_{\rm ef} = 4$ mm/s (green line), whereas at all effective speeds higher than that there is a risk of damage due to vibrations. The red line marks the boundary of a neutral operation of the machines, where $v_{\rm ef} = 1.6$ mm/s. Within the range 1.6 mm/s < $v_{\rm ef} < 4$ mm/s there is a possibility of teeth damage combined with overheating at the limit of the package insulation class.

6 ZAKLJUČNA RAZMATRANJA

U članku [1] date su teorijske podloge za tvorbu klasične pogonske karte sinkronog generatora (SG), temeljene na iskazanoj literaturi. Budući da klasična pogonska karta ne uključuje ograničenja koja mogu nastupiti uslijed djelovanja uzdužnog izmjeničnog magnetiziranja čeonog prostora, to se prešlo na razradu elektromagnetskih i toplinskih zbivanja u čeonom prostoru s ciljem davanja konkretnih podloga i metodologije primjene ovih podloga u tvorbi KPK koja obuhvaća i moguća ograničenja uzrokovana zbivanjima u čeonim dijelovima stroja.

Bitan doprinos u nadgradnji klasične verzije pogonske karte ugrađen je, kako u članku [1], tako i u ovom članku, originalnom obradom elektromagnetskih zbivanja u čeonom prostoru. Osim fizikalnog prikaza raspodjele uzdužne komponente magnetske indukcije po čeonoj plohi paketa statora, dobivenog uz pomoć numeričkog proračuna MKE, razrađeni su i utjecaji uzbuda što ih stvaraju protjecanja uzbudnog i statorskog namota. Provedbom mjerenja uzdužne komponente magnetske indukcije u čeonom prostoru, potvrđeni su razultati istraživanja dobiveni numeričkim proračunima.

6 CONCLUDING NOTES

The article [1] provides a theoretical background for plotting the classical PQ diagram of the synchronous generator (SG), based on presented literature. As the classical PQ diagram does not include limitations that may appear due to the action of longitudinal alternate magnetization of the end region, it was decided to elaborate the electromagnetic and thermal developments in the end region with a view to proviing concrete premises and a methodology of applying these premises in forming APQ which also comprises possible limitations caused by developments in the machine's end parts.

A major contribution to the upgrade of the classical PQ diagram is incorporated into both the article [1] and this article, by an original approach to the electromagnetic occurrences in the end region. Apart from a physical presentation of the distribution of the longitudinal magnetic induction component along the end stator package surface, obtained by means of the FEM numerical calculation, also treated is the influences of the excitation and stator coil flux. Measurements of the longitudinal magnetic induction component in the end region have confirmed the research results obtained by numerical calculations.

Provedeni postupci za tvorbu KPK generatora G3 u HE Vinodol, uključujući ne samo turbinu, nego i blok-transformator, obavljeni su, u prvom redu, radi davanja konkretnih uputa uz pomoć kojih je moguća provedba teorijskih podloga metodologije postavljanja KPK za konkretnu proizvodnu jedinicu. Radi veće jasnoće u provedbi postupaka određivanja parametara i fizikalnih veličina, kao i postupaka crtanja KPK, nije se uvijek ulazilo u moguće varijante, koje bi mogle dati detaljniju sliku KPK u kapacitivnom ili induktivnom području rada, i/ili detaljnije podatke za neku radnu točku od posebnog interesa za konkretni pogon. Tako npr. pri crtanju induktivnog dijela KPK nije se mijenjao parametar nezasićene sinkrone reaktancije (koji gotovo u potpunosti zadovoljava crtnju u kapacitivnom području rada) u zasićenu sinkronu reaktanciju, što bi više odgovaralo stvarnim zbivanjima u ovom dijelu KPK, premda je iz teorije poznato da je, zbog uzimanja u obzir zasićenja, korekcija ograničenja po maksimalnoj uzbudi u 1. kvadrantu (naduzbuda) mnogo manja nego korekcija ograničenja zbog granice stabilnosti u 2. kvadrantu (poduzbuda).

Kako bi se, ipak, prikaz KPK ostvario u što detaljnijem obliku, treba prikazanu metodologiju, uzimajući u obzir svaki mogući i korisni detalj, pripremiti i ostvariti uz pomoć računalnih programa kao Automatski Program POgonske KArte (APPOKA).

Bitan doprinos kvaliteti KPK je ostvaren kroz davanje konkretnih uputa, kako za pripremu, tako i za postavljanje odgovarajućih magnetskih, toplinskih i mehaničkih davača. Provedbom mjerenja ključnih fizikalnih veličina u praznom hodu i kratkom spoju, kao i u pogonskim prilikama, dobivaju se potpuno pouzdane podloge za tvorbu KPK šireg spektra u odnosu na klasičnu pogonsku kartu SG.

U pokaznom primjeru je posebna pažnja posvećena obradi toplinskih i elektromagnetskih prilika u čeonom prostoru stroja, što predstavlja potpuni novum u tvorbi pogonske karte SG. S obzirom da se u normalnim pogonskim uvjetima u kapacitivnom radu nije postigla kritična zagrijanost čeonih dijelova statorskog paketa, postavljena je, i razvijena grafičko-analitička metoda za utvrđivanje graničnog iznosa uzdužne komponente magnetske indukcije. Ova originalna metoda je primjenjiva za bilo koju vrstu SG u slučajevima u kojima u normalnom pogonu nije moguće mjerenjem odrediti granična stanja indukcije i zagrijavanja čeonih dijelova paketa statora.

Na temelju provedenih mjerenja uzdužne komponente magnetske indukcije i pripadne zagrijanosti

The procedures for plotting the APQ of G3 generator at Vinodol HPP, including not only the turbine but also the block transformer, have been conducted first of all with a view to providing concrete instructions, by means of which it is possible to apply the theoretical premises of the APQ formation methodology for a concrete production unit. For the sake of clarity, in applying the procedures of determining the parameters and physical quantities, as well as the procedures of APQ plotting, reference was not always made to alternative versions which may provide a more detailed APQ picture in the capacitive or inductive operation mode, and/or more detailed data for a working point of special interest to a concrete facility. Thus, for example, in plotting the inductive part of APQ the parameter of unsaturated synchronous reactance (which almost wholly meets the plotting requirements in the capacitive mode) was not changing into a saturated synchronous reactance, which would be more in line with the actual developments in this part of APQ, although, theoretically, due to making allowance for saturation, the correction of limitation upon maximal excitation in the first quadrant (over-excitation) is much smaller than the correction of limitation due to the stability limit in the second quadrant (under-excitation).

Nevertheless, in order to ensure APQ display in maximum detail, the presented methodology should be, by taking into account every possible and useful detail, prepared and implemented by means of computer programs as an automatic PQ diagram program (APPOKA).

A major contribution to the quality of APQ is made through concrete instructions given for both the preparations and the placing of appropriate magnetic, thermal and mechanical sensors. By measuring crucial physical quantities in no-load and shortcircuit mode, as well as under operating conditions, completely reliable basic data are obtained for plotting APQ of a broader spectrum compared with the classical PQ diagram of the SG.

In the demonstrative example, special attention is paid to dealing with thermal and electromagnetic conditions in the machine's end region, which is a complete novelty in SG APQ formation. Since under normal operating conditions in the capacitive operation the critical heating of the stator package end parts has not been reached, a graphic-analytical method has been laid down and developed to determine the limit value of the longitudinal magnetic induction component. This original method is applicable to any type of SG where in normal operation it is not possible to determine by measurement the limit states of induction and heating of the stator package end parts. aktivnih dijelova stroja u čeonom prostoru može se zaključiti da su konstrukcija i upotrijebljeni materijali u zoni čeonog prostora za generator G3 u HE Vinodol dobro odabrani. Izmjereni iznosi indukcije i pripadne nadtemperature aktivnih dijelova statora u kapacitivnom radu su daleko izvan teorijske i praktične granice stabilnosti za ovu vrstu konstrukcije hidrogeneratora.

Kao važan zaključak treba istaknuti izvanredno dobro podudaranje numeričkim proračunom i mjerenjem dobivene raspodjele uzdužne komponente magnetske indukcije u čeonom prostoru, što daje veću vjerodostojnost rezultatima numeričkih proračuna.

Pri kraju pokaznog primjera dana je ocjena mehaničkih vibracija statorskog paketa, posebno krajnjih limova, kao kontrolna točka provjere moguće zabrane ili postavljanja ograničenja rada po KPK za slučaj da vibracije prelaze dopuštenu granicu.

Za korisnike u pogonu i/ili vođenju EES-a bila bi još povoljnija varijanta u kojoj bi se provela vizualizacija KPK uz *on-line* prikaz trenutačnog položaja radne točke. Ovakvim pristupom bi se ostvarilo korištenje KPK u realnom vremenu, što zahtijeva analogno-digitalnu obradu ključnih fizikalnih veličina i parametara uzetih iz živog pogona. Time bi se na ekranu, pred očima korisnika, mijenjala slika ne samo položaja radne točke nego i prikaz granica KPK u ovisnosti o aktualnim naponskim prilikama. Provedena metodologija tvorbe KPK predstavlja idealnu podlogu za ostvarenje projekta vizualizacije KPK u realnom vremenu. Based on the performed measurements of the longitudinal magnetic induction component and the pertaining heating of the active parts of the machine in the end region, it can be concluded that the design and used materials in the end region zone for G3 generator at Vinodol HPP have been well chosen. The measured values of induction and pertaining over-temperature of the active parts of stator in capacive operation are far outside the theoretical and practical stability limit for this type of hydrogenerator design.

An important conclusion worth noting is an exceptionally good congruence of the distribution of the longitudinal magnetic induction component in the end region obtained by numerical calculation and measurement, which makes the results of numerical calculations more credible.

At the end of the demonstrative example an evaluation has been given of the mechanical stator package vibrations, especially of end sheet-metal strips, as a control point to check possible prohibitions or set limitations on APQ-guided operation, should vibrations exceed the permissible limit.

For users in field operation and/or network management, an even more favorable option would be to provide APQ visualization with on-line display of the instantaneous position of the operating point. With such an approach a real-time use of APQ would be made possible, which requires analog/ digital processing of key physical quantities and parameters taken from live operation. In that case, on the screen, before the very eyes of the user, the picture would be changing not only of the position of the operating point, but also of the APQ limits in dependence on the actual voltage conditions. The implemented APQ formation methodology makes a perfect basis for the realization of the APQ visualization project in real time.

LITERATURA / REFERENCES

[1] ILIĆ, I., et al., Metodologija određivanja korisničke pogonske karte hidroagregata, Energija, god. 56(2007), br. 2. / ILIĆ, I., et al., Methology for Determining the Actual PQ Diagram of a Hydrogenerator, Energija, vol. 56(2007), No. 2

Uredništvo primilo rukopis: 2007-06-25

Prihvaćeno: 2007-07-11 Manuscript received on: 2007-06-25

Accepted on: 2007-07-11