
CROATICA CHEMICA ACTA CCACAA 69 (3) 837-843 (1996)

ISSN-OOll-1643
CCA-2345 Original Scientific Paper

Computing the Szeged Index

Janez Žerovnik

Institute of Mathematics, Physics and Mechanics, Department of Theoretical
Computer Science, Jadranska 19, Ljubljana, Slouenia

and

Faculty of Mechanical Engineering, Uniuersity of Maribor, Smetanoua 17,
Maribor, Slouenia

Received February 22, 1996; revised March 25, 1996; accepted April 9, 1996

We give an explicit algorithm for computing the Szeged index of a
graph which runs in O(mn) time, where n is the number of nodes
and m is the number of edges.

INTRODUCTION

Chemists employ structural formulae in communicating information
about molecules and their structure. Structural or molecular graphs are
mathematical objects representing structural formulae. These objects encode
impotant properties of the chemical structures.

A topological index is a numerical quantity derived in an unambiguous
manner from the structural graph of a molecule. These indices are graph
invariants, which usually reflect molecular size and shape! (for further ex-
amples of topological indexes see, for example, Refs. 2,3).

The Szeged index Sz is a recently proposed structural descriptor, based
on the distances of vertices in a molecular graph." As one can expect.f it is
not unlike the Wiener index, the first" and still the most studied topological
index.7-13 For the reasons for introducing the Szeged index and for basic
properties of Sz, see Ref. 4,5. Ref. 14 compares the Szeged index with the
Wiener index. Since the two indices coincide on trees, there is a linear al-
gorithm for computing the Szeged index of trees.l" Recently, an algorithm
was given for computing the Szeged index for benzenoid hydrocarbons.l"



838 J. ŽEROVNIK

In this note, we give an explicit algorithm for computing the Szeged in-
dex of an arbitrary graph. The algorithm has a running time Oirnn), where
n is the number of vertices and m is the number of edges of a graph. Space
complexity of the algorithm is Otmn). This is the same complexity as the
complexity of the best known algorithm for computing the Winer index of
arbitrary graphs-š and hence we believe it is likely to be the best possible.

GRAPHS

We use the usual graph theoretical terminology (as, for instance, in Ref.
17). A graph G = (V,E) is a combinatorial object consisting of an arbitrary
set V = V(G) of vertices and a set E = E(G) of unordered paris {x,y} = xy of
distinct vertices of G, called edges. A simple path from X to y is a sequence
of distinct vertices P = X()J Xv ... , XI such that each pair Xi' Xi+l is connected
by an edge and Xo = X and XI = y. The length of the path is the number of
edges l(P) = l. For any pair of vertices x, y, we define the distance d(x,y) to
be the length of the shortest path between X and y. If there is no (finite)
path, we define d(x,y) = 00. We will also write d(u,v) = d,,(v) = dJu). A graph
G is connected ir d(x,y) < 00 for any pair of vertices x, y. Here we will consider
only connected graphs.

BREADTH FIRST SEARCH ALGORITHM

Breadth first search algorithm (shortly BFS) is a well known method for
searching a graph (see, for example, Refs. 15, 18). We now recall briefly the
idea of the algorithm. Starting with a given vertex v, a partial tree W of G
is constructed. Whenever the current vertex has new neighbours, we add the
neighbours to the tree W and put them in a so called FIFO (first in first
out) queue. It can be shown that the order of visiting vertices has the prop-
erty that the vertices of smaller distance from the starting vertex v appear
before vertices which are more distant from v.

BFS algorithm scheme can be writtten as follows:

let queue = (u) and mark y as old
while queue is not empty do begin

x := frontiqueue)
if x is adjacent to new vertex y

then add y at the tail of the queue and mark y as old
else remove x from the queue

endif
endwhile



COMPUTING THE SZEGED INDEX 839

We get the distance s from the starting vertex v if we put d(v) = O in-
itially, and for every new vertexy (adjacent to X), we put d(y) = d(x) + 1 when
adding y to the tail of the queue.

ALGORITHM FOR THE SZEGED INDEX

Before giving the algorithm let us recall the definition of the Szeged index.

Sz(G) = I n1(eIG) n2(eIG)
eEE(G)

where the sum runs over all edges of G and the numbers nl(eIG) and
n2(eIG) are cardinalities of the sets N l(eIG) and N 2(eIG). N l(eIG) is the set
of vertices of G which are closer to u than to v, where u and v are the end-
points of e. More formally, i E N l(eIG) if d(i,u) < d(i,v), i.e. if du(i) - du(i) <
o. Similarly, i E N 2(eIG)if du(i) - du(i) > O. The contribution of edge e to the
Szeged index is thus a product of the number of positive entries times the
number of negative entries of the vector du(i) - du(i).

1. for all u E V compute du(i) using BFS
2. Sz := O

for all e = uu E E do
nl := O n2 := O
for all i E V do

if du(i) - du(i) < O then nl := nl + 1
else if du(i) - du(i) > O then n2 := nz + 1
endif

endfor
Sz := Sz + nl * n2

endfor

Time complexity of the algorithm is Oimn), where n is the number of ver-
tices and m is the number of edges. At step 1, we have a call of BFS for every
vertex as a starting vertex, hence Otnm). At step 2, the outer for loop goes over
all edges, and the inner loop goes over all vertices, again Otmn). Note that this
is the same as the time complexity of computing the Wiener index.l''

Note that the algorithm is highly parallel. There are many possible mod-
els of parallel computation. For this short discussion, we choose a simple
model, where a polynomial number of processors is assumed available.l'' An
algorithm in this model is considered to be efficient if its time complexity
is a polynomial function of the logarithm of the size of the input. Szeged in-
dex can be computed in parallel time O(log2 n) as follows:



840 J. ŽEROVNIK

1. compute the distance s dv(i) for all u and all i
2. for all edges e = uu do in parallel

for all i do in paralleI diffeCi) := du(i) - dv(i) endfor
nl,e := the number of positive entries of vector diffe
n2,e := the number of negative entries of vector diffe
Sz := sum all nl,e " n2,e

endfor

By a method avoiding BFS, the distance matrix can be computed in
O(log2n) time using O(n3/log n) processors, for details we refer to Refs. 19, 20.
Step 2 is even more easy to parallelize, since computatian for each edge is
independent. Furthermore, the inner loop can be seen as first computing a
difference of two vectors, which is an independent task for each vector entry,
and then counting the number of positive and negative signs in the resulting
vector, which can be completed in O(log n) time. Summing up the contribu-
tions due to different edges gives another factor of O(log m) = O(log n). The
overall time complexity of step 2 is therefore O(log2n) on Oimn) processors.

While the above considerations are rather theoretical, it should be noted
that the algorithm uses operations on vectors and hence admits high speed-
ups also on vector parallel processors, which may be of more practical im-
portance on the currently available parallel computer equipment.

EXAMPLES

The implementation of the algorithm given below was tested on graphs
for which formulas are known. The test examples included some polyacenes,
L,p h = 1, 2, ..., 24 and coronere/circumcoronere graphs Hn- In both cases,
the results were consistent with the formula s of Gutman and Klavžar.l"

We conclude with the listing of a Pascal program in which only the pro-
cedure get graph, which should provide an input graph as adjacency list, is
omitted.

program SZEGED(input,output);
(*
This program calculates the Szeged index of a graph. Graph is given by
adjacency Iists of its vertices.
*)

const size = 100; max..degree = 10;
type vector = array [1..max degree] of integer;

vector_oCvectors = array[1..size] of vector;
var Degree: vector; eVERTEX DEGREES'~)



COMPUTING THE SZEGED INDEX 841

AdjIist: vector_oCvectors; (*ADJACENCY LISTS OF THE GRAPR~)
Distance: array[1..size] of vector; (*DISTANCES*)
n: integer; (*NUMBER OF VERTICES*)
Sz: longint;
u, v, i, j, dif : integer;
nI, n2 : integer;
Visited: array[1..size] of boolean;

(* Data structure FIFa queue *)
queue: vector;
First,Last: integer;

procedure reset_queue;
begin First.e l.; Last.eu; end;

procedure append_queue(x: integer);
begin queue[Last +1] := x; Last := Last + 1; end;

procedure get_queue(var x: integer);
begin x:= queue[First]; First := First + 1; end;

function empty _queue:boolean;
begin if First>Last the n empty_queue:= true else emptyjqueue:« false end;

(* Breadth first search *)
procedure BFS(Start_ vertex:integer);
var i:integer; neighbor: integer;
begin

for i:=1 to n do Visitedji]:» false;
reset_queue;
Distance[Start_vertex][Start_vertex]:= O; Visited[Start_vertex] := true;
for i:=1 to Degree[Start_vertex] do begin

neighbor:« AdUist[Start_ vertex] [i];
append_queue(neighbor); Visited[neighbor] := true;
Distance[Start_vertex][neighbor] := 1;

end;
while (not(empty_queue)) do begin

get_queue(u); Visited]u]:» true;
for i:=1 to Degree[u] do begin

neighbor:« AdjIistjujji];
if not(Visited[neighbor]) then begin

append_queue(neighbor); Visitedjneighbor]:» true;
Distance[Start_ vertex][ neighbor] := Distance[Start_ vertex] [u] + 1;

end;
end;

end;
end('~ BFS *)



842 J. ŽEROVNIK

(* Main *)
begin

get.graph; (*procedure which reads OI' generates a graph*)
for v:=l to n do BFS(v);
Sz := O;
for v.e I to n do for j:=l to Degree[v] do begin

u:= AdjIistjvjjj];
if uc-v then begin

n1:=0; n2:=0;
for i:= to n do begin

diff := Distance[v][i] - Distance [u][i];
if diff<Othe n n1:= n1+1;
if diffc-Othen n2:= n2+1

end;
Sz := Sz + n1 * n2;
end;

end;
writeln( 'Szeged index =', Sz:O);

end.

REFERENCES
1. D. H. Rouvray, Sci. Am. (Sept.1986) 40-47.
2. A. T. Balaban, 1. Motoc, D. Bonchev, and O. Mekenyan, in: Topic in Current Che-

mistry 114 No.21, Springer, Ber1inIHeidelberg 1983, 21-33
3. 1. Fabič-Petrač, B. Jerman-B1ažič, and V Batagelj, J. Math. Chem. 8 (1991)

121-134.
4. 1. Gutman, Graph Theory Notes, New York, 27 (1994) 9-15.
5. P. V Khadikar, N. V Deshpande, P. O. Kale, A. Dobrynin, 1. Gutman, and G. Do-

motor, J. Chem. Inf Comput. Sci. 35 (1995) 547-550.
6. H. Wiener, J. Am. Chem. Soc. 69 (1947) 2636-2638.
7. S. S. Tratch, M. 1. Stankevitch, and N. S. Zefirov, J. Comp. Chem. 11 (1990)

889-908.
8. A. Graovac and T. Pisanski, J. Math. Chem. 8 (1991) 53-62.
9. 1. Lukovits, Int. J. Quantum Chem.: Quantum BioZ. Symp. 19 (1992) 217-223.

10 T. Pisanski and J. Žerovnik, J. Chem. Inf Comput. Sci. 34 (1994) 395-397.
11. 1. Lukovits, Croat. Chem. Acta 68 (1995) 99-103.
12. M. Juvan and B. Mohar, J. Chem. Inf Comput. Sci. 35 (1995) 217-219.
13. S. Nikolić, N. Trinajstić, and Z. Mihalić, Croat. Chem. Acta 68 (1995) 105-129.
14. S. Klavžar, A. Rajapaxi, and 1. Gutman, Appl. Math. Lett. 9 (1996) 45-49.
15. B. Mohar and T. Pisanski, J. Math. Chem. 2 (1988) 267-277.
16. 1. Gutman and S. Klavžar, J. Chem.Inf Comput. Sci. 35 (1995) 1011-1-14.
17. N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL., 1992.
18. N. L. Biggs, Discrete Mathematics, Claredon Press, Oxford, 1989.



COMPUTING THE SZEGED INDEX 843

19. A. Gibbons and W. Rytter, Efficient Parallel Algorithms, Cambridge University
Press, Cambridge, 1988.

20. J. Žerovnik, Lecture Notes in Computer Science 591 (1992) 359-368.

SAŽETAK

Računanje Szeged indeksa
Dan je algoritam kompleksnosti Otmn) za računanje Szeged indeksa proizvol-

jnog grafa gdje n označava broj čvorova a m broj grana grafa.




