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Complexity of some interesting polycyclic graphs is expressed in
terms of the corresponding spanning trees. Graphs considered were
a selection of all connected graphs with four and five vertices,
graphs composed of two parts, or more parts, connected by asingle
edge, the Petersen graph, the Blanuša graph, the Desargues-Levy
graph and the Schlegel graph of buckminsterfullerene.

INTRODUCTION

Complexity of (molecular) structures is a difficult concept to quantify.
Futhermore, the concept of complexity is also difficult to define.! Neverthe-
less, the contemporary chemical literature contains a number of attempts
to define and to quantify molecular complexity/
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"* Author to whom correspondence should be addressed.



884 s. NIKOLIĆ ET AL.

There are two predominant approaches to quantification of molecular
complexity. One is based on the information-theoretic concepts and the other
on the graph-theoretical concepts. A typical information-theoretic approach
to molecular complexity involves the use of the Bertz index G(n):2a

G(n) = 2n log2 n - I ni log2 ni (1)

where n can represent any graph invariant. The choice of the specific invari-
ant is dictated by the problem at hand. Note that n = I ni' The Bertz index
is based on the reasonable assumption that the complexity of a molecular
graph should increase with the size, branching, vertex- and edge-weights, ete.

The graph-theoretical approach to the complexity of graphs is based on
the concept of a spanning tree,3 that is, the complexity of a molecular struc-
ture can be given in terms of the number of the corresponding spanning
trees:" The most complex structure possesses the highest number of span-
ning trees. A spanning tree of a graph G is a connected acyclic subgraph eon-
taining all the vertices of G.5 In the case of trees, the spanning tree is iden-
tical to the tree its elf. Therefore, the number of spanning trees can only be
used as a quantitative measure of complexity for polycyclic graphs.

We have selected to study the complexity of several graphs that appear
to be of interest also in chemistry. Thus, the present report nicely fits into
the MATH/CHEM/COMP 1995, where mathematics, chemistry and com-
puter science meet. This is so because the concept of the spanning tree be-
longs to mathematics, counting of the spanning trees is a non-trivial com-
putational problem, especially for larger graphs, and belongs to computer
science, whilst the comparison between the numbers of spanning trees can
be used in chemistry to classify the corresponding molecular graphs according
to their structural complexity expressed as the number of spanning trees.

COMPUTATION OF SPANNING TREES

There are several methods available for computing the number of span-
ning trees. Here, we will review three closely related methods.

(i) Computation. based on the Laplacian matrix of a graph

The Laplacian matrix L = L(G) of a graph G is defined as the following
matrix.v''

L=V-A (2)



COMPLEXITY OF SOME INTERESTING GRAPHS 885

where V is the degree matrix which is a diagonal matrix whose entries are
the vertex degrees and A is the adjacency matrix of G. The Laplacian matrix
is a real symmetric matrix. The diagonalization of the Laplacian matrix of
G with N vertices produces N real eigenvalues {AiL=l, .. ,N- The set of
Laplacian eigenvalues is usually referred to as the Laplacian spectrum'< and
denoted by Ai(L). The smallest member of the Laplacian spectrum is always
zero. This is a consequence of the special structure of the Laplacian matrix.

The number of spanning trees t(G) of G is given by:"

N

t(G) = (liN) I1Ai(L) .
i=2

(3)

The use of the above procedure for computing the number of spanning trees
is illustrated in Table 1.

TABLE I

Computing the number of spanning trees for graph G

(1) Graph G

(2) The LapJacian matrix ofG

3 -I -1 -1

-1 3 -1 -1

-1 -J 3 -1

-1 -I -1 3

(3) The Laplacian spectrum of G

( 0,4,4,4 )

(4) The number of spanning trees ofG

l(G) = 16
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Figure 1. Spanning trees belonging to G depicted in Table I, which is the complete
graph K4.

All spanning trees belonging to graph G in Table I, which is the complete
graph K4, are depicted in Figure 1.

(ii) Computation based on the characteristic polynomial
of the inner dual of a graph

This is a rather elegant method for computing the number of spanning
trees of G and is based on the work by Gutman et al.' It consists of the fol-
lowing steps:

(1) Construction of the inner dual G' of G.
(2) Computation of the characterictic polynomial of G'.
(3) Substitution of the ring sizes into the characteristic

polynomial of G'.

The above procedure for computing the number of spanning trees for the
same graph G (K4) from Table I is illustrated in Table II.

This procedure is computationally much simpler than the one based on
the Laplacian matrix because the inner dual is always much smaller than
the original graph.
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TABLE II

Computing the number of spanning trees for G based on the inner dual G' of G

G

G'

P(G';Je) =Je3 - 3Je - 2

t(G) = P(G'; Je= 3) = 33 - 3 . 3 - 2 = 16

(iii) Computation. based on the simple relationship between the number of
spanning trees and the coefficient of le of the Laplacian polynomial of G

The relationship between the number of spanning trees and the absolute
value of the coefficient of Je of the Laplacian polynomial of G is given by:"

t(G) = [Coefficient of ,1,1/N . (4)

The origin of this simple formula is related to the fact that the coefficient
at the le term in the Laplacian polynomial must be equal to the product of
all non-zero Laplacian eigenvalues:

N

Coefficient of le = I1 "-i(L) .
i;2

(5)

This result can be straightforwardly proved.f The use of formula (4) is il-
lustrated in Table III.
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TABLE III

Computation of the number of spanning trees using formula (4)

(i) The Laplacian polynomial of G (already depicted in Tables I and II)
P(G;?e) =?e4 - 12?e3 + 48?e2 - 64?e

(ii) The number of spanning trees

t(G) = JCoefficientof ?ej 1 N = 64/4 = 16

Since Laplacian polynomials are known for some fullerenes.? one can
promptly compute the corresponding numbers of spanning trees by means
of formula (4). For example, the coefficient at Il in C24fullerene with D6d

symmetry, which is -2921536800, produces the following value t(G) =
121730700 for the number of spanning trees.

COMPLEXITY OF SELECTED (CHEMICAL) GRAPHS

In Figure 2, we give all the three possible connected cyclic graphs with
four vertices, starting with C4 (which could serve as a graph-theoretical rep-
resentation of cyclobutadiene or cyclobutane) and ending with K4.

D
4 8 16

Figure 2. All connected cyclic graphs with four vertices. Underneath each graph, its
number of spanning trees is given.

The numbers of spanning trees (given below each graph) follow the in-
tuitive feeling about the complexity of these structures by considering C4 to
be the least complex and K4 the most complex structure among them. The
complexity of these structures follows the exponential increase with base 2,
that is 22, 23 and 24.

Next, we consider all the possible connected cyclic graphs with five ver-
tices. There are eight of them, starting with C5 and ending with K5. These
graphs are depicted in Figure 3.
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5 11 24 21

45 40 75 125

Figure 3. All connected cyclicgraphs with five vertices. Underneath each graph, its
number of spanning trees is given.

In this case, like in the previous one, the complexity in terms of the
spanning trees increases with the intuitive appraisal, that is, the increasing
number of edges leading to a complete graph Ks increases the complexity
of a structure. There is also a polynomial relationship between the number
of spanning trees S and the number of edges M in the connected cyclicgraph
with five vertices. This is shown in Figure 4.

150,-------------------------------------------"

75

s = 0.667M3 - 9.58M2 + 51.1 M - 94.3 r = 0.999
125

100
s

50

25

O~~T_------r_----_.------_.------~----~r_~
5 6 7 8 9 10

M

Figure 4. A polynomial relationship between the number of spanning trees S and the
number of edges M in connected cyclicgraphs with five vertices.
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The number of spanning trees for graph G, which consists of two parts
G1 and G2 connected by asingle edge (see Figure 5) is given by:

(6)

Figure 5. Graph G consisting of two parts, G1 and G2 connected by asingle edge.

Thus, for example, the biphenyl graph, sequifulvalene graph, heptaful-
valene graph and binaphthyl graph have the following values for the num-
ber of spanning trees: 36, 35, 49 and 1225, respectively.

Formula (6) may be generalized for chains of graphs (see Figure 6), each
connected by asingle edge:

(7)

Figure 6. Graph G consisting of several parts, G1, G2, ... ,Gn, all connected by asingle
edge.

In Figure 7, we give three randomly selected square-cell configura-
tions,10,11known in discrete mathematics as square animals.V

It is interesting to note than another (surgical) approach to complexity
of square-cell configurations+' gives a reverse order of complexity for the two
simply connected square-cells in Figure 7.
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Figure 7. Three square-cell configurations. The first two are simply-connected and
the third one is a multiple-connected square-cell configuration.

Several polyhexes and the correspoding numbers of spanning trees are
given in Figure 8.

There is no surprise in this case. Isomeric structures show similar
counts of spanning trees. The number of spanning trees is the largest for
the biggest polyhex.

37191

33620

36900

1152480
Figure 8. Four randomly selected polyhexes and the corresponding numbers of span-
ning trees.
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Figure 9. Kekulene and antikekulene.
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Figure 9 presents kekulene and antikekulene. Kekulene was prepared
in 198314,15 while the preparation of antikekulene is optimistically expected
to be accomplished soon.l"

Stability studies indicate that kekulene is much more stable than an-
tikekuleneY On the other hand, kekulene appears to be a much more com-
plex structure than antikekulene. The reason for this is related to the fact
that our criterion, that is, the number of spanning trees, is strongly corre-
lated with the number of edges in a molecular graph. Thus, a bigger struc-
ture in terms of bonds has a bigger number of spanning trees. This is also

a week point of this criterion, although
one can intuitively expect bigger struc-
tures to be more complex. On the other
hand, complexity and stability need
not be opposite effects, but are more
likely unrelated.

Figure 10 shows the Peterson
graph.l'' It has been introduced into .
mathematics to provide a counter ex-
ample to the Tait conjecture concerned
with resolving the four colour prob-
lem.l? It has been found important in
discussions of various mathematical
problems/? and it appears to be one of

1805 the important graphs in chemistry
where it depicts possible routes for the

Figure 10.The Peterson graph. isomerization of trigonal bipyramidal



COMPLEXITY OF SOME INTERESTING GRAPHS 893

complexes with five different ligands.š! The rearrangement graph for the
trigonal bipyramid was first discussed by Balaban and co-workers.P The Pe-
terson graph is also an incidence graph for the 10 lines and 10 planes resulting
from 5 general points in 5-dimensional space, as noted by Cayley in 1878.

The Blanuša graph, which was derived in 1943 and published in 1946,
can be obtained by combining two copies of the Peters on graph.23

Danilo Blanuša (Osijek, 1903-Zagreb, 1987) was professor of mathemat-
ics at the University of Zagreb. Ris main interest were diferential greometry
and special functions.š" Ris work on the Blanuša graph, as we caU it now,
was related to the problem of four colours.š" Several isomorphic repre-
sentations of the Blanuša graph are shown in Figure 11.

I"" /

V ~

G
t(G) = 1037136

Figure 11.Variousrepresentations of the Blanuša graph.
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6144000

Figure 12. The Desargues-Levy graph.

The second picture of the Blanusa graphs has been used as a logo for
several of the MATH/CHEM/COMP meetings.

The Deasargues-Levy graph (see Figure 12) is another interesting graph
that has found use in chemistry to describe a whole set of isomerisa-
tions.22,26,27 Zivkovic has used the Deasargues-Levy graph in his work on
characterization of the bullvalene graph.P"

375,291,866,372,898,816,000

Figure 13. The Schlegel graph of buckminsterfullerene.
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Figure 14. A model of buckminsterfullerene as a truncated icosahedron.

Finally, we considered the Schlegel graph of buckminsterfullerene (Fig-
ure 13), a pure carbon molecule consisting of 60 atoms. Buckminsterfuller-
ene is modeled as a truncated icosahedron (see Figure 14).

This molecule has many interesting physical, chemical and practical proper-
ties,29including highly interesting mathematical properties.š"There are severalre-
ports on the number of spanning trees of the Schlegelgraph of buckminsterfuller-
ene.31 This number is rather astronomical:375,291,866,372,898,816,000. According
to the complexity criterion based on the number of spanning trees, buckminster-
fullerene appears to be the most complex structure of all studied in this report.

CONCLUDING REMARKS

Complexity of a number of interesting graphs has been expressed in
terms of the corresponding spanning trees. In most cases, the number of
spanning trees follows the intuitive feeling about the complexity of a set of
related graphs. For some classes of graphs, such a,s for all connected graphs
with five vertices, there is a polynomial relationship between the number
of spanning tress and the number of edges in the graph. The same was also
found to be valid for all connected graphs with six and seven vertices.
Among all the graphs considered, which include the Peterson graph, the
Blanuša graph, the Desargues-Levy graph, ete., the Schlegel graph of buck-
min ste rfullerene appears to be the most complex structure, that is, the
structure with the highest number of spanning trees.
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SAŽETAK

Kompleksnost nekih interesantnih (kemijskih) grafova

Sonja Nikolić, Nenad Trinajstić,Albin Jurić, Zlatko Mihalić i Goran Krilov

Kao kriterij kompleksnosti građe polieikličkih grafova uzet je broj odgovorajućih
razapinjajućih stabala. Razmatrani su slijedeći grafovi: svi povezani grafovi s četiri
i pet čverova, grafovi koji se sastoje od dva dijela ili više dijelova povezanih s jednim
bridom, Petersonov graf, Blanušin graf, Desargues-Levyjev graf i Sehlegelov graf
koji predstavlja buekminsterfulleren.




