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The configuration interaction space X.,, built upon n ele-
ctrons moving over m spin-a orbitals X; = wia and n spin-f
orbitals X; = w; f, w: being othonormalized atomic orbitals, is
considered. Spin-independent alternant systems are defined in
terms of the corresponding Hamiltonians. Each Hamiltonian H
describing such a system is a linear combination of a spin-inde-
pendent alternant operator 0.° and operator Z vanishing over
X,. The space of all spin-independent alternant operators is a
linear space and it is spanned by »reduced« spin-independent
alternant operators, which are explicitly obtained. Similarly, the
space of all operators vanishing over X, is spanned by some basis
operators, which are also explicitly given. Hence, each Hamil-
tonian describing a spin-independent alternant system can easily
be constructed and identified. All such Hamiltonians have a com-
plete set of semi-alternantlike (SAL) eigenstates. These states
have many properties which generalize the well known properties
of m-electron eigenstates of neutral alternant hydrocarbons. In
particular, each SAL state ¥ € X, has a uniform total charge
density distribution over all vertices (i), vanishing total bond
orders between vertices of the same parity, etc. The complete
set of spin-independent properties common to ali SAL states is
obtained. Standard representations {$2,8,} are also considered.
These representations are defined by basis vectors Y% .. € X,
common eigenstates to operators S2 and S, with eigenvalues
s(s + 1) and m, respectively. It is shown that among all such
representations there are some with a special property that each
space &. spanned by (2s +'1) vectors Y% .. (variable m) contains
only SAL states. In particular, all basis vectors %% .. are SAL
states. Such representations are called »alternatlike« (AL). A
similar result is obtained for the standard representations {82 S.},
and the connection between AL representations {82 8,} and
{82, 8.} is established. It is shown that common eigenstates to the
Hamiltonian H describing a spin-independent alternant system and
operators S? and S, (or S,) can be chosen to be SAL states. In
addition, if beside spin multiplicity there is no other degeneracy,
all eigenstates common to operators H, S§2 and S, (or S,) are SAL
states.

1. INTRODUCTION

It is well known that conjugated hydrocarbons can be partitioned into
two classes, alternant and non-alternant.'? Unlike alternant hydrocarbons,
non-alternant hydrocarbons contain at least one ring composed of an odd
number of unsaturated carbon atoms.? In the case of an alternant hydrocarbon
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it is possible to divide the unsaturated carbon atoms into two sets, called
»starred« and »unstarred«, in such a way that no two atoms of the same set
are joined by a bond.2. Alternant hydrocarbons possess some remarkable pro-
perties which distinguish them from non-alternant systems.'® For example,
azulene, CyH;, which is an unsaturated non-alternant hydrocarbon, has very
different properties from those of its alternant isomer, naphthalene: it has a
blue colour, it is a good triplet quencher, and it has quite a large dipole
moment for a hydrocarbon, 1 D according to Wheland and Mann.” Naphtha-
lene, which is an alternant hydrocarbon, has none of these properties. There
have been many attempts to find a theoretical explanation for these diffe-
rences.' Coulson and Rushbrooke have shown that within the Hiickel theory
the m-electron charge of every carbon atom of a neutral alternant hydrocarbon
equals unity, and hence there is no permanent dipole moment.? In addition,
in the case of neutral alternant hydrocarbons, m-electron bond orders vanish
between carbon atoms of the same parity, being either both starred or both
unstarred.? The Hiickel theory is a relatively crude approximation, and Pople
et al. have shown that the above conclusions can be obtained within the
more sophisticated SCF Pariser-Parr-Pople (PPP) approximation.®? McLachlan
was able to extend these conclusions to the unrestricted PPP method, i.e. to
show that they remain valid if one considers the complete configuration inter-
action (CI) space in conjuncture with the PPP Hamiltonian.* Using mainly
the same formalism as McLachlan, Koutecky obtained some general con-
ditions which symmetric Hamiltonians should satisfy in order to describe
alternant systems.® His definition of alternant systems is rather implicit,
and it is given in terms of commutation and anticommutation relations of
the Hamiltonian with certain operators.? All these results were obtained
within the framework of the molecular orbital (MO) theory, and they follow
from the so called pairing theorem.' In general, this theorem relates dif-
ferent properties of positive and negative ions derived from the same parent
conjugated hydrocarbon.™ In particular, in the case of neutral molecules
one obtains a uniform charge density distribution and vanishing bond orders
between pairs of atoms in the same set (starred or unstarred).'™

There are a few questions that can be raised in relation to the above
conclusions: firstly, do neutral alternant hydrocarbons have beside a uniform
charge density distribution and vanishing bond orders between atoms of the
same parity any other common properies? Secondly, how general are these
properties, i.e. do they apply to all eigenstates of neutral alternant hydro-
carbons, and if not, to which not? Finally, once all® properties common to
neutral alternant hydrocarbons are identified, which is the most general
form of the Hamiltonian having eigenstates with such properties, i.e. how
far can one generalize the notion of alternant systems? All these questions can
be efficiently treated using the formalism of the Molecular Orbital Resonance
Theory (MORT)** In this approach one considers the so called regular
resonance structures (RRS) which are m-particle states and which span the
configuration interaction (CI) space X, determined by n electrons moving
over 2n spin-orbitals.!®!! Formally, RRS-s span just another basis in X,.
However, the choice of this basis is highly advantageous. The set of all RRS-s
is a natural way splits into two subsets containing »positive« and »negative«
structures. These subsets span complementary spaces X,* and X, . Each state
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¢ € X,*, as well as each state ¢ € X, is »aternantlike« in the sense that it
has the above properties of 7-electron eigenstates of neutral alternant hydro-
carbons.!® Besides these properties, a set of all® properties of alternantlike
states can be identified.!* Further, the set of all Hamiltonians having a
complete set of alternantlike eigenstates can be easily constructed.’> Among
these is also the well known PPP Hamiltonian discussed by McLachlan.1%:!3
Within the MORT approach one thus obtains general answers to the above
questions, and one can extend the notion of alternancy to arbitrary systems.
Originally, this notion was defined only for unsaturated hydrocarbons in
conjuncture with their 7m-electron eigenstates,>* though Koutecky implicitly
extended this notion to some other systems.’. The confinement to hydro-
carbons is due to the fact that carbon atoms are partitioned into »starred«
and »unstarred« ones. The alternancy is defined in terms of the connection
between carbon atoms, i.e. in topological terms. In the MORT approach the
partition of the set of all carbon atoms in two classes is replaced by the
partition of the set of all spin-orbitals into two classes called »source« and
»sink«. This latter partition determines the set of ali RRS-s, the splitting of
the space X, into complementary subspaces X,* and X, , and the splitting
of each operator into its »alternant« and »antialternant« component. 3 Alter-
nancy is thus defined in purely algebraic terms, and one can legitimately
ask whether an arbitrary Hamiltonian describes an alternant system. This
approach can be successfully applied also to nonalternant systems, since each
Hamiltonian can be easily written as a sum of an alternant and an antialter-
nant operator.!>'® An arbitrary system can hence be considered as a perturbed
alternant system.!?

In this paper we will not consider arbitrary Hamiltonians, but rather only
those Hamiltonians which describe spin-independent systems. Such systems
are quite numerous, and in particular the PPP Hamiltonian describes a spin-
independent system. We also intend to find the connection between spin
eigenstates in X, and complemetary spaces X,* and X, . Spin-independent
systems have some special properties which are not explicitly treated in the
general MORT approach to alternant and nonalternant systems. For example,
each alternant Hamiltonian has the complete set of alternantlike eigen-
states,'>13 but this does not yet imply than each eigenstate of such a Hamil-
tonian is alternantlike.!®'®> Whenever there is a degeneracy, the corresponding
eigenstates are not neccessarily alternantlike, and one is hence not sure of
the uniform charge density distribution, vanishing bond orders between spin-
orbitals of the same parity, etc.!'®> However, an eigenstate of a spin-inde-
pendent Hamiltonian is degenerate unless it is a singlet state, and hence it
is not guaranteed to be alternantlike. Hence the question about the properties
of the common eigenstates to the spin-independent alternant Hamiltonian H,
and spin operators S? and S, remains to be answered.

The plan of the presentation in this paper is as follows: in the second
section some previous results of the MORT apprcach, which are needed later
on in the paper, are given. The crucial role is played, on the one hand, by
the alternant and antialternant operators which span arbitrary operators, and,
on the other hand, by complementary spaces X, and X, whose direct sum
in the m-partice CI space X,. These operators and spaces can easily by con-
structed,’®'® and their mutual connection is explicitly given by the splitting



6 T. ZIVKOVIC

theorem.'%!? In particular, all states ¢* € X,* are alternantlike (AL) in the
sense that they generalize characteristic properties of m-electron eigenstates
associated with neutral alternant hydrocarbons. In order to be able to treat
spin properties along the same general lines, one has to specify the nature
of spin orbitals X; which build up the CI space X,. This is done in the third
section and the parity of the corresponding spin-a and spin-ff orbitals is defined
in accord with the so called normal convention. In the fourth section spin
operators in the normal space X, are considered. The set of all reduced
spin-independent operators is constructed, and reduced alternant, as well
as reduced antialternant, operators are identified. Using these operators one
can explicitly construct and identify an arbitrary spin-independent alternant,
as well as an arbitrary spin-independent antialternant operator. In the fifth
section, the so called semi-alternantlike (SAL) states are defined. These states
are more general than AL states, and this generalization is neccessary if one
wants to treat all spin eigenstates on equal footing. All characteristic spin-
independent properties of SAL states are explicitly found, and they are
expressed in terms of matrix elements of one- and two-particle densily
matrix. In the sixth section, spin eigenstates in X, are considered and it is
shown that these eigenstates can easily be analyzed in terms of SAL states.
The seventh section discusses some algebraic relations connecting various
spin eigenstates. In the eighth section, spin-independent systems are considered
and the connection between eigenstates of the corresponding Hamiltonians
and SAL states is obtained. In the ninth section, some examples of spin-inde-
pendent systems are given, and the tenth section contains a summary and
main conclusions reached in the paper.

The results obtained apply explicitly to the normal CI space X,, and to
the one- and two-particle operators. Accordingly, »the complete set of eigen-
states« refers to the space X,, and not to some larger spaces. Similarly, »all
operators« means »all zero (unity), one- and two-particle operators and all
linear combinations of such operators«, etc. There is also a frequent reference
to all properties of different sets of states in X,. What we mean are all linear
one- and two-particle properties. These properties can be expressed as the
vanishing of the expectation values of different operators, as considered in
a previous paper.!?

2. ALTERNANT AND ANTIALTERNANT OPERATORS

Let us give a brief account of some results of the MORT approach which
will be needed in this paper. We consider the configuration interaction space
X, generated by m electrons moving over 2n orthonormalized orbitals. The
space X, is spanned by all vectors | A, > of the form

I A‘, > = 77i1+ 7712+ o 77111]‘ l 0>; is = 1,2, c s 21 (1a)

where 7;" and 7; (i =1,...,2n) are fermion creation and annihilation ope-
rators, respectively, while | 0> is the vacuum state

7;]0> = 0; i=1,...,.2n (1h)
Note that the 2n creation operators 7;" acting on the vacuum state | 0>

generate the space Y, which is larger than the space X,. The space Y, is
spanned by all vectors }Av> of the form
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[4y> =m0t - om0 kii=0,1,1: 120 (1c)

and it contains the vacuum state (k = 0), all the one-particle states (k = 1),
all the two-particle states (k = 2), etc. The n-particle space X, is the non-
trivial subspace of the space Y,. Unless otherwise specified, we will consider
here only the space X,.

Each operator'* acting in the space Y, can be written as a linear com-
bination of the reduced operators I, Ri;, Pi;, Riju and Pij's:

I, a unit operator

Rij = Aij - 5ij
P = Bj;
Rij,kl = Aij,kl; iz jEkF£]
P =B ikl
R ik = Ajjx + Ayi/2 i=j=k
Py ik = By ji + Byj/2; i=j=k
Ry = Ay + Ay + Ay)/2; i (22)
where
Ay =55 + 05t
By = V—105 n;— ;" m)
A =755 mem ol g
B = V—105 0 mem— n nd 0y ) (2b)

The usefulness of reduced operators will become apparent later in connection
with the splitting theorem. It is convenient to extend the definition of these
operators to arbitrary indices i,j,k and I, and to write operators R;j and
Pj; 1 in the compact form

R = Ajjia T O Ay + 051 Ay — 0 A — 0 Ay)/2
P g = Byj g + O By + 0y By — 0; By — 0, By)/2 (20)
All reduced operators are hermitian and they satisfy symmetry relations
R;; = R;;, Rij = —Rjiu =Ry
Py =—Py P =P =Py (3

In addition, operators I, Ri; and Rjji are real and symmetric while operators
Pi; and Py are imaginary and antisymmetric.’? In other words, in the base
(1c) these operators satisfy

@, |R|4) = (4, |R{4) = 4, |R|4)*
(4, P[4,y =—4,|P|4) = —4,|B|4)* @

where R stands for real reduced operators I, R;; and Rjj i, while P stands for
imaginary reduced operators P;; and Pj;1q. Each operator'* can be represented
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as a linear combination of the reduced operators. This representation is unique
up to the symmetry relations (3) (i.e. provided operators R;; and Rj; are
considered to be one and the same operator, etc.) For the sake of reference,
as suggested by the graphical representation of the above operators, we use
the following terminology: operators R, are vertex operators, R;; and Pj;
(i # j) are bond operators, Rij; = —Rij; (i # j) are vertex-vertex operators
Rik ik = — Rikxj and Py = — Py i (1 # j # k) are bond-vertex operators, while
Rij and Py (@ # j # k # 1) are bond-bond operators.'®** Accordingly, indices
(@), (4), (k) and (1) are refered to as vertices.!®!® Vertex (i) is associated with
the one-particle state (orbital) X; = ni+;0>, and there are 2n such vertices.
Partition now the set B = {i} containing 2n vertices (i) = (1),...,(2n) into
subsets B° and B* containing n vertices each. We refer to the set B” as
»source« and to the set B* as »sink«.10713 The partition B — {B°, B*} uniquely
defines the partition of the set of all reduced operators into »alternant« and
»antialternant« operators. The reduced alternant operators are:

I, a unit operator

R;j; 2 4,5 =—1
Py 2 (4,§) =1
R s 2 4,0,k D=1
| STRRE 7 (4,4, k, 1) =—1 a)

while the reduced antialternant operators are!?:

R, 2 G =1
Pij > 7 4,5 =—1

Rij,kl; 2 G4,k 1) =—1

P 2 Gi kD=1 (5b)

where 2 is the parity function defined in the following way: 2z (i, j) =1 if
vertices (i) and (j) are of the same parity (either both source or both sink),
and 2 (i, j) = —1 otherwise. Further, # (i, j, k, 1) is defined to satisfy

2 G4, kD) =2 0,0 2 K1 (5¢)

and one easily finds that # (i, j, k,1) = 1 if an even number among four ver-
tices (1), (j), (k) and (I) is source, and # (i, ], k,1) = — 1 othervise. The parity
function # is invariant with respect to the permutation of any two indices,
Le.z (L,)=201, 2 (,ik1)=2 (Gikl)=2(k,jil)=..., etc. Each
linear combination of reduced alternant operators (5a) is now defined to be
an alternant operator, while each linear combination of reduced antialter-
nant operators (5b) is defined to ke an antialternant operator. Accordingly,
the set of all alternant operators forms a linear space, a subspace of the space
of all operators. Similarly, the set of all antialternant operators forms a linear
space, a subspace of the space of all operators. An arbitrary operator!* can
be uniquely split into its alternant and antialternant component.!*13
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Linear independence of operators I, R and P is here considered in the
algebraic sense, i.e. these operators are linearly independent over the space
Y, which is the largest space that can be generated by a repeated application
of the creation operators 7y on the vacuum state |0>>. However, these
operators are not linearly independent over the n-particle subspace X,. To
each operator O one can add an arbitrary operator vanishing over X, without
altering the matrix elements of the operator O in X,. Since we are con-
cerned here with the space X,, it is important to know the general form of
operators vanishing over X,. Each!® »vanishing« operator Z, i.e. each ope-
rator Z satisfying

([ Z ]y =0 (6)

for arbitrary states ¢y, ¢, € X,, is a linear combination of the following basis
operators
z = IR,

i

Zijs =3 Rik,kj + 6ij nlI
k

Zi" = 2Py M

1] A

The set of all vanishing operators forms a linear space, subspace of the space
of all operators. The above basis is particularly suitable, since each of the
above operators is either alternant or antialternanat: operators Z;® (2 (i, j) =
= 1) and Z;* # (i, j) = —1) are alternant, while operators Z%, Z;; (# = 1) and
Z® (2 (i,j) = —1) and Z;;* (2 (i,j) = 1) are antialternant. In addition, operators
Z® and Z;® are symmetric, while operators Z;* are antisymmetric. The above
operators were in part, obtained elsewhere.!>!?

In the MORT approach the state ¢ € X, is expanded in terms of the
regular resonance structures (RRS), and not in terms of basis vectors (1a).
Each RRS is an n-particle state containing n mutually disjunct excited and/or
nonexcited bond orbitals.!®!! Each of these bond orbitals should contain one
source and one sink spin-orbital, i.e. bond orbitals connecting either two
source or two sink spin-orbitals are not allowed.'®' The set of all such
structures spans the space X,. This set splits into two subsets containing
»positive« and »negative« structures, and given any two RRS-s one can easily
decide whether they are of the same or of opposite parity.!®!! Structures of
opposite parity are mutually orthogonal, and spaces X," and X, spanned by
positive and negative structures, respectively, are hence orthogonal as well.
Thus, each partition B — {B°, B*} induces the splitting of the CI space X,
into complementary subspaces X," and X,. Once the partition B—>{B° B*}
is fixed, this splitting is unique up to the exchange X," <> X, .19 Each state
gt € X, as well as each state ¢~ € X, is called alternantlike (AL) state.l* In
particular, each RRS is an AL state. Spaces X, and X,  are of the same
dimension, and each state ¢ € X, can be uniquely represented as o linear
combination of two AL states of opposite parity, ¢ = ¢* + ¢, where ¢* € X,*
and ¢~ € X,~. These spaces are related to alternant and antialternant opera-
tors as defined above in the following way!%13:
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Theorem 1 (The Splitting Theorem)

a) Let O, be an alternant operator, and let ¢* € X,* and ¢~ € X, be two AL
of the same parity, i.e. eithe ¢;, ¢, € X,*, or ¢, ¢, € X,. Then

@ | Oy | w) =y |0y wH =0 (8a)

b) Let Q,, be an antialternant operator, and let ¢; and ¢, be two AL states
of the parity, i.e. either ¢, ¢, € X,*, or ¢;, ¥, € X,~. Then

<7/)1 " Onal l 1/)2> =0 (Sb)

One can add any linear combination of vanishing operators (7) to each alter-
nant operator O, and to each antialternant operator 0,, without changing
properties (8a) and (8b), respectively. One finds that each!* operator Q.
satisfying (8a) for arbitrary AL states of opposite parity is of the form!>13

Oa]/ = Oal ¥ Znal (9a)

i.e. it is a linear combination of an alternant operator (Q,) and an antialter-
nant vanishing operator (Z,,). The former operator is a linear combination
of reduced alternant operators (5a), while the latter is a linear combination
of vanishing antialternant operators Z5, Z;* (2 (i, j) = —1) and Z;* (2 (i, j) =
= 1). Similarly, each'* operator O,, satisfying (8b) for arbitrary AL states
of the same parity is of the form!13

o = Onal + Zai (9b)

’
nal

i.e. it is a linear combination of an antialternant operator (0,,) and an
alternant vanishing operator (Z,). Operators O, and 0,. satisfying the above
properties are called »weakly«-alternant and »weakly«-antialternant, respec-
tively!2.

The splitting theorem implies:
Corollary 1
Let O, be an antialternant operator. Then
<1/)i I\ Onal l Wi> =0 (10)
where ¢+ € X, * is an arbitrary AL state.

According to the above corollary, with each antialternant operator O,
a property common to all Al states is associated. In order to obtain the com-
plete set of these properties, one should consider the complete set of antialter-
nant operators. A natural choice is to consider reduced antialternant ope-
rators (5b). In terms of one- and two-particle density matrices v and I’

i ) = Sy [yl w)

Tiipa ) = (p [0 m mymy | /2 an



ALTERNANT SYSTEMS 781

these properties can be expressed in the following way:

a) ;) =1/2

b) " (wE) = 0; 7 (1,5) =1

o) i ) =0; 2 (4,§) =—1

&) Iy ) =77 (pH)/4; &, =—1

d) I ) =95 p)/4; 2 G,)) =1

D IMjul®)=0; 7 G5,k 1) =—1

8 I'ju@d) =0; 7 G4,k =1 12)

In the above relations superscripts » and ¢ refer to real and imaginary com-
ponents, respectively, of matrices Y and I":

Y=y + ?’*;j)/2 =y [ A | )2
Y= Oy — 52 = V —1 <y | Bji | w)/2
I = g+ T4 )2 = Ky | Ay | w)l4

T = Cija— T 0/2 = V—1(p [ By [ w)/4 (13a)
and
Vi =¥y + % Tiu=T5%0+ (13b)
In addition, all indices in relations (12) are assumed to be mutually different,
e. g. in (12b) it is assumed i # j, etc. Since matrices Y and I' are hermitian

75 =5 Ty = Mg (13¢)

real and imaginary components coincide with symmetric and antisymmetric
components, respectively.!? The physical significance of relations (12) is straight-
forward. Thus, the operator Q; = 1,"7; is a charge density operator, and
hence relation (12a), i.e. (¢* | Q; ¢*) = 1/2, implies a uniform charge density
of 1/2 over all 2n vertices (i). Similarly, relation (12b) expresses the vanishing
of bond orders between vertices of the same parity, etc. These properties
resemble the characteristic properties of eigenstates associated with neutral
alternant hydrocarbons, and this justifies the notion »alternantlike« for the
states ¢ € X,*. Relations (12) contain the complete set of characteristic one-
and two-particle linear properties of AL states.!> Besides properties expres-
sed by these relations, there are some other one- and two-particle properties
which are common to all states ¢ € X,. The latter properties can be derived
from the relation

{p|Z|y)=0 (14)

satisfied by all states ¢ € X,, in an analogous way to properties (12) being
derived from the relation (10) satisfied by all states ¢* € X,*.12 However,
the properties thus obtained are not characteristic properties of AL states,
and hence they will not be considered here.

Beside Corollary 1, the splitting theorem implies few additional corol-
laries which will be needed in the paper:
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Corollary 2

a) The product of two alternant operators, as well as the product of two
antialternant operators, is an alternant operator.

b) The product of an alternant and an antialternant operator is an antial-
nant operator.

This corollary is a straightforward consequence of the splitting theorem
and the fact that in X, one can always choose a base of AL states. Namely,
this implies Oy ¢* € Xy* and O,a¢¥* € X, and hence (¢ 0,04 |¢7) =0,
etc. Corollary 2 contains an implicit definition of three-particle, four-par-
ticle, etc. alternant and antialternant operators. Thus, if O, and O, are
two-particle alternant operators, operator O® = 0, Q, is a four-particle alter-
nant operator, etc. The explicit construction of all alternant and antialternant
operators based on this corollary will be given elsewhere,'® and it is not so
important in relation to the problems discussed in this paper. What matters
is that higher particle alternant and antialternant operators thus constructed
satisfy relations (8a) and (8b), respectively. They are, however, not expres-
sible as linear combinations of reduced operators (2a). ’

Corollary 3

Each hermitian weakly-antialternant operator has the complete set of AL
eigenstates. The inverse is also true:

Corollary 3

Each hermitian operator having the complete set of AL eigenstates is a
weakly-alternant operator.

Corollary 4

Let 0., be a hermitian weakly-alternant operater and let ¢ € X, be a
normalized eigenstate of O, with the eigenvalue 1. Then
a) If 2 # 0 the state ¢ is of the form

1
V=0t y) (53}
V2

where ¢ ¢ X,* and ¢~ € X, are normalized AL states of opposite parity, and
in addition the state ¢’

1 . £ ’
w =——W +v) (15D)
W
V2
is an eigenstate of 0,," with the eigenvalue A" = — 4.

b) If 1 =0, the state ¥ can be both alternantlike and non-alternantlike. If,
however, ¢ is not an AL state, i.e. if it is of the form

w=p" 4y, why #0 (15¢)

then it is degenerate, and AL states ¢* and ¢ are both eigenstates of O,
with the eigenvalue 4 = 0.
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According to this corollary, eigenstates of weakly-antialternant operator
0',. cannot be alternantlike, unless the corresponding eigenvalue 4 equals
Z€ero.

Corollaries 3 and 4 can be easily derived from the splitting theorem. In
the derivation of point a) of corollary 4 one should use the fact that eigen-
states ¢ and ¢’ belonging to different eigenvalues of O, are orthogonal, i.e.
that (¢ |¢') = ((¢*| ") — (¥ [¢))2 =0.

The splitting theorem thus implies that all weakly-alternant Hamiltonians
have the complete set of AL eigenstates, i. e. those which satisfy relations (12).
Each weakly-alternant operator is a linear combination of reduced alternant
operators (5a) and vanishing antialternant operators (7).

Since these latter operators vanish over X,, each alternant system can
be represented by an alternant Hamiltonian. This leads to an efficient and
exhaustive definition of alternant systems.'*!* Due to these results, the defi-
nition (2) of reduced operators, the partition (5) of these operators on alter-
nant and antialternant operators, as well as the partition X, —{X,", X, } of
the space X, on complementary subspaces X," and X, is natural and well
justified.

3. NORMAL MODEL OF THE SPACE X,

In connection with the above formalism, there are a few related questions
of considerable interest: firstly, one may ask, what are spin eigenstates in
the CI space X,? In particular, how are the eigenstates of the spin operators
S2 and S, related to subspaces X,* and X, ? Further, AL states are shown to
possess linear properties expressed by relations (12). However, all these
properties are in general spin dependent. For example, if X; are spin orbitals,
then relation (12a) expresses the uniform spin density of 1/2 over all vertices
(i). This may be either spin-a or spin-f density, depending on the nature of
the orbital X;. However, in many cases one is interested only in spin-inde-
pendent properties, such as total charges, total bond orders, etc.

The above questions are not properly formulated, unless one specifies
the spin nature of orbitals X;. We shall now formulate the so called »normal«
model of the space X,. In this model the 2n orbitals X; (i = 1,...,2n) are

specified to consist of n spin-a orbitals X; = w; @ and n spin-f orbitals X = w; B,

where w; (i =1,...,n) are orthonormalized atomic orbitals, while @ and f
are spin-a and spin-a states, respectively. Annihilation operators 7; (i =
=1,...,2n) are accordingly rewritten as spin-a and spin-f annihilation ope-
rators 7;, and 7 (i =1,...,n), respectively, and analogously for the cor-
responding creation operators. The latter operators satisfy

Nie | 0> = X|

ng' 0> =X, (16)

In addition, the parity of different vertices is defined in accord with the
»normal« parity convention: for each (i), spin vertices (i) and (iff) associated
with spin-orbitals X; and X;, respectively, are of opposite parity. In other
words, if (ia) is source, then (if) is sink, and vice versa. We also define the
parity of the atomic orbitals w; and associated spin-independent vertices (i).
By definition, the parity of the atomic orbital w; and of the vertex (i) coin-
cides with the parity of the spin-a orbital X;, i.e. with the parity of the
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spin-vertex (ia). According to this convention, the parity of atomic orbitals
w; can be considered arbitrary, and once it is fixed, it uniquely defines the
parity of spin-orbitals X; and X;.

The normal model is general enough to illustrate the most important
features of the spin treatment within the MORT approach. Some preliminary
discussion of the normal model, though not under the same name, can be
found elsewhere.'*!3 The essential assumption of this model is the above
specification of 2n orbitals X; in such a way that they consist of n spin-a
and n spin-f orbitals. This is the usual way of forming one-particle orbitals
within the molecular orbital {MO) or within the valence bond (VB) approach,
and hence it is not a serious restriction to the generality. The normal parity
convention is introduced in order to simplify mathematical manipulations.
This convention is not irrelevant since most subsequent results depend on it.
However, what matters is that one can always partition the 2n spin-orbitals
into source and sink in accord with this convention, and hence it does not
impose any restriction to the generality.

All relations (1)—(15) can be now applied to the normal model. One has
only to replace everywhere vertex (i) with vertices (ia) and (iff), and one has
to observe the above parity convention concerning these vertices. For example,
relation (12a) becomes

Vi) =1/2,  ypp@i) =1/2; i=1,..,n (17a)

i.e. spin-a and spin-f density of AL states equals 1/2 at each vertex (i), and
hence the total density p; () = Yiaix (¥) + Yis,is () satisfies

2; p*) =1; t=Lz:sm (17b)

Similarly, the total bond order Py (¥) = Yiu;u (¥) + Yigje (&), (i # j) is in the
case of AL states found to vanish between vertices of the same parity

P; (pt) = 0; 2 (L) =1 i#] (17¢)

etc. Relations (17b) and (17c) express spin-independent properties, and in a
similar way many other spin-independent properties of AL states can be
derived.!? The normal model is hence suitable enough to answer the two
questions formulated at the beginning of this section. We shall now proceed
to treat in a systematic way spin-independent properties of different states
in the space X,. Unless otherwise specified, a normal model of the space X,
will be assumed.

4. SPIN INDEPENDENT GCPERATORS

In the second quantization formalism components of the total spin ope-
rator S = (S, Sy, S,) are given by!?

n
Sx = 1/2 2 O]iu+ 7713 + ’71,3+ nio{)
i=1
n
Sy = V—11/2 = (ig" 11, — 01" M)

i=1

n
S, =112 2 (3" %0 — i ip) as)
i=1
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and they satisfy commutation relations
S, 8,1 =18, [S,8,] =18, [S,8,] =18, 19

characteristic of vector operators'®. Relations (18) can be derived using Pauli
matrices® o = (g, 0y, 0,)

0.1 0 — 1 0
o, = o, = o, = (20)
R o P R PR

and they depend on the particular representation (20). One can express
relations (18) in terms of reduced operators (2a)

n
S, =12 X R,
i=1
n
B A1 E Py,
i=1
n
S,=1/43 Ry, —Ry 9 : 1)
=1

According to the partition (5) and the normal parity convention, each operator
Ri.is is an alternant operator since vertices (ia) and (if) are of opposite parity.
Similarly, operators Pigi,, Risix and Ris;s are found to be antialternant ope-
rators. We, thus, obtain the important result that the x-component S, of the
total spin operator S is an alternant operator, while y- and z-components S,
and S, of the total spin operator S are antialternant operators. Note that this
result depends on the convention that, given (i), vertices (i) and (if) are of
opposite parity. Namely, if (iz) and (i) (fixed i) were chosen to be of the
same parity, then S, would be an antialternant operator, while S, would be
an alternant operator. Other possible partitions into source and sink vertices
lead to Sy and Sy, which are neither alternant nor antialternant. However,
whatever the partition, z-component, S,, is always an antialternant operator.
It is a considerable advantage if the partition B— {B°, B*} is done in such
a way that each component of the total spin operator S is either alternant
or antialternant. This is a partial justification of the otherwise arbitrary
convention that vertices (iz) and (if) (fixed i) should be of opposite parity.

According to Corollary 2 the square of the total spin operator
$*=82+82+8;2 (22)

is an alternant operator as well.

As an immediate consequence, operator S? can be diagonalized in the base of
AL states (Corollary 3). Moreover, since Sy is also an alternant operator, and
since it commutes with S?, operators S? and S, can be simultaneously diago-
nalized in the base of AL states. However, this is not possible with the
operators S? and S,.

Let us now consider spin-independent operators. It is natural to define
each operator O° satisfying

[0% 8,] = [0°, 8] := [0%,8,] =0 (23)
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i.e. commuting with the components of the total spin operator S, as a spin-
independent operator. This definition is analogous to the definition of scalar
operators which are required to commute with components of the total angular
momentum operator J = L + S.!8 Note that, according to this definition, the
square S? of the total spin operator S is a spin-independent operator, while
components Sy, Sy and S, are not. For the sake of notation, we shall mark
spin-independent operators with superscript (o), as this is done above. We
Woeuld like to find all spin-independent alternant and all spin-independent
antialternant operators.!* Consider the following set of operators

I, a unit operator
Aijn = Aia,ju + Aie,jﬁ
B;" =B, ;, + By

o =
A% = Ao kale T Aigis keis T Aiuip kole T Aigjo, kel

B 10 = Bigjokale T Bigig kpis T Biajp 1p1e T Bigja, katp (242)
where
Aije = i Mo+ M’ M
A isidin = Mo M k8 Mo T Mo kg 1 Nia (24D)

ete. as inferred from relations (2b). Using anticommutation relations of fer-
mion operators 7", i, 7M. and 7 one can show that all operators (24a)
satisfy relations (23), i.e. that they are spin-independent operators. It is
somewhat more difficult to show that each'* spin-independent operator can
be represented as a linear combination of operators (24a). The proof is quite
space consuming and it will be omitted here. Hence, operators (24a) form
the base in the space of all'* spin-independent operators. Operators (24a)
are hermitian. In addition, operators I and A° are real and symmetric, while
operators B° are imaginary and antisymmetric.

Consider now another set of operators
I, a unit operator
B;" =Ry, 50 + Rig
Py" =P, 5 + Pig g

o St
R’ = Bigjokale T Rigie kais T Rigjp rele + Rijo, kais

P11 = Pigjo ket T Pigig kais + Pigjs x81e T Pigjo kald (25)
Symmetry relations (3) imply
RO]J — R()ji’ Pnl.I P _Pf)]l
Roij,kl = Rﬂji,lk = Rokl,ij! Pnij,kl = Poji,lk = —Pnkl,ij (25)

Each of the above operators is expressed as a linear combination of reduced
operators. Moreover, all reduced operators entering in a particular linear
combination are of the same kind, i.e. they are either all alternant or all
antialternant. Thus, according to the parity convention & (ia, ja) = 2 (i, jf),
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and 2 henece, operators R;;° and P;;° have definite symmetry properties. Ana-
logously, the normal parity convention implies # (ia, jo, ka,la) = 2 (i, jB,
kB,18) = 7 (ia, jB, kB, 1a) = 2 (iB, ja, ke, la), and hence operators R and
Po%; 1 have also definite symmetry properties. Each of the operators (25) is
hence either alternant or antialternant. Alternant operators are found to be

I
R’ (i) = —1
P’ p 1) =1
R’ w5 2 (i, kl) =1
P ks P (ij, kl) = —1 (27a)

while antialternant operators are

Ry, (=1
P o () =—1
R o G kD) =—1
Py | W Rl o

where the function # now refers to the parity of atomic orbitals w; The
partition (27) of operators (25) into alternant and antialternant parallels the
partition (5) of reduced operators (2a) into alternant and antialternant. Using
relations (2) and (24) one finds that operators (25) can be expressed in the
form

R’ =A% —23;

P =B
Roij,kl = Aoij,kl + (05 Aojl + (Sjl Aoik)/z — 4 Aojk_(sjk A%
P = B + O By + 05 B%)/2 — &, By — 05, BY) (282)

i.e. all these operators are linear combinations of spin-independent ope-
rators (24a), and hence they are spin-independent operators as well. One can
also express spin-independent operators (24a) in terms of operators (25)

AR SR LB © BITE PO

A% = R+ 0 RO+ 0 By 4+ 40y 05— Gy R + 05 R°)/2 — 26,9y
B0 = P + Oy Pl + O Py — O Py + 9y POy)/2 (28b)

implying that operators (25) form the basis in the space of all spin-indepen-
dent operators. Operators (25) are hence well chosen: each of these operators
is either a spin-independent alternant or a spin-independent antialternant
operator. The corresponding partition (27) of these operators into alternant
and antialternant is analogous to the partition (5) of reduced operators (2a)
into alternant and antialternant. Further, these operators form the complete
set in the space of all'* spin-independent operators, i. e. each spin-independent
operator can be represented as their linear combination. In addition, one can
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show that this representation is unique up to symmetry relations (26) (i.e.
provided operators R°; and R°; are considered to be one and the same ope-
rator, etc.). Due to all these properties it is proper to consider operators (25)
as »reduced« spin-independent operators. Each linear combination of reduced
spin-independent alternant operators (27a) is a spin-independent alternant
operator. Similarly, each linear combination of reduced spin-independent anti-
alternant operators (27b) is a spin-independent antialternant operator. One
can easily show that an arbitrary spin-independent operator O° can be repre-
sented as a linear combination of a spin-independent alternant operator 0%
and a spin-independent antialternant operator 0°,,, 0° = 0°; + 0°,,. This
representation is unique.

5. SPIN INDEPENDENT PROPERTIES AND SEMI-ALTERNANTLIKE STATES

We have defined spin-independent operators (25) in order to be able to
treat spin-independent properties of various states in the space X,. In analogy
to the relation (10) each spin-independent antialternant operator 0°,, satisfies

(£ 0%y |yE) =0 , 29)

and hence it is associated with a particular spin-independent property of AL
states ¢*. Relation (29) thus generates a set of relations analogous to relations
(12) However, in order to analize spin eigenstates in terms of spin-indepen-
dent properties the set of all AL states is not sufficient. This can easily bhe
shown by an example: let ¢;; and ¢;, be triplet states with the projections
on the z-axis m = 1 and m = 0, respectively,

STy =2y, STy =2y,
S,y = v S,10=0 (30)

and let, in addition, these states be degenerate eigenstates of an alternant
Hamiltonian H. Corollaries 3 and 4 imply that, unless there is some additional
degeneracy, the state ¢;, is an AL state. Hence, this state possesses all the
properties (12), and in particular all the spin-independent properties such as
uniform total charge, etc. which can be inferred from the relation (29). Since
the state ¢, is degenerate with the state ¢;,, one would expect the state
Y11 to possess, if not all properties (12), then at least some spin-independent
properties common with the state ¢;,. However, according to Corollary 4,
the state ¢;; is not an AL state. It is, hence, not obvious whether the state
Y11 has any of the properties (12) and, a posteriori, any of the spin-indepen-
dent properties in common with the state ¢;. In order to be able to analyze
this and similar situations, one has to introduce the notion of the so called
»semi«-alternantlike (SAL) states:

Definition 1

Let ¢* € X,* be an AL state and let U = f (S) be a unitary operator which
is otherwise an arbitrary function of spin operators Si, Sy and S,** Then the
state

p=Uypt (31)
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is a semi-alternantlike (SAL) state. The trivial choice U =1 demostrates
that each AL state is also a SAL state. The inverse is not true. The set of
all SAL states is significantly larger than the set of all AL states. Moreover,
this set does not form a linear space, i.e. if ¢, and ¢, are SAL states then
their linear combination is not necessarily a SAL state.

We shall now show that SAL states satisfy all the spin-independent
properties common to AL states and that, in addition, the set of all SAL
states is large enough to treat the problems such as the above one and
similar.

Due to the relations (23) each spin independent operator O° commutes
with the unitary operator U = f (S), and hence the splitting theorem implies

Lemma 1

Let ¢, and ¢, be AL states and let U = f(S) be a unitary operator,
function of spin operators S, S, and S,2 Consider SAL states ¢, =U¢;

and ¢, =U¢,
a) If ¢, and ¢, are AL states of the same parity, then
Wa| Ona” | Wy =0 (32a)
for each spin-independent antialternant operator O°,.
b) If ¢; and ¢, are AL states of opposite parity, then
(o | 04" |y =0 (32b)

for each spin-independent alternant operator 0°;. In particular, the above
lemma implies:

Corollary 5

Let ¢ = U¢E be a SAL state, and let 0°,, be a spin-independent anti-

alternant operator. Then
<‘#' ‘ Onal') ; '/)> =0 (33)

Relation (33) involving SAL states is analogous to the relation (10) involving
AL states. According to this relation, a particular property common to all SAL
states is associated with each spin-independent antialternant operator 0O°,.
In order to obtain a complete set of these properties, one should consider the
complete set of spin-independent antialternant operators. A natural choice is
to consider reduced spin-independent antialternant operators (27b). In terms
of one- and two-particle spin-independent density matrices p and P

9ij W) = Vi, jo ) + 7ig,iB )
Pia ) = Lo kote ) + Ligig xais @) +
+ Iigj oz @) + Tigjo ka1a ) Sed

these properties can be expressed in the following way
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a) o; @) =1

b) o'y (y) = 03 2 (,)=1

0 ) =0; 7 (4,§) =—1

A Pl @) = —2P i (W) = 07 )/2; 7 G,§) =—1
e Pl ) = —2P% 4 @) = 0% ()/2; 2 (1,5 =1
Pl @) =0; 7 (k,j)=—1

g P @) =0; 7 (k,j) =1

h) P @) = o7 w)/4; 7 1, j) = —1

0 P @) = 0% (p)/4; P (L,) =1

NP @) =0; 7 (14, kl) = —1

k) P () =0; o (ij,kl) =1

D Pcii,jj @) =0 : (35)

In the above relations ¢ is a SAL state, while superscripts r and c refer o
real and imaginary components, respectively, of matrices p and P:

0y = (05 + 0*p/2 = (w | A% |w)/2
y)y[2

P = Pyq + P 10/2 = (p | A i | ) /4

o = (oy— "2 = V—1(y [ B

P = By g — P 10)/2 = V—1 <y | By 5 | w)/4 (362)

and
Oy =05+ % Pyu=Pyu+Phu (36D)

In addition, all indices in relations (35) are assumed to be mutually different.
For example, in (35b) it is assumed i # j, etc. Since matrices p and P are
hermitian

= Q*

93 i P = P (36¢)

their real and imaginary components coincide with symmetric and antisym-
metric components, respectively.

Relations (35) contain the same amount of information as Corollary 5;
we have only written different conditions explicitly and in a particular basis
of spin-independent opcrators. These relations express spin-independent pro-
perties of SAL states, and they are analogous to relations (12) expressing
properties of AL states. In particular, according to (35a) all SAL states have
uniform total charge density distribution over atomic orbitals w;, while
according to (35b) these states have vanishing total bond orders between
atomic orbitals of the same parity. McLachlan has shown that the same
properties are satisfied by some m-electron eigenstates of neutral alternant
hydrocarbons within the PPP approach.? These eigenstates are, hence, good
candidates to be SAL states, and in the following sections we will show that
this is really so. The list of properties (35) is, however, much longer than
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the one found by McLachlan and others®® in their treatment of neutral
alternant systems.

In connection with Corollary 5 and a fortiori to relations (35), a few
points should be emphasized:

a) Relations (35) contain all® characteristic spin-independent properties of
SAL states. Namely, each spin-indipendent property common to SAL states
can be written in the form (¢ |0°|¢) =0, where O° is a spin-independent
operator which is in general a linear combination of zero-, one- and two-
particle operators, while ¢ is an arbitrary SAL state. Further, each spin-
independent operator O° is of the form 0° = 0°,; +0°,,;. Assume now that ¢
is an AL state, ¢ = ¢* € X,*. Then (¢|0°|¢)= 0 implies (¢*|0°%|¢g*) =0
and (¢F |0, |¢t) = 0. The second relation leads to conditions (35). Inde-
pendent conditions, if any, should be hence contained in the first relation.
However, if this relation is to be satisfied for all AL states ¢%, then 0°,
vanishes over X, i.e. it is a Z operator. The corresponding property is hence
a common property to all states ¥ € X, and it is neither characteristic of AL
nor of SAL states.

b) Properties (35) contain also all characteristic spin-independent pro-
perties of AL states. In other words, though the set of all AL states is a
proper subset of the set of all SAL states, there is no spin-independent pro-
perty common to AL states which is not at the same time common to SAL
states. This can be shown in an analogous way as point a) above.

c) If ¢ is a singly-determinantal SAL state, properties (35) d) through
1) involving two-particle density matrix P follow from properties (35) a)
through c¢) involving only one-particle density matrix p. This is the conse-
quence of the factorization of the two-particle density matrix P in terms
of the one-particle density matrix p (see ref. 13.) However, it ¢ is not a singly-
determinental function, there is no such a direct conection between properties
involving a two-particle density matrix and properties involving only a
one-particle density matrix.

d) If ¢ is real, properties c), €), g), i), k) and 1) involving imaginary corn-
ponents of density matrices p and P are automatically satisfied since these
components vanish. However, in the case of complex ¢, these properties are
nontrivial.

In conclusion, relations (35) contain all characteristic spin-independent
properties of SAL states, and also all characteristic spin-independent pro-
perties of AL states.® These relations are simplified in some special cases
such as singly-determinental and/or real functions. It should be noted that in
the case of AL states relations (35) were partly derived elsewhere.1%13

6. SPIN EIGENSTATES IN X,

Since 8% commutes with each of the components of S, one can form a
complete set of common eigenstates of 82 and one of its components.!’® Let
% - be an eigenstates of §2 and S, corresponding to the eigenvalues s (s + 1)

and m, respectively,
Ch wzs,m,r =S (S + l) T/}zs,m,'r

S, ¥Wime = MY o €]
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We use the superscript z in order to emphasize that the z-axis is chosen as
the quantization axis. Since S? and S, do not usually form a complete set of
commuting observables, there will be many systems of basis vectors common
to these two operators.!® This is anticipated by the quantum number 7 in the
above relations. Among the representations with S? and S, diagonal, there
are certain in which manipulations of the spin operator are particularly simple.
They are called standard representations {S2, S,}.!® In these representations
basis vectors corresponding to a specific value of the quantum number s can
be grouped in one or several series of (2s + 1) vectors connected by the
relations

S, Y .= Vs(s+1)—m@m + 1) Yo mvl s

S_ "y m.= Vs +D)—mi(m—1)y° (38a)
where
S,"=8,+iS, S8 *=8 —iS§, (38b)

are two hermitian conjugate operators.!”-'® The (2s + 1) vectors
’l/}zs,s,'r’ l/)zs,s—l,'v’ » wiky, wzs,—s,r ) (39\

span (2s + 1) -dimensional space & ., a subspace of the space X,. This subspace
is invariant with respect to operators S,, Sy and S,, i.e. each function f(S)
of the components of the operator S transforms vectors in &. one into
another.’8 The same is true of the subspace & = © ¢, ., which is a direct sum

T

of subspaces &., and which contains all the vectors with quantum number s
fixed. In general, quantum number s assumes integer and half integer values.
However, which of the integer and half integer numbers actually make up
the spectrum of s, and how many series of (2s + 1) linearly independent
vectors correspond to each of these values of s, depends on the problem con-
sidered.’® We will now specify and aply the above general considerations to
the normal CI space X,.

Notice first that the dimension d (n) of the space X, equals!’
d (n) = 2n)!/(n!)? (40)

Further, since the space X, contains n-particle states, spin quantum number
s = 0 assumes values s = n/2, n/2—1, n/2 — 2,... etc. One can now ask the
following question: how many of these d(n) states have the projection m
along the z-axis? Obviously, there is only one state ¢%,;,,. with the spin
projection m = m/2, since this state should contain all n particles in the spin-a
orbitals, and this can be accomplished in only one way:

wzn/l,n/z,-: e 7]+lzx 77+2¢z ®ui s 77+na l 0 > (41)

It can be shown!? that the number Z, (m) of linearly independent states
having the projection m along the z-axes equals

2
Z, (m) = ( . ) = [n!/((n/2 —m)! (n/2 4+ m)}]?;
n/2—m

m=n/2,nf2—1,...,—n/[2 42)
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Hence, the number S, (s) of spin multiplets with the total spin quantum num-
ber s equals!?
S, (m/2) =1

n 2 n 2
S, (s) = — - s=n/2—1, nf2—2,... (43)
(n/Z—s) (n/2—s—l)

For example, the space X; contains S;(0) = 20 singlets, S, (1) = 15 triplets and
S;(2) = 1 quintet. There are, hence, 20 - 1 + 15 -3 + 1 -5 = 70 linearly inde-
pendent states in X4 This equals d (4), as it should be, etc.

Let us now see how eigenstates ¢% .. are related to spaces X," and X,
Since S, is an antialternant operator, Corollary 4 implies.

Corollary 6

a) Let ¢, € X, be a normalized eigenstate of S, with the eigenvalue
m # 0:
S, Ym = MYy (44a)
Then ¢, is of the form ‘
Y = UV2 @ 10+ 9 | (44b)

where ¢'Tm;e X" and ¢, € X, are normalized AL states of opposite parity.
In addition, the state ¢_n = (¥|mi— % m)/ V2 is an eigenstate of S, with the
eigenvalue — m:

Sz Y_m=—MY_n4 (446)

b) Let ¢, € X, be an eigenstate of S, with the eigenvalue m = 0. In this
case the state ¢, can be both, alternantlike and non-alternantlike. If, however,
Y, is not an AL state, i.e. if it is of the form ¢, = ¢," + ¢,~, where ¢yt # 0
and ¢, # 0, then it is degenerate, and ¢, and ¢,” are both eigenstates of &,
with the eigenvalue m = 0.

In the above relations |m | is the absolute value of the quantum number

m. Note that ngmland (,lq—m‘]are not eigenstates of the spin operator S,. They are
only some normalized AL states which are of opposite parity and which
depend on the absolute value of the quantum number m.

We will now show that standard representation {S2,S,} can be chosen in
such a way that all basis vectors ¢% .. satisfy properties expressed by the
above corollary. Note first that the relations (38) imply

Yeme= T&m) (S )" 9%
111)25,—m,'v: = f(S, m) (SZ—)m wzs,o,r (458')

where f (s, m) is a function of s and m. Further

m
(S+1)m = (Sx + 'l: Sy)m = 2 ik (km) {Sxm-k Syk}pr
k=0

m
G =8, -i8)"= I D88, (45D)
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where { ...}, indicates that in the evaluation of the product of (m — k) ope-
rators S, with k operators S; one has to observe the exact ordering of these
operators, since they do not commute with one another. One now finds

(S+l)m == Oal + onal’ E_)" = Oal . Onal (462)
where
0, = 130 —E G {B S,
H K m m——9k-— k. A
Opa =t kEO D ([+}IZ){SX e Sy2l+1}pr (46b)
Hence
wzs,m,-v =Y + %3
Ysme = V12 (47a)
where

Y= f (s, m) Oal ¥s,0,%
(47b)
Yy = f (S; m) Onal wS,O.T

The operator {S,m-2kS§2k} is a product of (m— 2k) alternant operators S
and 2k antialternant operators Sy. According to Corollary 2 it is an alternant
operator, irrespective of the order in which particular operator S, and S,
enter this product. The operator O, is, hence, an alternant operator as well.
Operator Oy, is similarly found to be an antialternant operator. Further,
according to Corollary 6, the state ¢%,. can be chosen to be an AL state.
Assuming such a choice, ¥; and ¢, become AL states of opposite parity, and
the above relations are found to imply.

Lemma 2

Standard representation {S2,S,} can be chosen in such a way that all
basis vectors ¢z, . are AL states, while basis vectors ¢ ., . and ¢%_, . (m # 0)
are related to each other according to

wzs,m,': 53 1/\/2 (w+s,'[m\,'c Fis wis,im\,ﬂ:)

wzs,——m,r = 1/\/2 (w*‘s,[m],r I wis,'iru[,w) (48)

where ¢ /. € X,* and ¢ /. € X~ are normalized AL states of opposite
parity.

Note that basis vectors ¢%,,. (m # o) are not AL states. However, linear
combinations ¢z . = ¢% . are AL states. We will later show that though
base vectors ¢% . are generally not AL states, they are SAL states, hence,
they satisfy properties (35). We call each standard representation {S2,8,}
satisfying properties expressed by the above Lemma »alternantlike« (AL).
Lemma 2, thus, states that in X, there exists at least one AL representation
{82 8,}.
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Instead of quantizing along the z-axis, we could have equally well
quantized along any other axis, for example along the x-axis. This leads to
the basis vectors ¢% ., common eigenstates of the operator S? and Sy:

Ch wxs,m,': =s(s+1 wxs,m,'r
Sx wxs,m,'\: =m wxs,m,r (49)

In analogy to the standard representation {S2,S,}, one can form a standard
representation {S2,S,} in which basis vectors ¢% . corresponding to a spe-
cific value of the quantum number s can be grouped in one or several series
of (2s + 1) vectors connected by relations

8, Yim:=VsG+D—mm+ 1y .

S Wime=Vs@+D—mm—1 v . (50a)

where

8,"=8,+18, S *=8,—1i8§, (50b)

+
The (2s + 1) vectors
’L/}Xs,s,'v’ wxs,sfl,—n ey 1nuxssvs,‘*: (51)

span the space €., invariant subspace of the space X,. Since 8% and S, are
alternant, basis vectors % . of the standard representation {82, S} can be
chosen to be AL states, i.e. each ¢%, .. satisfies either ¢ . == ' .8 X',
or ¢ .= % m- € X7 This is in accord with relations (50), since operators
S.* and S_* are antialternant, and, hence, they transform each AL state of a
positive parity into an AL state of a negative parity, and wvice versa. One
thus derives:

Lemma 3

Standard representation {S2 S,} can be chosen in such a way that
basic vectors ¢~ . are AL states. In the case of such a choice, ¢ . € X,
implies Y341, € Xo, and vice versa.

We call each standard representation {82, 8.} satisfying the above pro-
perties »alternantlike«. Lemma 3 thus states that in X, there exists at least
one AL representation {82, 8,}. Note that the AL representation {82, 8.} is
defined in a different way from the AL representation {S?,S,} (see Lemma 2).
Lemma 3 implies:

Corollary 7

Let &,. be an invariant subspace spanned by (2s + 1) vectors (51) set
up in accord with the above lemma: Then:

a) If s is half integer, then the states ¢% . and ¢~ _, . are AL states of
opposite parity, i.e. t,’ﬂ‘s,,,_,,T € X, implies %, _, . € X, and vice versa.

b) If s is integer, then the states ¢~ .. and ¢% _, . are AL states of the
same parity, i. e. either ¢ ., ¥% _m. € Xyt or P ma U5 _m~ € X'

In particular, in the case of half integer s, basis vectors of the AL
representation {82 S,} spanning the space ¢,. are symmetrically distributed
among spaces X,* and X, : the space &, . contains (2s + 1)/2 basis vectors of
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positive parity, and (2s + 1)/2 basis vectors of negative parity. However, in
the case of integer s, there is a basis vector ¢% .. € €. which introduces
asymetry into this distribution. Hence in, the case of integer s one can
introduce the notion of the »parity« of the space € .: if ¢%,. € X, then
€. is »positive«, and if ¢%,. € X,* then €. is »negative«.

Let us now establish the connection between subspaces & . and &..
Since these subspaces are invariant with respect to the components of the
total spin operator S, and due to relations (38) and (50), the space &. is
either identical to the space &/ ., or the two spaces have no vector in common
(except nulvector). Hence and from the results obtained so far one can now
derive.

Theorem 2

Standard representations {82, S,} and {82, S,} can be set up in such a way
that they satisfy Lemma 3 and 4, respectively, and that in addition the (2s + 1)
vectors (39) connected to each other according to (38), and the (2s + 1) vec-
tors (51) connected to each other according to (50), span the same space & ..

In other words, AL representations {S% S,} and {82, S} can be chosen to
be in accord with each other, i,e. to generate the same set of subspace & ..
Such representations will be called »complementary«. Theorem 2 thus states
that in X, there exists at least one pair of complementary AL representations
{s2,8,} and {8% S,}. Each space ¢, . corresponding to a particular spin multi-
plet is spanned by (2s + 1) vectors (39), and also by (2s + 1) basis vectors
(51). All basis vectors (51) are AL states, and they alternate in parity as the
quantum number m gradually increases from m = —s to m = s. Basis vectors
(39) are not AL states and they satisfy relations (48), except for the basis
vector ¢%,. which is an AL state. There are two cases which chould be
distinguished: the case with s halfinteger and the case with s integer. In the
former case (s is halfinteger), base vectors (51) spanning the space & . are
symmetrically distributed among spaces X,* and X, . This symmetry is also
revealed by basis vectors (39), since in this case there is no state ¢7,., while
relations (48) clearly demonstrate that components of the base vectors ¢% .
are symmetrically distributed among spaces X,* and X, . In the latter case
(s is integer), this distribution is not symmetrical, and one can define the
parity of the space & .. The space ¢ . is defined to be »positive« if o € Xty
and negative otherwise. Note that the space X, contains the states with
halfinteger s if m is odd, and it contains the states with integer s if n is
even. For example, the space X, (n even) contains three singlets and one
triplet. From Theorem 2 it follows that two singlets and one triplet component
have one parity, while the third singlet and the two remaining triplet com-
ponents have another parity. The distribution of singlet and triplet components
among subspaces X, and X,  is not symmetric. In the case of the space X;
(n odd), there are eight doublets and one quartet. In the AL representation
each doublet contains one component in X;* and another component in Xi.
Similarly, a quartet contains two components in X;* and another two in Xj.
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The partition of these spin components among subspaces X;* and X; is hence
symmetric, etc.

We have shown above that basis vectors ¢% .. of the AL representation
{S2,8,} are AL states. Hence, all these vectors satisfy relations (12) which
express characteristic properties of AL states. Basis vectors ¢% . of the AL
representation {82, S,} are not AL states, expect for vectors ¢% . with m = 0,
and hence these vectors in general do not satisfy relations (12). On the other
hand, the quantization axis is arbitrary, and one can equally well quantize
along the x-axis, as well as along the z-axis. Hence, the above asymmetry in
the properties of the two sets of basis vectors is to some extent surprising.
However, a closer examination reveals that we have lifted the symmetry
between AL representations {82, S,} and {S% S,} by choosing the particular
representation (20) of Pauli matrices and by fixing source and sink vertices
according to the normal parity convention. Hence, one should not be surprised
that one obtains some asymmetry with respect to the two AL representations.
We will now show that this asymmetry does not involve spin-independent
properties (35), but rather only more detailed properties (12).

Consider the unitary operator U = f (8), function of spin operators 8, S;
and S,.2° Definition 1 implies that if ¢ is a SAL state, then ¢ = U ¢ is a SAL
state as well. Further, since U is a function of spin operators alone, it leaves
invariant the space & .. Consider now two normalized vectors ¢; and ¢, con-
tained in the space &.. It can be shown that, given ¢;, ¢, € ¢, ., there is a
unitary operator U = f(S) such that ¢, = U¢,. This follows from the rela-
tions (38) which imply that an arbitrary vector ¢ € & . can be obtained from
any of the (2s + 1) basis vectors &% . € &. through the repeated application
of operators §,” and S_?% which are themselves functions of operators S,
and Sy. Hence, if ¢ € . is a SAL state then any other vector ¢ € ¢, is a
SAL state as well, and vice versa. There follows

Lemma 4

a) Let &. be a (2s + 1) dimensional space spanned by (2s + 1) basis
vectors (39) connected to each other according to relations (38). Then, either
all states in ¢, are SAL states, or no state in ¢, (except nulvector) is a SAL
state.

b) Let €. be a (2s + 1) dimensional space spanned by (2s + 1) vectors
(51) connected to each other according to relations (50). Then, either all states
in €. are SAL states, or no state in €. (except nulvector) is a SAL state.

Since basis vectors ¢% . of the AL representation {S?, 8.} as well as
basis vectors ¢% . of the AL representation {S% S,}, are AL and hence SAL
states, Lemma 4 implies:

Corollary 8

Let {S% S,} and {S? S,} be AL representations in X,. Then, each subspace
&, as well as each subspace €., contains only SAL states.
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Corollary 8 contains in the condensed form the main result of this section:
in the space X, there exists at least one pair of complementary AL repre-
sentations {82, S,} and {S? 8,}. All subspaces & . generated by these repre-
sentations contain only SAL states. These states satisfy spin-independent pro-
perties (35). In particular, all basic vectors ¢% .. of the AL representation
{82, 8,} are SAL states. This is now an a posteriori justification of Definition 1
of SAL states. The set of all SAL states is thus shown to be sufficiently large
to discuss spin eigenstates and their relation to spin-independent properties.

7. CONNECTION BETWEEN COMPLEMENTARY REPRESENTATIONS
{s?, S,} AND {S2, Sy}
One can establish a more intimate connection between basis vectors ¢% -
and ¢% . of complementary representations {S2,S,} and {S2, S}, respectively.
Operator U = §f (S) can be chosen to be

U, (@) =exp(—ig8,) (52a)

where
S,=8,u +S,u,+8S,u, i (52b)

is a scalar product between the spin operator 8 and a unit vector u = (U, Uy,
u,). Operator (52) represents the rotation of spin states about the wu-axis for
the angle ¢.18 In particular, the operator

U@R/2) =exp(—im Sy/2) = cos (8, 7/2) — i sin (CH n/2) =C—iD (53)

rotates spin states about y-axis for the angle @ = 7/2. Hence, it transforms
eigenstates of S, into eigenstates of S,. Since the subspace &, . is invariant with
respect to the operator U (n/2), this operator transforms basis vectors ¢% .-
of the AL respresentation {82 8,} into basis vectors /%, ., . of the AL represen-
tation {S2, Sc}:

U (7/2) W = Womn (54a)

The inverse transformation reads
Ut (/2 Y = Yime U'(@/2)=U(—a/2) =C+iD (540)

while operators € and D satisfy the identity relation
C2+ D=1 (55)

Let us now concentrate on the particular space & .. For the sake of simplicity
we will supress quantum numbers s and 7 in denoting basis vectors (39) and
(51), all vectors being tacitly assumed to be contained in the space & .. Using
(48), relations (54) can be now written in the form:

(€ +iD) yy" = YV2 Wl + ¥]u])
d m =0 (562)
©+iD)y_ " = 1V2 Wlu[ — ¥

C—iD) UV2 Wl + ¥|u) = "
ey g ‘ m#0 (56b)
(C—iD)1/V2 (’/"!m\* —Yl]) = ¥
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Consider now operator € = cos (78,/2). This operator is a linear combination
of even powers of the antialternant operator Sy, and according to Corollary 2
it is an alternant operator.?® Similarly, operator D = sin (z8,/2) is a linear
combination of odd powers of the antialternant operator S,;, and hence it is
an antialternant operator.?! Further, all vectors ¢,* are AL states. Hence, in
the above relations one can separate components contained in the space X,*
from the components contained in the space X, . Two cases can be considered,
depending on whether s is integer of half integer:

a) Quantum Number s is Half Integer

Spin quantum number s is half integer in the case of spaces X, with n
odd, i.e. describing an odd number of particles. According to Corollary 7,
basis vectors ¢,* and ¢_,* are in this case AL states of cpposite parity. Let
us assume ¢* € X,* and ¢*_, € X, . Relations (56a) now imply:

W' = V2Cu5  ylu[ =i V2Dy,”
W‘Emr =i \/ED ’(/)_mx» 'L/)Wm|‘ == _\/EC y)—mx . (573)
while relations (56b) imply:

WS = 1/V2(© 1/)%!m]+ —iD '(,U[m

D Oyl =Dyl

Vo = —UV2EC | +iDy[),  Cyll =—iDyl,| {57b)
and hence -
v =V 2Cyl[ = —iV 2Dy,
p_S=V2cC Yl = — V2D Y|l (58)

Analogous relations are obtained in the case ¥,* € X, ¢_,* € X,". Note that
according to Lemma 3, ¢~ € X,* implies {541 € X, etc. From relations (57)
and (58) it follows that basis vectors ¢% .= ¢n* and % n. = Un* of AL
representations {82 8.} and {82, 8,}, respectively, satisfy:

(€ —1/2) . = @ —1/2) %, =0
(C— 1D Y e = @ — 1/ 9, =0 (59)

Using identity (55) the first pair of relations in (59) can be derived from the
second pair, and vice versa.

b) Quantum Number s is Integer

Spin quantum number s is integer in the case of spaces X, with n even,
i. e. those describing an even number of particles. This case can be analyzed
analogously to the half integer case starting from relations (56). However, the
case with m = 0 should be treated separately. Corcllary 7 states that basis
vectors % and ¢_* of the AL representation {82, 8.} are of the same parity,
and there is now a vector ¢,* having the projection m = 0 on the x-axis and
defining the parity of the subspace & . Without loss of generality, one can
assume that the parity of the space & . is pesitive. Assume further that
¥.* € X,*. In this case one obtains:
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Basis vectors ¢,* and ¢, satisfy:

Cy,"=v,, Cy)/=vw,, DyJS=DyS=0 (60a)

Vectors with m even (m = 0) satisfy

whal" = V2Cyp_*= V2Cy__*

zp{m'“ =iV2D Pt =—i VE'Di/)_m‘
C?,uzm‘ =D z/v:m:' =)
V2 @ + w_pd = Cyly[f

V2 —y_p) = —iDyl | (60b)

Similar relations can be derived for vectors with m odd.

8. SPIN EIGENSTATES AND SPIN-INDEPENDENT ALTERNANT AND NONALTERNANT
SYSTEMS

Let us now consider spin-independent systems. Intuitively, these systems
are expected to have a complete set of eigenstates which are simultaneously
common eigenstates to spin operators S* and S,. We will now define spin-
independent alternant and spin-independent nonalternant (arbitrary) systems
in terms of the corresponding Hamiltonians, and we will show that these
systems can be efficiently analyzed using the complementary AL represen-
tations {S2 S,} and {S2, S,}.

a) Spin-independent Alternant Systems

Consider the Hamiltonian operator

H=H,+Z (61)

where H,° is a spin-independent alternant operator, while Z is a vanishing
operator. In other words, H,° is a linear combination of reduced spin-inde-
pendent alternant operators (27a) while Z is a linear combination of vanishing
operators (7). Since H,° is spin-independent, operators H,", S*> and S, com-
mute with one another, and hence they can be simultaneously diagonalized.
Due to the vanishing of Z over X,, it follows that in X, there is a complete
set of common eigenstates to operator H, S*> and S,. Since further operators
H, S? and S, are weakly-alternant, all these eigenstates can be chosen to be
alternantlike. Hence, there always exists a complete set of AL eigenstates
common to operators H, 82 and S,. Moreover, unless there is some additional
degeneracy which is not due to the spin multiplicity, this set is unique. All
these eigenstates satisfy properties (12) characteristic of AL states. Note that
eigenstates to the operator H alone are not neccessarily AL states. The form
(61) guarantees only the existence of the complete set of AL eigenstates, which
does not yet imply that each eigenstate of H is an AL state. Namely, if H
contains some degenerate eigenstates, non-AL eigenstates may exist. This is
actually the case, since common eigenstates to H and S2 other that singlet
states are degenerate. The same conclusion can be reached in a slighly dif-
ferent way. The three operators H,°, S and S, also commute with one another.
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Hence, there is a complete set of common eigenstates to operators H, S2 and
S, as well. However, S, is an antialternant operator, and hence according
to Corollary 4, its eigenstates are not AL states, unless the corresponding
eigenvalue m vanishes. Accordingly, an eigenstate common to H, §% and S,
is not an AL state, unless m = 0. Using the results obtained in the preceding
sections one can show that common eigenstates to H, S? and S, can be chosen
to be SAL states, and moreover, that there always exists complete set of
common eigenstates to H, 8% and 8, which is in accord with Theorem 2. In
other words, one can derive

Theorem 3

Let H = H,° + Z be a Hamiltonian operator where H,° is a spin-inde-
pendent alternant operator, while Z is a vanishing operator. Then, there are
complementary AL representations {82, S,} and {82, S,} such that basis vectors
Y% m~ of the AL representation {S? S,}, as well as basis vectors ¥, . of the
AL representation {82 S,}, are eigenstates of the Hamiltonian operator H:

H 7\lums,m,'c =E

5,7 wzs,m,r
H wxs,m,r = Es,—. wxs.m,'r (62b)

According to the above theorem, all properties and relations derived in
the preceding sections for the vectors contained in the space & . apply to the
above eigenstates of the Hamiltonian operator H. In particular, each space
&.. spanned by (2s + 1) vectors (39), or equivalently by (2s + 1) vectors (51),
contains only SAL states. All these states are degenerate (unless s = 0) eigen-
states of the Hamiltonian operator H, and they all satisfy spin-independent
properties (35). Moreover, states ¢*; . which are common eigenstates to ope-
rators H, S? and S,, are AL states and hence they satisfy, besides spin-inde-
pendent properties (35), also more demanding properties (12). The parity of
these states alternates as one gradually increases m from m = —s to m =s
(s and 7 being fixed), etc. Due to all these properties, it is proper to consider
each Hamiltonian of the type (61) as describing some spin-independent alter-
nant system. We will also consider that Hamiltonians of the type (61) describe
all such systems, i.e. we will consider operator form (61) as the defining
property of spin-independent systems.

Theorem 3 guarantees the existence of the representations {S%, S,} and
{S2, S,} with the said properties. It does not yet imply that each eigensfz:te of
the Hamiltonian operator H is a SAL state. For example, if ¢% . and %+
are degenerate eigenstates of H with the common eigenvalue E;. = E,, then
each linear combination of these two states is also an eigenstate of H, but
it is not necessarily a SAL state. However, if besides spin multiplicity there is
no additional degeneracy, such cases cannot arise and hence

Corollary 9

Let eigenstates of the Hamiltonian operator (61) have no degeneracy other
than spin multiplicity. Then,
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a) There is one and only one AL representation {S2,S,}, such that all
basis veetors ¢% . of this representation are eigenstates of H.

b) There is one and only one AL representation {S%, S,}, such that all basis
vectors ¢% . of this representation are eigenstates of H.

¢) Representations {S? S,} and {S2, S,} are complementary and each eigen-
state of H is contained in some subspace & ..

In particular, this corollary implies:

Corollary 10

If besides spin multiplicity there is no additional degeneracy, each eigen-
state of the Hamiltonian operator (61) is a SAL state.

Hence, all eigenstates of such an operator satisfy spin-independent pro-
perties (35).

b) Spin-independent Nonalternant Systems

Let us now consider arbitrary spin-independent systems which are des-
cribed by Hamiltonian operators of the general type

H=H+Z (63)

where H° = H°, + H,, is an arbitrary spin-independent operator, while Z is
an operator vanishing over X,. Since H° S? and S,, as well as H°, S and S,
are mutually commuting operators, there exists a complete set of common
eigenstates to operators H, S? and S,, as well as a complete set of common
eigenstates to operators H, S% and S,. However, unless H°,,; vanishes over X,,
an operator H is not a weakly-alternant operator, and hence its eigenstates
are not guaranteed to possess either properties (35) or properties (12). In
fact, one can show that if ¥, does not vanish over X,, a Hamiltonian (63)
cannot have the complete set of AL eigenstates.!2!® Hence, if {S?,S,} is an AL
representation, eigenstates ¢s,, common to operators H, S? and S, are gene-
rally not contained in spaces & . but rather have nonvanishing components in
several such spaces, i. e. they are of the form

Ysmp = 2 Cus,m,'\: wzs,m,'c (64)
T

Though each state ¢% .. is a SAL state, the state ¢sn, is not necessarily
such a state, and it usually does not satisfy properties (35). There is one inte-
resting exception. According to relation (43) there is only one spin multiplet
with the total spin number s = n/2. In other words, there is only one space
&2, (T assumes only one value) and hence

Corollary 11

Let H=H°+ Z be a Hamiltonian operator describing some spin-inde-
pendent system. Each vector in the space ¢,,. (7 assumes only one value) is a
common eigenstate of operators H and S2. All these states are SAL states
satistying properties (35). In particular, the (n + 1) vectors ¢, .. spanning
the space ¢&,,. are common eigenstates to ¥, S? and S, and they are AL states
satisfying relations (12).
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Thus, despite the fact that the operator (63) in general describes nonalter-
nant systems, there are always (n + 1) linearly independent AL states which
are degenerate eigenstates of H and which correspond to the highest spin
multiplet s = n/2. For example, in the case n = 2 there is only one triplet,
and hence all triplet eigenstates of the Hamiltonian (63) are SAL states,
irrespective of the nature of the spin-independent operator H°.

9. SOME EXAMPLES OF SPIN-INDEPENDENT ALTERNANT AND NONALTERNANT
SYSTEMS

In order to illustrate the applicability of the results obtained in the
preceding sections, let us give some examples of the spin-independent alter-
nant and nonalternant systems.

a) In the second quantization formalism the Pariser-Parr-Pople (PPP)
Hamiltonion of a conjugated hydrocarbon system can be written in the form

Hp =K=X B, + = ﬂij p;j + = ?)ij(qi =5 (, — D4+ = Yii (qim— 1/2) (qi‘g T 1/2) (65a)
i i i<j i
where q;* and q;# are spin-a and spin-fi charge operators, respectively, while
g; and p;; are total charge and total bond order operators:

&G = i iy &P = 136" M & = @ + @f
B = Dy + Dyl = O M + Mo Mo 0ig" Mp T g Mip)/25 A= (65D)

In addition, f;; = B; are resonance integrals, K is the effective potential
energy of a m-electron which is the same on each carbon atom (i), and vj; = ¥
are electron repulsion integrals

i = §w; (1) w; (1) 1/ry w; (2) w; (2) d1 a2 (66)

Up to the constant, the Hamiltonian (65) is identical to the PPP Hamiltonian
as defined by McLachlan.* The form (65) is, however, more suitable for our
purpose here. In the case of alternant hydrocarbons, resonace integrals B8;
vanish if atoms (i) and (j) are of the same parity. Using reduced spin-inde-
pendent operators (25) one finds

Sq,=123R; 4+ nl

Dy = /2R,
(@;—1) (o, —1) = L/2 R
(@ —1/2) (@ — 1/2) = 1/4 R, ;; + 1) (67)

Since R%; = R, i, + Rigis, relations (7) imply =; Ro; = Z% and hence 3; R9;/2
vanishes over X,. The operator X q; is thus a linear combination of a spin-
independent alternant operator nI, and a vanishing operator Zs. Consider
now bond order operator p;;. These operators are spin-independent alternant
operators whenever vertices (i) and (j) are of opposite parity. In the case of
alternant hydrocarbons, the partition of vertices (i) on source and sink can
be chosen so that it coincides with the partition of carbon atoms on starred
and nonstarred ones.'!? This being assumed, all bond operators p;; contained
in the expression 0, = X f;; p;; are alternant operators, and hence O, is an

ij

+ 1
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alternant operator as well. Further, operators R%;; and RY;; are alternant
operators irrespective of the parity of indices (i) and (j). The PPP Hamiltonian
(65) is hence a linear combination of a spin-independent alternant operator
and an operator vanishing over X,, i.e. it is of the form (61) and hence it
describes a spin-independent alternant system. This proves that in the case
of neutral alternant hydrocarbons the eigenstates of the PPP Hamiltonian H,
have all the properties discussed in the preceding section. In particular, these
eigenstates satisfy spin-independent properties (35), etc.

In the treatment of the eigenstates of the PPP Hamiltonian (65) associated
with neutral alternant hydrocarbons, McLachlan has shown that »even« and
»odd« eigenstates of this Hamiltonian have a uniform charge density distri-
bution over all carbon atoms and vanishing bond orders between carbon atoms
of the same parity,* i.e. he has derived properties (35a) and (35b) for such
eigenstates. Even and odd functions were originally introduced by Pariser in
connection with the clasification of the SCF 7-electron eigenstates of neutral
alternant hydrocarbons.?> He classified singly-excited states into plus and
minus types, and McLachlan generalized this notion to the corresponding CI
space. Plus states as defined by Pariser are odd states as defined by McLach-
lan.* It can be shown that even and odd eigenstates of the PPP Hamiltonian
(65a) are SAL states.'® On the one hand, eigenstates of this Hamiltonian are
either even or odd.* On the other hand, we have shown here that, unless there
is some additional degeneracy, all eigenstates ¢ € X, of the Hamiltonian (65a)
are SAL states. Hence, each even and each odd eigenstate ¢ € X, of this
Hamiltonian should be a SAL state. However, these states are not necessarily
AL states.'® This establishes the connection between the MO approach which
is based on the pairing theorem and our approach here which is based on
the splitting theorem.

The PPP Hamiltonian for a nonalternant hydrocarbon system is identical
to the PPP Hamiltonian for the alternant system, except that resonance inte-
grals f;; are now allowed to be arbitrary. Hence, it contains spin-independent
antialternant operators p;; with (i) and (j) of the same parity, i.e. it is of
a general form (63) Similarly, if the PPP Hamiltonian describes a conjugated
heterocompound with the heteroatom at the vertex (s), effective potential
energy K, of a m-electron situated at this heteroatom differs from the effective
potential energy K, and to the operator (65) one has to add the perturbation

OKq, =120 KR+ dKI=0,_°+0,° (69)

where 0K = K,— K. There is also a change in the resonance integrals f
and in the Coulomb integrals 7., and 7. However, these integrals are as-
sociated with spin-independent alternant operators. Hence, the PPP Hamil-
tonian is again of the general form (63), since it contains a spin-independent
antialternant operator 1/2 6K Ry° which does not vanish over X,. In both
cases, as in numerous others of the type (63), eigenstates of the PPP Hamil-
tonian are in general not SAL states. Hence, they usually do not satisfy
spin-independent properties (35), but they can be represented in the form (64).

b) Consider the Hamiltonian operator

H, =X27;§;§; (69)
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where f;; = f;;* are coefficients forming a hermitian matrix, while S; = (Si,
Siy, S;;) is a spin operator associated with the vertex (i):

Sic = 1/2 (ny, Nig + 77;(; Nig)
Siy = V—11/2 (7]18+ Niw— Niee 7ig)
S, = 1/2 3y Mo — 3" Mig) (70)

Besides magnetic dipole interaction between two spin-1/2 particles, the term
S;S; in (69) can also describe the exchange interaction between these par-
ticles.?® Such an interaction is due to the Pauli exclusion principle; it is much
larger than the magnetic dipole interaction, and it does not depend explicitly
on spin.?® In physics, the Hamiltonian (69) is known as the Heisenberg spin
model, and it describes ferromagnetic and antiferromagnetic systems.?3:?* In
chemistry, the same Hamiltonian describes neutral conjugated hydrocarbons
within the simple valence bond (VB) theory.?® In this latter case fj; # 0 for
directly bonded carbon atoms, and f;; = 0 otherwise.* The usual treatment
of the Hamiltonian (69) is to assume that at each vertex (i) there is a particle
which is either in the spin-a or in the spin-f state.?® Accordingly, eigenstates
of the operator (69) are expanded in terms of the basis vectors

771; 772(14' 2 nnzz+ I 0>
7713+ 772&+ e nn; I 0>
Nig N -+ Mg’ * 0> (71a)

containing no pair {7, 7;s} of creation operators associated with the same
vertex (i). Formally, vectors (71a) span some linear subspace of the space X..
Besides these vectors, the space X, contains vectors such as

Nig Mg ---[0> (71Db)

etc. containing two electrons of the opposite spin situated at the same vertex.
We will treat the Hamiltonian H; from this more general point of view, i.e.
we will consider the whole space X,, and not only its subspace spanned by
vectors (71a). The restriction of the space X, to the subspace spanned by
vectors (71a) may be partly justified on the grounds that for the usual choices
of the coefficients f;;, basis vectors of the type (71b) are energetically less
favourable than basis vectors (71a), and that, in addition, there is no inter-
action between basis vectors (71a) and other vectors in the space X,. Hence,
the energetically lowest eigenstates of the Hamiltonian Hj can be expanded
in terms of basis vectors (71a). However, we would like to treat a Hamiltonian
(69) for an arbitrary selection of coefficients f;; and not only for those ren-
dering basis vectors of the type (71b) less favourable. Even more important
is that a Hamiltonian (69) may be considered as an approximation to a more
realistic Hamiltonian containing terms which couple basis vectors (71la) with
other basis vectors in X,. In general, no eigenstate of such a perturbed Hamil-
tonian lies entirely in the space spanned by vectors (71a), but rather contains
nonvanishing components of the type (71b).
Let us now consider eigenstates of H; in X,. Operators n;

n; = 77iot+ Nia F 77i,3+ Mig (72)
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which describe the total number of particles at the vertex (i) commute with
H,, 8% and S,. Hence, there is a basis in X,, which simultaneously diagonalizes
Hy, $2, S, and n; (1 =1 to n). Each operator m; has eigenvalues n; =0, 1, 2.
Basis vectors (71a) are eigenstates of operators n; with the eigenvalues n; = 1
(i = 1 to n). Hence, the eigenstates of H;, spanned by these basis vectors cor-
respond to eigenvalues n; =1 (i =1 to n) of operators m;. One easily selects
in X, all basis vectors corresponding to the particular set {n;, n,, ..., 7,5 S n; =
= n) of eigenvalues of operators n;. These basis vectors span a subspace in X,
and one can diagonalize Hj in this subspace in the some way as Hj is usually
diagonalized in the subspace spanned by vectors (7la). One finds that all
doubly occupied vertices, i. e. such which are associated with the eigenvalue
n; = 2, do not interact with other vertices. Hamiltonian Hj is effective only
between vertices occupied by one electron, i.e. those which correspond to the
eigenvalue n; = 1. Note that among the above eigenstates of Hy, only those
spanned by vectors (71a) have a uniform charge over all vertices (7). In the
case of all other simultaneous eigenstates of H; and operators n; there is at
least one vertex where the charge equals two, and at least one vertex where
the charge vanishes. Since each SAL state satisfies (35), such eigenstates of
Hy, are not SAL states.

Let us now treat the Hamiltonian Hj, from the points of view of the gene-
ral method developed in this paper. Using relations (2) spin operators S; =
= (Six; Siy, Si;) can be expressed in terms of the reduced operators

Six = 1/2 Ria,iﬁ
Siy i _1/2 Pia,iﬁ
8;, = 1/4 Ry, ;, — Rig 10) (73)

and according to (5) operators S;, and S;, are antialternant, while operators
Six are alternant. It follows from Corollary 2 that each operator §;8; is an
alternant operator. In addition, using the anticommutation algebra of creation
and annihilation operators 7* and 7 one finds that §;S; commutes with the
components of the total spin operator S, i. e. that it is a spin-independent ope-
rator. The same conclusion can be drawn explicitly since relations (25) imply

S,S;=—/182R";; + R (74)

iiii T Rij i)
i.e. §;8; is a linear combination of spin-independent alternant operators. The
Hamiltonian Hj, is hence a spin-independent alternant operator and it describes
a spin-independent alternant system.?” All conclusions derived in the preceding
section about spin-independent alternant operators are hence valid in the
case of the operator Hj; as well. For example, there exists a complete set of
common eigenstates to Hj;, 8% and S, satisfying relations (12), as well as a
complete set of common eigenstates to H;. S* and S, satisfying spin-indepen-
dent properties (35), etc. In addition, in the particular case of the operator I,
one can draw some other interesting conclusions. Common eigenstates to Hj,
8% and S8, satisfying relations (35) are SAL states, but we have shown above
that Hj, contains many eigenstates which are not SAL states. These states are,

hence, linear combinations of SAL states, and it follows that, irrespective of
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the numerical values of the coefficients fj;, eigenstates of the Hamiltonian
operator (69) have degeneracy which is not due to the spin multiplicity. One
can express SAL states which are common eigenstates to H;, 8% and 8, in
terms of the common eigenstates to Hy, S%, S, and n; (i = 1 to n).!¢ It should
also be noted that using (74) the square 8% = X;; 8; S; of the total spin ope-
rator S can be explicitely written as a linear combination of spin-independent
alternant operators. The operator 2 is hence a spin-independent alternant
operator, which we have already independently concluded in the fourth section.

It is instructive to compare the PPP Hamiltonian H, formulated within
the MO theory with the Hamiltonian Hj, which can be considered to be a
simple VB Hamiltonian. The former Hamiltonian is alternant, provided reso-
nance integrals f;; vanish between carbon atoms of the same parity, i.e. pro-
vided it describes an alternant hydrocarbon system. The latter Hamiltonian
is alternant irrespective of the hydrocarbon system it describes, i.e. it is an
alternant operator even if it describes nonalternant hydrocarbons. Hence, the
PPP Hamiltonian H, clearly distinguishes between alternant and nonalternant
hydrocarbons, and in particular it predicts charge polarization in the case of
nonalternant hydrocarbons, while the simple VB Hamiltonian H), is unable
to predict this charge polarization. This also explains why the pairing theo-
rem,>% or any of its equivalents, was originally formulated within the MO
and not within the VB approach.

¢) The PPP Hamiltonian (65) was very successful in describing 7m-electron
eigenstates of conjugated alternant hydrocarbons. However, this Hamiltonian
explicitely neglects all two-particle interactions, except for Coulomb inter-
actions. Thus, the operator (a; — 1) (g; — 1) contained in the third term of the
Hamiltonian (65a) corresponds to the Coulomb interaction between effective
charges on atoras (i) and (j), while the operator (q;* — 1/2) (q;® — 1/2) contained
in the last term of this Hamiltonian describes the Coulomb interaction
between two electrons with oppcsite spins situated at the same atom {i). One
can add to the Hamiltonian (65), as well as to the Hamiltonian (89), any linear
combination of spin-independent alternant operators (27a) without altering
the general properties of the corresponding eigenstates, as expressed by
Theorem 3. In particular, one can consider the Hamiltonian

H=H +H (15)

where H, is alternant. This Hamiltonian again cdescribes a spin-independent
alternant system. One can look upon the Hamilicnian (75) as the refinement
of the PPP Hamiltonian H, with the inclusion of the spin-spin interactions
and/or exchange interactions. Alternatively, one can consider this Hamiltonian
as a more realistic Heisenberg (simple VB) Hamiltonian H;, which includes
resonance integrals f;;, Coulomb integrals 7, etc.

We could now give many other examples of operators describing spin-
independent alternant systems. All these operators can be written in the
general form (61). Once the operator is shown to be of this type, its eigen-
states possess all the properties derived in the preceding sections.
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10. SUMMARY AND CONCLUSION

We have considered the CI space X, generated by m electrons moving
over m spin-a orbitals X; = w;a and n spin-f orbitals X; = w;f, w; being
orthonormalized atomic orbitals. The space X, is a direct sum of comple-
mentary subspaces X,* and X,  containing alternantlike (AL) states.!® These
states satisfy properties (12) which are not shared by arbitrary states ¢ € X,.*2
In order to derive these properties one has to define reduced alternant and
reduced antialternant operators which span the space of all alternant and
the space of all antialternant operators, respectively.!’> These results were
obtained elsewhere,' 3 and using a similar approach we have investigated
here spin-independent operators and spin-independent properties. Such an
analysis is highly interesting, since many Hamiltonians describing actual
physical systems are spin-independent operators. The following results were
obtained:

a) A set of all" reduced spin-independent alternant and spin-independent
antialternant operators is obtained (egs. 25 to 27). Each spin-independent
alternant operator is a linear combination of reduced spin-independent alter-
nant operators, and each spin-independent antialternant operator is a linear
combination of reduced spin-independent antialternant operators. An arbi-
trary spin-independent operator can be represented as a linear combination
of a spin-independent alternant and a spin-independent antialternant operator.
This representation is unique. Reduced spin-independent operators thus
serve as »building blocks« of spin-independent alternant and spin-indepen-
dent antialternant operators.

b) Semi-alternantlike (SAIL) states are defined. These states generalize
the notion of AL states, and this generalization is necessary in order to inve-
stigate spin-independent properties of spin eigenstates. Each SAL state is of
the form ¢ = U¢*, where U is a unitary operator, a function of spin ope-
rators Sy, Sy and S,2 while ¢+ € X, is an alternantlike state. A complete
set of all one- and two-particle spin-independent linear properties of SAL
states is obtained. This set is the same as the complete set of all one- and
and two-particle spin-independent linear properties of AL states. In other
words, there is no spin-independent linear property common to AL states
which is not at the same time common to SAL states as well. In particular,
it is shown that SAL states have a uniform total charge density distribution
over atomic orbitals w;, vanishing total bond orders between atomic orbitals
of the same parity, etc. These properties are natural generalizations of the
properties of 7-electron eigenstates associated with neutral alternant hydro-
carbons.

c) Standard representations {$% S,} and {S2% S,} in X, are considered.
Eeach orthonormalized set {gllzs,lm} of common eigenstates of operators S? and
S, defines a representation with S* and S, diagonal. Standard representation
{8% S,} is such a representation in which the basic vectors corresponding ‘o
a specified value of the quantum number s can be grouped into one o
several series of (2s + 1) vectors connected to each other via operators S.*
= 8; +iSy; and S_?=8§,—iS;'® An analogous property is satisfied by stan-
dard representations {S2 S,}. It is shown that standard representations {82, S,}

=

Il
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and {$?, S} can be chosen in such a way as to satisfy the following additional
properties:

1) The (2s + 1) vectors ¢% . (variable m) and the (2s + 1) vectors ¢% -
(variable m) span the same space & .. The space X, is a direct sum of sub-
spaces & ..

2) Each space &. contains only SAL states. Some of these SAL states
can also be AL states.

3) Each basis vector ¢% .., common eigenstate to operators S? and S,,
is an AL state. In addition, if ¢% . € X,*, then t//ﬁ,mim € X, , and vice versa.

4) Basis vectors ¢%,. are AL states. In particular, all singlet states 7, -
are AL states.

5) Basis vectors ¢7 .. (m # 0) satisfy relations (48) where ¢* € X,* and
¢~ € X,~ are AL states. In particular, these vectors are SAL states, but they
are not AL states. However, linear combinations ¢% ,, . = ¢% _,, . are AL states.

6) Many additional properties of basis vectors ¢% .. and basis vectors
% m~ are also obtained in the paper.

7) If the standard representation {82, S,} satisfies property 4), then there
is a standard representation {82 S}, so that these two standard representations
satisfy properties 1) through 6). Similarly, if the standard representation
{S2,S,} satisfies property 3), then there is a standard representation {S2,S,},
sa that these two standard representations satisfy properties 1) through 6).
In the former case we say that the representation {S2% S,} is »alternantlike«
(AL), while in the latter case we say that AL is the representation {S2 S.}.
If standard representations {S2% S,} and {8% S,} are AL, and if in addition
they are in accord with each other, i.e. if they satisfy the point 1) above,
then we say that they are »complementary«.

d) Let H=H°; + Z be a Hamiltonian operator where H°; is a spin-
independent alternant operator, while Z is an operator vanishing over X,.
Eigenstates of H can be chosen to be in accord with complementary AL repre-
sentations {S2% S,} and {82 S,}, i.e. with properties c) above. If besides the
spin multiplicity there is no other degeneracy, this choice is unique. In parti-
cular, common eigenstates to H, S and S? are SAL states ¢% .., common
eigenstates to H, S? and S, are AL states ¢% .., etc. All these eigenstates
satisfy spin-independent properties (35). In addition, those eigenstates which
are AL states (e. g. eigenstates ¢% ,.) satisfy more demanding properties (12).
Hamiltonian operators of the form H = H°; + Z are hence considered to
describe spin-independent alternant systems, and this operator form is taken
as a definition of such systems.

Using the results cbtained in this paper one can get an exhaustive insight
into the scope of spin-independent properties associated with alternant sy-
stems. All spin-independent alternant systems can easily be constructed and
identified. The corresponding eigenstates possess remarkable properties (35).
Arbitrary spin-independent systems can also be analyzed using the same
formalism. In this case the corresponding eigenstates are not necessarily SAL
states and they do not satisfy spin-independent properties (35). However,
each eigenstate can still be represented as a linear combination of SAL states.
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SAZETAK
Spinska viastita stanja i alternantni sustavi
T. Zivkovié

Razmatran je Kkonfiguracijsko-interakcijski prostor X, koji je izgraden od 2n
spinskih orbitala w;, ¢ gdje w; (i =1 to m) odreduje prostorni ac (6 = «a, /) spinski
dio valne funkcije w;, o. Spinski neovisni alternantni sustavi definirani su s pomocu
odgovarajuc¢ih hamiltonijana. Svaki od tih hamiltonijana je linearna kombinacija
spinski-neovisnog alternatnog operatora ©. i operatora Z koji se ponistava preko
prostora X,. Prostor svih spinski-neovisnih alternatnih operatora jest linearni pro-
stor razapet »reduciranim« spinsko-neovisnim alterniraju¢im operatorima koji su
eksplicitno dani. Sli¢no, prostor svih poniStavajucih operatora 7 razapet je nekim
osnovnim operatorima koji su takoder jasno definirani. Slijedi da se svaki hamilto-
nijan spinsko-neovisnih alternatnih sustava moze lako konstruirati i identificirati.
Vlastita stanja tih hamiltonijana imaju niz interesantnih svojstava koja su u stvari
generalizacija dobro poznatih svojstava neutralnih alternantnih ugljikovodika.





