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The inclusion of a tetrahedral XY4 molecule (or ion) in a
crystal is, very often, followed by a lowering of its symmetry.
In order to describe the apparent distortions of the tetrahedron,
second-rank tensors wereconstructed. It was shown that the
characteristic surface of such a tensor is always an ellipsoid. The
relative lengths of the axes of the ellipsoid and their position
with respect to the symmetry elements of the XY4 group can be
used to determine the effective symmetry of the molecule, as well
as the degree of its distortion. Some of the spectral properties
of the studied compounds can also be predicted. 36 S04 ions with
accurately refined structures were investigated and the results
obtained by this method were compared with the results' obtained
by other-= methods. A correlation of rather high significance (r2 =
= 0.97) was found between the main components of the tensor
and the frequencies of the components of the antisymmetric
stretching vibration (V3) of the molecule.

INTRODUCTION

In a number of solid state studies ' of molecules, a lowering of symmetry
is observed. In most cases, the local symmetry of such molecules is Cl - the
lowest one possible (see e. g. Baur"). Despite this, it may be important to
determine the so-called »effective« symmetry (the term »co-kernel« sym-
metry is sometimes used in the same sense"), since it often seems that the
latter is higher than the local crystallographic one."-" Unfortunately, it is not
altogether dear how the effective symmetry can be exactly determined. One
of the possible approaches is based on the use of symmetry coordinates, as
shown by Murray-Rust et ap,4,7.

Several methods have so far been used to describe the distortions of
tetrahedral molecules in crystals.2-4,7,8 Baur" uses distortion indices, Murray-
-Rust et ap,4 employ displacement vectors and Dollase" defines the degree
of distortion as the average distance between corresponding atoms of the
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given molecule and the reference one, the latter being chosen as the »... least-
-squares bestfit polyhedron with optimum location, orientation, size para-
mete rs and prescribed syrnmetry«."

The intention of the present work is to show that the degree of distortion
and the effective symmetry of the tetrahedron can be quantitatively expressed
by the use of tensors. In addition to this, some spectra-structure correlations
are also pointed out.

MATHEMATICAL METHOD

Let us consider a second-rank tensor with components constant with
respect to some space-fixed coordinate system. Ii we denote the components
as Tij (i, j € {1, 2, 3}, the tensor will define a second-order surface in the
tridimensional space, given by:

Ta . X2 + T22 . y2 + T33 . Z2 + (Tl2 + T21) . x . y + (T!3 + T31) . x . Z +

or
(1)

i, j € {I, 2,3} (2)

In the domain of orthogonal transformations, it can be proved (see Appendix 1)
that the surface does not depend on the choice of the coordinate system.
This allows us to use only Cartesian orthogonal coordinates in which case
the covariant and contravariant vectors and tensors coincide and we decide
on writing their indices as subscripts.

Let XY4 be the molecule of interest. The following notation is used:

Ii we write

-+
XYI = P = {PI' P2' P3}

-+
XY2 = q = {ql' q2' q3}

-+
XY3 = r = {TI' T2, T3}

-+
XY4 = S = {Sl' S2' S3}

ql· . qJ. T· • T· S· • S·+ _I_J_+ _I_J_

I q IS I r IS I s IS
i, j € {l, 2, 3} (3)

it is obvious that the right-hand side of equation (3) is a tensorial quantity
and so it is independent of the choice of the coordinate system which can,
therefore, be chosen quite arbitrarily. The quantity o is a constant and will
be discussed in more detail later.

Let us now briefly examine some characteristic cases:
a) Let the atoms YI, Y2, Y3, Y4 be at the corners and the atom X in the

center of a regular tetrahedron. The X - YI distance is fixed as a unit of
length and the x, y, z axes of the coordinate system are chosen to coincide
with the C2 axes of the molecule. The coordinates of the atoms are:

X - (O, O, O)
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YI - (O, -../3/3, -../2/3)

Y2 - (O, -../3/3, --../2/3)

Y3 - (-../2/3, --../3;3, O)

Y4 - (--../2/3, - -../3;3, O)

Substituting these coordinates (since they are, at the same time, the com-
ponents of the four vectors) into (3), one obtains

O

4

3

O

(4)

This tensor defines the surface:

X2 + y2 + Z2 = ~
4

and it can, thus, be concluded that the characteristic surface of a tensor adjoint
to a regular tetrahedron is a sphere.

b) Let the atoms YI. Y2, Y3, Y4 be at the corners of a regular trilateral
pyramid with X and Y4 lying on the C3 axis. If the coordinate system is chosen
in such away that the z-axis coincides with the Cj-symmetry axis and YI lies
in the yz plane, the coordinates of the atoms would be:

(4a)

x - (O, O, O)

YI - (O, -../8/3, fA-)

Y2 - (-../6/3, --../2/3, fA-)

Y3 - (--../6/3, --../2/3, fA-)

Y4 - (O, O, jI)

where f-l and v are arbitrary parameters. It follows from (3) that

O

4

3w
(5)

O

This tensor defines the surface:

4 4 (3fA-2
-- • X2 + (-- . y2 + -- + 1'2-li) • Z2 = 1
3w 3w w

(5a)
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Hence, for XY4 molecules with C3v symmetry the characteristic surface
of the tensor is an ellipsoid of revolution, the C3-axis being the axis of revo-
lution.

c) Let D2d be the symmetry of the molecule; the y-axis is set to coincide
with the S4-axis, while the atoms Y, and Y2 are placed in the yz-plane and
the atoms Y3 and Y4- in the xy-plane, respectively. If, as earlier, the X - Y,
distance is chosen as a unit of length, the coordinates of the atoms would be:

x - (O, 0, O)

Yj - (O,cos ep, sin ep)

Y2 - (O,cos ep, -sin ep)

Y3 - (sin ep, -cos ep, O)

Y4- (-sin ep, - cos ep, O)

~
(ep is the angle between XYj and y-axis). The characteristic surface is again
ellipsoid of revolution

2 sin" ep . X2 + 4 cos" ep . y2 + 2 sin" ep . Z2 = 1 (6)

the axis of revolution coinciding, in this case, with the y,= S4-axis.

d) Suppose D2 is the local symmetry of the molecule (for C2v symmetry
the discussion is analogous). If the axes of the coordinate system are chosen
to pass through the C2 axes of the molecule and X - Y, = 1 is taken for
convenience, one can write the coordinates of the atoms as

x - (O, 0, O)

YI - (x, 'V, c)
Y2 - (-x, 1', -Cl

Y3 - (-x, -1', C)

Y4 - (x, -1', -O
where X2 + v2 + š2 = 1. Substituting these coordinates into (3), one obtains
a tensor for which the characteristic surface is

(7)

1
The axes of the corresponding ellipsoid are: a = --

2X
thus this ellipsoid is not an ellipsoid of revolution.

e) In fact, it can be proved (see Appendix 2) that the characteristic sur-
face of the tensor is always an ellipsoid, even if the distortion of the tetra-
hedron is quite arbitrary.

From the arguments given so far, it can be concluded that the symmetry
of the XY4 molecule may be also described by the properties of the adjoined
te~sor (i. e. the properties of its characteristic surf'ace). Therefore, if the mole-
cule possesses some non-trivial symmetry, at least some of the axes of the

1 1
b = -. c = -, and

2v . 2š

- \
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ellipsoid will lie on some symmetry-elements. For C3,· and D2d symmetry, the
ellipsoid is a solid of revolution, i. e. two of its axes have equal lengths. Hence,
the axes a, b, c and their position wi.th respect to the symmetry elements of
the tetrahedron may be used to determine (strictly or approximately, depen-
ding on the local symmetry) the effective symmetry of the XY4 group.

Now, we turn back to the value that should be assigned to the constant o,
It is easy to prove that o has to be greater than 2 - otherwise the ellipsoid
would not be »well-behaved«*. The crucial assumption was that there should
be some interdependence between the components of the tensor and the vibra-
tional energy levels in the molecule (see below). Therefore, it was necessary
to assign o such a value that the components of the tensor should properly
reflect the changes in the energy levels (caused by varying. the X - Y,
distances). It seemed resonable to us to suppose that the covalent f'orces depend
on the distance between the atoms in the same way as the overlap forces
(except for the sign). From the reasons mentioned above, a value of 12 was
assigned to o - by analogy to the 1"12 term in the Lennard-Jones potential (it
is this term that is believed to reflect, the existence of overlap forces).

When the distortion is arbitrary, all the components of the tensor are
non-zero. Using an orthogonal-similarity transformation, it is possible? to trans-
form the tensor (Tj) into another - diagonal tensor (T'ij):

(8)

where r is some orthogonal matrix.
One can easily calculate the axes of the ellipsoid by use of the components of
(T'ij), which are usually called the main components of (Tij):

1
a=--vJ:;

In practice, the main
minantal equation:

Tll-A

T2l

T31

1
b=--vJ:;

1
C=--vT; (9)

components are calculated as solutions of the de ter-

(10)=0

In the above equations, the Aj - components were chosen in such away that
Al :5 ..1.2:5 ..1.3 and hence a ~ b ~ c. The excentricities of the ellipsoid - bla,
cl a and clb - are proportional to the degree of distortion of the molecule.
Going one step further, we define the total distortion las:

Dt = [(1- ~)2 + (1- ~ )2 + (1- _~ )2]/3
a a b

(as defined above, D, is scaled between O and 1).

* The ellipsoid must collapse into an ellipse, if one of the X - Y; distances
becomes infinitesimal. If, on the other hand, the X - Y; bond is infinitely stretched,
the corresponding axis of the ellipsoid will increase in Iength and 'becomes infinitely
long as the rest of the molecule becomes complanar, .
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RESULTS AND DISCUSSION

The distortions of a series of sulfate-ions, taken from compounds with
precisely refined structures (o- (s - o) ::; 0.005 A)+ and calculated by use of the
method of Baur", Murray-Rust et ap,4 and our method, are comparatively
presented in Table 1. Although it can be seen that for the vast majority of
compounds there is some correspondence between the measures of distortion
obtained by various methods, a direct comparison is not possible since it is
not clear which of the quantities DI (TO), DI (OTO), DI (00) on the one hand,
and D2 (E), D3 (F2), D4 (F2) on the other, should be compared with Đ; Moreover,
the relative differences in the Đ, - values are, in some cases, much larger
than e. g. the differences in the distortion indices. Because of these differences
and the inability to make direct comparisons, it is natural to question the
possible advantages of the present method over the existing ones.

We think that our method has indeed some advantages, some of the
reasons being outlined below:

a) The tensor adjoined to XY4 reflects in a simple way the local or effec-
tive symmetry of the molecule. Such an information is not obtainable from
either the distortion indices, or the D3 (F2) and D4 (F2) displacement vectors
in molecules with D2d or D2 symmetry (see e. g. the results for Na2S04 and
BeS04 . 4H20 in Table I).

b) In some cases, such as BeS04' 4H20, CaS04' 2H20, Cu(NH4h(S04)z'
. 6H20 and (NH4hH(S04)z, two of the ellipsoid axes are almost equal in length
(for BeS04' 4H20 they are equal by symmetry). This finding is consistent
with C3vor D2d approximate (effective) symmetry. On the other hand, in all
casescited above, two components of the V3 mode are found in the vibrational
spectra, which is in ideal agreement with the Td~ C3v and Td~ D2d cor-
rel ati on diagrams'? for descent of symmetry. It should be mentioned again
that DI (TO), D3 (F2) and D4 (F2) are all equal to zero, for both BeS04 . 4H20
and Na2S04. If some of these parameters should be correlated* with the
spectroscopic ones, it could only be concluded (incorrectly!) that there is no
splitting at all of the V3 modes in these compounds, which is in discrepancy
with the existing doublet - for BeS04' 4H20 and triplet -- for Na2S04, in
this spectral region.**

c) The total distortion of the sulfate ions in CsAI(S04h' 12H20 is very
small (ef. Table I), two of the axes of the ellipsoid being, in addition, equal

+ The convention of crystallographers to use angstrčmj.A) as a unit of lerigth,
rather than picometer (pm) or nanometer (nm) is adopted in this work.

* In fact, we do not see any possibility of correlating the frequencies of the
Y3-mode bands with some of the distortion indices or displacement vectors. The
method of Dollase" has the same shortcoming, although it has the adventage of
giving asingle para meter as the measure for the distortion of a coordination poli-
hedron.

**We mention here that in all cases where it was known that there arc
selenate compounds isostructural with sulfate ones, the spectra were recorded from
selenates containing a small amount (- 1010) of isomorphously isolated S042- ions.
As a consequence of the restricted resonant interactions (Davydov-splitting and
similar crystal effects) it is believedlL12.5.6that the spectra of such samples reflect
the effective S042- symmetry better than the spectra of pure sulfate compounds.
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(the local symmetry of S042- is e3v).Therefore, a doublet is expected in the V3

region, the splitting of which should be considerably smaller than that ob-
served in CaS04 . 2H20 (compare the values of Dt, a, b and c in Table I). The
appearance of asingle peak in the infrared spectrum of CsAI(Se04h . 12H20
containing isomorphously isolated S042- ions is, in fact, consistent with these
expectations (a splitting of about 25 crrr" was found" in the case of S04~-
doped CaSe04 . 2H20).

We considered the above findings as encouraging enough to search for
a correlation between the values of the main components of the tensor (Tij)

and the wavenumbers of the V3 vibrational bands. Eleven sulfate-ions (from
compounds with accurately refined structures, available spectroscopic data
and unequivocal assignment) were included in the regression analysis. An
ideal S042- tetrahedron and S03 (as an example of sulfate-tetrahedron with
extremely large distortion) were also included. The data for all these com-
pounds are presented in Table II.

We tested several two-parameter functions. The highest value (1'2 = 0.97)
for the correlation coefficient was found for the function of the type:

y= k -x:
(see Figure 1). This is, it should be noted, the only function (linear, loga-
rithmic, explonential and Y = k!X + 1 -- type functions were also tested) that
retains its physical significance throughout the whole range of possible
X-values, a fact that should no tbe ignored.

The scatter of the points (see Figure 1) seems to be larger for small
distortions, contrary to the expectations. There are several possible reasons
for this finding: (i) the uncertainties of the atomic positions are more relevant
for small than for large distortions; (ii) the structural data were not cor-
rected for thermal motion; (iii) the effect of the surrounding on the sulfate
frequencies is, also, more relevant for small distortions; (iv) the number of
pairs (35) of values included in our regres sion analysis is not too large; (v)
finally, it might be possible that there is no simple relation between the
value of the constant o (tak en as should be recalled, to be equal to 12) and the

1300

1100

900

L-------o-.oL2-3----~~~0~13~1----~0~.0~!3~9----1-li-/A--,~o~

Figure 1. Regression of Tjj' vs. v3 - best curve fit.
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TABLE II

Table II. Pairs of Tii' - v3 data, included in the regression.

Compound T';;/ A-l0 vlctti? Ref. Comment

0.02787 1105
»Free« S042- 0.02787 1105 44

0.02787 1105

0.01623 860
0.03132 1170
0.03618 1250 Raman,

KHS04 0.01635 875 45 powder
0.03014 1170
0.03700 1250

0.02200 966 IR and
(NH413H(S04h 0.03243 1180 46 Raman,

0.03364 1180 powder

0.02136 973 Raman,0.02943 )'(

0.03298 1198 powder
Na3H(S0412 0.02381 1004 46 .. Uncertain0.02988 ,'(

0.03213 te assignrnent

0.02756 1103 IR
K2S04 0.02789 1116 45 isomorph.

0.03004 1146 isolated

0.02665 1121 IR
CaS04 . 2H20 0.02668 1121 5 isomorph.

0.03000 1146 isolated

0.02709 1133 IR
LhS04' H20 0.02733 1133 6 isomorph.

0.03008 1173 isolated

0.02720 1100 IR
CsAl(S0412 . 12H2O 0.02766 1100 45 isomorph.

0.02766 1100 isolated

0.02658 1090 IR
Cu(NH4h(S04h . 6H2O 0.02716 1090 45 isomorph.

0.03024 1140 isolated

0.02793 1087
BES04' 4H2O 0.02988 1087 45 IR powder

0.02988 1128

0.04562 1391 IR gasS03 0.04562 1391 44

exponent of the r12 term of the Lennard-Jones potential and that some other,
empirically found, value of o would result in an even better correlation. It
thus seems worthwhile to study, in an analogous way, other oxoanions (PO~2-,
AS043-, SeO~2- etc.) and to compare the results obtained in such studies with
the present ones.
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APPENDIX 1

Let XI, X2, X3 and XI', X/, x/ be the axes of two orthogonal Cartesian
coordinate systems with a common origin. The primed coordinates may be
express ed as

i, j E {I, 2, 3}

where [ajj] is an orthogonal matrix. Using the equality

i, j, k, l, E {I, 2, 3}
one obtains

i,j,k,l,r,s E {1,2,3}

which proves that the surface defined by equality (2) does not depend on the
choice of the orthogonal Cartesian coordinate system.

APPENDIX 2

To prove that equation (3) always defines an ellipsoid, we consider the
vectors p', q', r', s' (p' = p/I P !5/2 and similarly for q', r' and s'). Then the tensor
is:

The surface will be an ellipsoid if and only if the following three conditions
are satisfied:

(i)

/',.2 = TI1 TI2 >0
T21 T22

Tl1 Tl2 T13

T21 T22 T23 >0
T31 T32 T33

(ii)

/',.3 = (iii)

The inequality (i) obviously holds.

To prove the inequality (iii) we consider the tensor (Tjj) as a contravariant
one. A coordinate system XI', x{, x/ is chosen so that p' = (1, O, O), q' = (O, 1,
O) and r' = (O, O, 1). In a quite general case, the coordinate system may not be
orthogonal. Using the transformation formula

OX.
T1j == ~ __ l

oXk'

k, l E {I, 2, 3 }

or

k, l E {I, 2, 3}
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OX.det (Tlj) = [det (__ I )]2. det (T'kI)
oXk'

and it is necessary to prove that det (T'kl) > O. If the vector s' has components
(a, b, c) in the new coordinate system, then

det (T'kl) =
1 + a2

ab

ac

ab

1 + b2

be

ac
be

1 + e2

= 1 + a2 + b2 + e2 > O

and (iii) is proven.

It may be shown that the proof of inequality (ii) may be treated as a pure
two-dimensional problem. Therefore, we identify the vectors p', q', r', s' with
their projections on the xy-plane. Similarly as in the previous proof, the com-
ponents may be chosen as: p' = (1, O),q' = (O, 1), r' = (a, b), s' = (c, d). In this
case, the inequality (ii) takes the form:

/

1 + a2 + e2 ab + cd //j. - = 1 + a2 + b2 + e2 + d2 + (ad - be)2 > O
2 - ab + cd 1 + b2 + d2

This finishes the proof.
APPENDIX 3

The compound Te(OH)6 K2S04 is worked with in the numerical example
given below. According to the structural data'" the compound is triclinic, space
group P1.The unit cell parameters are: a = 6.243 A, b = 6.647 A, c = 13.405 A,
a = 73.14°, (J = 103.05°, Y= 116.97°. The fractional coordinates of the five
atoms of the S042- ion are:

Atom xla ylb zle

S 0.7488 0.2845 0.2516
01 0.6034 0.3692 0.1593
02 0.5835 0.1201 0.3314
03 0.8650 0.1638 0.2179
04 0.9394 0.4777 0.2938

The values of the calculated orthogonal coordinates are:

Atom X/A Y/A zlA

S 3.810 0.749 3.208
01 3.131 1.365 2.031
02 2.777 0.435 4.225
03 4.504 -0.513 2.778
04 4.810 1.654 3.746

~
The components of p (SOl) are calculated as differences of the X, Y and Z
coordinates of the atoms 01 and S:

piA = (-0.679, 0.616, -1.177)
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And similarly for q (S02), r (S03) and s (S04):

q/A = (-1.033, -0.314, 1.017)

riA = (0.694, -1.262, -0.430)

s/A = (1.000, 0.905, 0.538)

The lengths of these vectors are:

I p I = 1.491 A, I q I = 1.484 A, I r I = 1.503 A, I s I = 1.452 A

T
I
/k10 = (-0.679)' (-0.679) + (-1.033)' (-1.033)

1.491a 1.48412

+ (0.694)· (0.694) + (1.000)' (1.000)
1.50312 1.45212

etc. The results for all components are given below:

[

0.02817
(Ti/A-'O) = 3.113 . 10-3

1.226 . 10-3

3.113 . 10-3

0.02525
7.947 . 10-4

1.226 . 10-3 1
7.947 . 10-4

0.02522

To calculate the main components of the tensor, the determinantal equation
(10) must be solved. The following cubic equation is obtained:

J.3 -7.8647 . 10-2 • .1.2 + 2.0471 . },-1.7649 . lO-s = O

The solutions of this equation (the components of the diagonal tensor (T'ii)
can be obtained by using Cardano's method (or numerically) to get:

AI= 0.02327 J'2 = 0.02482 }'3 = 0.03055

The lengths of the axes and the total distortion are, finally, calculated from (9)
and (11) to have:

a = 6.555 Ar. b = 6.347 AS c = 5.721 AS

Dt = 0.00897

The calculation of the axes (a, b, c) and the total distortion (Dt), in the
present work, were performed on a COlVIlVIODORE64 microcomputer with
a program written in Basic. The input data were the unit cell parameters and
the fractional coordinates of the five atoms forming the XY4 group. (A listing
of the program is available upon request, from the authors. The program was
written in standard Basic and, with only minor changes, should work on any
microcomputer equipped with a Basic interpreter).
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H3BO,lJ;

llpJfMeHa Ha TeH30pJf aa OnJfWYBalLe Ha ,lIecPopMaQJfJfTe Kaj MOJIeKYJIJfTe.
I. 'I'erpaenapcaa MOJIeKYJIH

B. Iierpinueecwu. u K. TpeU'l{eBC'KU

BKJlOrrYBaIbeTO Ha enna rerpaeztapcxa XY4 MOJleKYJla (J1JlJ1 jOH) BO KpJ1CTaJl e
rrOBp3aHO, rrpaKTJ1"lKJ1 BO CJ1Te CJlY"laJ1, co CHJ1:lKYBaIbe Ha Hej3J1HaTa CJ1MeTpJ1ja. 3a
OrrJ1WYBaa,e Ha ,n;ecPopMal.\J1J1TeHa rerpaenapor ,n;o KOJ1 ztoara rrpn oaa, KOHCTpYJ1paHJ1
ce TeH30pJ1 o,n;BTOP paar. Iloxaxcano e nexa KapaKTepJ1CTJ1"lHaTa rrOBpWJ1Ha Ha BaKBJ10T
TeH30p e cexoraur eJlJ1rrCOJ1,n;.IIoJlyocKJ1Te Ha eJlJ1rrCOJ1,n;OTJ1 neronara norroxcča BO
O,n;HOCHa eJleMeHTJ1Te Ha CJ1MeTpJ1ja Ha rpynairajara, MO:lKe na nOCJlY:lKaT aa orrpezte-
rryaaa,e Ha ecPeKTJ1BHaTa CJ1MeTpJ1ja J1 CTeneHOT Ha ,n;ecPopMJ1paHOCT Ha rerpaenapor.
Bp3 OCHOBa Ha OBJ1e rrozraroua, MO:lKHO e na ce npercxaxcar HeKOJ1 on crrexrpanarrre
KapaKTepJ1CTJ1KJ1 I-Ia J1CnJ1TYBaHJ1Tecoeznraenaja. 3a rpyna o,n;36 S04 jOHJ1. co npel.\J13HO
onpe,n;eJleHJ1 CTpyKTypJ1, cnope,n;eHJ1 ce pe3YJlTaTJ1Te ,n;06J1eHJ1co npJ1MeHa Ha OBaa
MeTo,n;a J1 pe3YJlTaTJ1Te1 ,n;06J1eHJ1co npaxena Ha ,n;pyrJ1 MeTo,n;J12-4.Co ,n;OCTaBJ1COKKoe-
cPJ1l.\J1eHTHa xope.nanrrja (r2 = 0,97) yrapneao e nocroerse Ha saexraa 3aBJ1CHOCTnosaefy
rJlaBI-IJ1Te KOMnOHeHTJ1 Ha TeH30pOT J1 cPpeKBeHl.\J1J1Te Ha JleHTJ1Te o,n; aHTJ1CJ1MeTpJ1Q-
nara BaJleHTHa (r3) BJ16pal.\J1ja.




