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In this paper we describe new mathematical methods which
can be used to distinguish between configurations of knotted and/or
linked chains in space and to determine their topological chirality.
These new methods are primarily algebraic and combinatorial and
are easily understood in a calculational context. The methods are
presented and discussed through the study of several fundamental
examples. The polynomial invariants are compared and the deve-
lopment of other sensitive algebraic-combinatorial invariants which
may have important applications in chemistry is discussed. A table
of the polynomials associated to the basic examples is given.

1. INTRODUCTION

Chemists have long been interested in studying the idea that certain
chemical properties may be identified as being related to the spacial con-
figuration of the associated molecular graphs'®. In particular, if one assumes
perfect flexibility of the graph, one is lead to consider the topological pro-
perties of the placement, specifically, the topological equivalence of potentially
distinct configurations and the topological chirality of the placement?3.'%
The identification of an effective means to distinguish between topologically
knotted and/or linked molecular graphs and, especially, between enantiomers
of a specific topologically chirally knotted or linked molecular graph has been
an important goal of mathematically oriented chemists. In this paper we
shall limit our consideration to the rather special case of placement of a
collection of oriented (or directed) circles in space. Although this should
only be understood as a first step in a much more elaborate consideration
of the placement or molecular graphs in space it is a special case of interest
in its own right (for example, with respect to the study of long polymer
chains where examples of such objects have been synthesized since the 1960’s)
and since they may provide an insight into the relative usefulness of various
theoretical approaches to census problems and to the study of chirality. For
a brief survey of those concepts and many of the results of classical knot
theory which may have relevance for the description of knot-like molecules
and a discussion of census and topological chirality in the setting of the
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mathematical knowledge of that period, the reader is refered to the paper
of Boeckmann and Schill.®

The classical mathematical methods which apply to these situations
such as the linking number between the oriented constituents are useful in
some contexts but, for the case of a family of oriented circles, the traditional
algebraic-topological method of the Alexander polynomial®!'® is extraordina-
rily successful for many census problems for the simpler knots and links but
is completely inappropriate for questions of chirality. This has meant that
for many years the search for mathematical methods to identify and classify
various configurations and, especially, to detect the chirality of a specific
placement in space took on the form of rather more elaborate geometric and
algebraic considerations. In the spring of 1984 there was a very suprising
discovery which has had a profound impact upon the classical knot theory.
V. F. R. Jones’, using considerations from the mathematical theories of repre-
sentations of braids, braid groups, and certain von Neumann algebras, disco-
vered a trace on a class of Hecke algebras that he employed to define a
new algebraic invariant which was able, for example, to distinguish between
the two enantiomers of the simplest knotted configuration, the trefoil knot.
Stimulated by the desire to discover a more direct and combinatorial mathe-
matical context in which these new invariants could be computed and under-
stood, W. B. R. Lickorish and I8 and, independently, others® and, several
months later, two researchers in Warsaw? discovered that there was an
essentially combinatorial vision that allowed one to define an even richer
invariant to study these oriented knotted configurations and which was more
effective than previous elementary methods. Subsequently, in the spring of
1985, Robert Brandt, Lickorish and I* and, independently, Ho, discovered still
another, completely independent, algebraic invariant that could be used to
distinguish between even more knots and links if one was willing to discard
the (rather fundamental) distinction between the various possible orientations.

In this paper we shall limit our consideration to the informal mathe-
matical aspects of these developments and shall describe the fundamental
combinatorial, algebraic, and computational aspects of these new polynomials
from the perspective of the combinatorics of the planar presentations of the
(oriented) knots or links. Furthermore we shall describe the way in which
most topological stereoisomers can be easily distinguished by virtue of these
methods. These considerations are illustrated by complete discussion of a
family of representative examples. Finally we shall conclude with a discus-.
sion of the advantages and limitations of these methods as well as a discus-
sion of the recent developments. A small table of the two-variable and the
one-variable polynomials associated to some knots and links of low crossing
number will be presented in an appendix. M. B. Thistlethwaite will publish
a much more grandiose tabulation on microfiche!2.

2. THE ALGEBRAIC AND COMBINATORIAL FORMALISM

We wish to study the spacial properties of the placements of oriented
families of chains in space. An excellent mathematical discussion of these
concepts of found in Rolfsen!®. The informal mathematical description that
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we shall use of these concepts is a follows: by a chain we shall mean any
topological object, for example a graph, which is topologically the same as
the circle, i. e. simple closed curve; by an orientation we shall mean the choice
of a direction on each of the circles of the family, by a spacial property
we shall mean anything which is not changed by a distortion of the ambient
space which does not change a chosen orientation of the space, i.e. does not
take us from a »right-handed« orientation of space to a »left-handed« orien-
tation of space. An example of a spacial configuration is shown in Figure 1.

The effective consideration of such examples is made possible by the
study of the combinatorial properties of particularly well behaved projections
of the specific example under consideration onto a plane. These projections,
as illustrated in Figure 1, have the property that all projections of segments
cross each other in separated places, i. e. there are no »tangential« or »triple,
.. .-point« intersections, and, in order to understand the placement in space,
the projection are broken so as to show how one strand passes over or under
the other. (This approach appears to have been first utilized by K. F. Gauss
in his study of electrodynamics in 1833 and was further developed by the
Reverend Kirkman in his consideration of Kelvin’s theory of vortex atoms
in 1885.)

eh

- G/
/’.
Figure 1.

In order to take into consideration the choice of orientation on each
of the chains we shall place an arrow on each strand to indicate the specific
choice of orientation. One of the earliest goals of researchers in this field was
the tabulation of all possible »prime« placements and the combinatorics of
these projected images provided one of the fundamental tools for the gene-
ration of the placements which were then tabulated according to the number
of crossings necessary in a simplest realization. To give an appreciation for
the magnitude of this census problem one only need note that, ignoring all
questions of orientation, there are, according to Thistlethwaite!, 12,965 prime
knots (the simplest »atoms« of knotting) having planar presentations with
fewer than 14 crossings. Adding orientation and combinations, there are about
20,000 distinct knots in this range! In practice, their census has only become
effectively possible with the use of contemporary computers. Historically,
one attempted to find numerical or algebraic invariants associated to the
combinatorics of these realizations which measured or, at least, reflected the
spacial properties of the object under consideration. It was in this spirit that
Alexander!, in 1928, defined a polynomial involving a single variable, t, and
having integer coefficients, by taking the determinant associated to a matrix
which was constructed from information describing certain aspects of the
combinatorics of the projected representation. A certain combinatorial aspect
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of this approach remained largely unrecognized and unappreciated until it
was exploited by J. Conway® in his normalization of the Alexander poly-
nomial and his calculational approach. Since this aspect provides the key
combinatorial insight for the new polynomials we shall first describe how
this method of calculation works.

We shall consider the situation where we have three planar pictures of
oriented links in each of which we have identified a small circular region
of the picture which contains either a single crossing or, in the last case, no
crossing at all and such that outside these small circular regions the planar
pictures are exactly the same. We shall label these cases by K", K, and K,
respectively, when the motifs inside the circular regions are those given in

KX X

Figure 2.
A specific occurance of the type is illustrated in Figure 3. This is one of

several situations that will serve to describe the nature of the invariants
that we shall want to study.

Figure 3.

The (Conway normalized) Alexander polynomial, 4y (), of an oriented knot
or link, L, is a polynomial consisting of a sum of finitely many terms each
of which is the product of an integer and some power (either positive, zero,
or negative!) of the variable »t« and which satisfies the following funda-
mental formulae:

(i) if U denotes the standard unknotted circle in the plane, then Ay (t) = 1, and

(i) if K*, K, and K, are planar pictures of oriented links in each of which -
we have identified a small circular region of the picture containing either
a single crossing or, in the last case, no crossing at all, according to the
convention shown in Figure 2, and such that outside these small circular
regions the planar pictures are exactly the same, then the normalized
Alexander polynomial satisfies the formula A, (t)—Ax_(t) + (t'*—
—t7') Ay (t) = 0.

Furthermore, a fundamental property of the polynomial is that any two
topologically equivalent placements have exactly the same polynomial. Thus
the polynomial can be used as a tool to distinguish between knots or to
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identify knots in a tabulation. Indeed, it is a remarkably effective tool for
such matters when it is applied to simple knots or links.

The aspect that we wish to exploit is the idea that the above formulae
provide a way to calculate the Alexander polynomial for any oriented link:
By changing the appropriate crossings, in some sequence, any link can be
changed to an unlink whose polynomial can be given by a simple formula.
(The concept of an »unlink« requires a bit of care. The formal definition
is any placement of closed strands that is topologically equivalent, i.e. »can
be spacially moved to«, the distant union of some number of standard
unknotted circles. Examples are shown in Figure 3, case »—«; Figure 4,
cases »+« and »0«; and in Figure 5, all cases.) Assuming that the polynomial
is already known for all instances of fewer crossings, we may then calculate
the required polynomial. We shall give specific detailed examples of this
sort of calculation for the new invariants. The critical issue at this point is
the observation that any calculation of this sort involves many arbitrary
choices and appears to refer only to the specific planar picture of the spacial
configuration under consideration. It was not until 1981 that an attempt ¢o
show that the Alexander polynomial could be defined in this way. and also
be shown to be topological invariant of the spacial configuration was published
by Ball and Mehta’. From a purely »mathematical« perspective their methods
were not completely convincing but essentially the same approach was finally
carried out to a completely satisfactory mathematical conclusion during the
recent combinatorial development of the new invariants.

In 1984 a completely new polynomial invariant, now referred to as the
Jones polynomial, Vk (t), was defined for any oriented link in space by V.
F. R. Jones”. This new polynomial has very many properties similar to those
of the Alexander polynomial, e. g. it depends only upon the topological type
of the spacial placement, and is yet significantly more sensitive to various
aspects. of the spacial placement. When studying the basic properties of the
polynomial, Jones and, independently, Lickorish and the author noticed that
a formula analogous to that for the Alexander polynomial also occured.
Specifically, if one had the three oriented links K*, K, and K,, related as
in the previous paragraph, then

1V () —t Vi () — (02—t Ve (8) = 0.

It is also true that Vy(t) =1 where U denotes the unknot, as above. (The
reader should be warned that there is as yet no universal agreement in
the mathematical literature on the choice of exponents and signs of the
terms in the recursive formula. Therefore caution should be used in making
comparisons between tables to be sure that the same convention is employed.
Here I have chosen to use that given by Jones). Thus, as before, this formula
could be used to calculate the actual polynomials by a recursive method
just as in the case of the Alexander polynomial. Moreover, one notices that
there is a fundamental asymmetry in the roles played by the variables »t«
and »t'« in the basic formula and the configurations K" and K- It is this
fact that indicates that this sort of polynomial may be able to provide
information about the topological chirality of the spacial placement since a
configuration is topologically chiral, i. e. not equivalent to its mirror reflection
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(take the mirror to be the plane of projection to note that a reflection means
simply »change all crossings in the projection«), if the associated Jones
polynomial is changed when one changes the signs of all the exponents of
the variable »t«.

To better understand what this means we shall want to completely study
a specific example, i.e. the right-handed trefoil knot, T = K*, shown in
Figure 3. In this case the second configuration, K-, is the unknot, U, so that
by our normalization assumption we must have that Vk-(t) = 1. Thus, in
order to complete the calculation of V; we need to have computed the
polynomial associated to the K, case. As before this is accomplished by
studying the effect of changing and removing a crossing as shown in Figure 4.

Figure 4.

Here we find »Ko« as the first situation which we shall denote K;*. The
third case »Kp«, is clearly another version of the unknot so that its polyno-
mial is required to be »1« by our normalization. Thus, to complete the calcu-
lation we see that we must know what polynomial is to be associated to
two topologically unlinked unknotted circles. This, of course, is to be
computed by considering still another diagram of situations. For example,
we may employ the ones shown in Figure 5. Here we find the unknot in
both the »+« and »—« configurations so that we may solve for the poly-
nomial of K- as follows:

tlel—t 11— (P —tP) Vg (@) =0,
so that

Vi, () = (1 — D/(t2 — £12) = — (t02 4 £/ = g

which we define to be the algebraic quantity [L because the expressior
appears very often in calculations.

Figure 5.

Returning to our calculation of Vg, (t) using the equation associated
to Figure 4 we calculate as follows:

t1 Vg, O—t- Vg, O—@F—t1) -1=0,
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so that
VK.,+ (t) = 2 (t1/2 -+ t-1/2) + t (t1/2___ t—1/2)

—_— t5/2 o t3/2 + t3/2 — t1/2

= — 52 t1/2,

Finally we have the information required to complete the calculation of the
polynomial associated to the right-handed trefoil knot, T, illustrated in Figure
3 as K*. Thus we calculate as follows:

V) —t-1— ("2 —t"2V) g () =0,
and since Ky = Kj+,
VT (t) =2+t (t1/2 _ t~1/2) (____ t5/2 — t1/2) = tl + 13— t4,

It is a this point that a key observation comes into play and shows us
why this new polynomial is likely to bring powerful new calculational tools
into the study of the chirality of such objects.

Key Observation: If we let K denote an oriented link and let K denote its
mirror image, then VK (t) = Vg (7).

Suppose that we want to know if T is topologically chiral, that is, inequi-
valent to its mirror image. By the above observation, we can be sure that
T is topologically chiral if Vg (t) # V(t™)). This is clearly the case since
V() =—t*+t3+t12t+ t3—t* = Vr(t). This is how Jones first disco-
vered that his polynomial was completely different form the classical Ale-
xander polynomial which could not distinguish between the right-handed
and left-handed trefoils and how one is lead to employ this new polynomial to
test the chirality of a given configuration. Although the Jones polynomial is a
remarkably effective tool for distinguishing between topological configurations
and, especially, for testing topological chirality this is not the end of the deve-
lopment since there are extensions of these ideas to create still more powerful
and mysterious polynomial invariants that can be associated to such configu-
rations in space. Fortunately these new polynomials do not require the
development of algebraic or combinatorial tools significantly beyond those
which we already have available in the previous calculational method.

The two-variable polynomial, Py (I, m), of an oriented knot or link, L,
is a polynomial consisting of a sum of finitely many terms each of which
is the product of an integer and some powers (either positive, zero, or
negative) of the variables, »l« and »m«, and which satisfies the following
fundamental formulae:

(i) if U denotes the standard unknotted circle in the plane, then Py (I, m) =
=1, and

(i) if K*, K7, and K, are planar pictures of oriented links in each of which
we have identifed a small circular region of the picture containing
either a single crossing or, in the last case, no crossing at all, according
to the convention shown in Figure 2, and such that outside these small
circular regions the planar pictures are exactly the same, then the
two-variable polynomial satisfies the formula

1+ Pg+ (I, m) + 1t Pg- (I, m) + m Pk, (I, m) = 0.
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Furthermore, a fundamental property of the polynomial is that any two
topologically equivalent placements have exactly the same polynomial.

To illustrate the use of this polynomial invariant one may repeat the
above calculation of the polynomial associated to the right-handed tref011
as follows: From Figure 5 we find:

1-1411-1+4+mPg_(1,m) =0,
giving
Pk, m) = — (@1 +1Hmi=y,
which we define to be the algebraic quantity © because it appears very
often as a unit. Continuing, with the calculation from Figure 4, we have

l'PK0+ (t,m)+ 1 PKO- tm)y+m-1=0,
giving
Pk, 1,m) = —12(— (1 + 1) m™) ml?
=01+ ¥)mt—mlit

Thus we are, once again, in the position to calculate the polynomial for the
right-handed trefoil from Figure 3 as follows (using the fact that K, = Kj+):

U+ Pp,m) +11-1+mPg (I,m) =0,
giving
Pr(l,m)=—12—ml1 (Tt + 13 mt—ml?)
=—14—202+12m2

The question of the effect upon the polynomial of the reflection of
the knot or link in a mirror is answered in a manner analogous to the
response given for the Jones polynomial since in this case as well the role
of the variable is reversed by the change of orientation. Thus we have the
following:

Key Observation: If we let K donote denote an oriented link and let K denote
its mirror image, then Px (I, m) = Px (I'%, m).

As a consequence, one calculates Py (I,m) = —212—1* +12m2 and thereby
proves again that the left-handed trefoil and the right-handed trefoil are
distinct and therefore the trefoil is topologically chiral.

Because of a desire to study unoriented configurations Brandt, Lickorish
and I were lead to consider the most general form of a functional relationship
that could hold between algebraic invariants associated to the possible
combinatorial operations that one could apply to a planar presentation of
an unoriented knot or link. Because of the requirement of spacial invariance
one quickly discovers that most such possibilities lead to previously known
invariants or to a trivial one. There is, however, one possibility that does
lead to a new algebraic invariant. In Figure 6 we depict the four possible
operations that could be applied to a crossing in a generic planar presen-
tation of a spacial configuration. The lack of any orientation makes it unclear
which diagram in the figure should be labeled »+« and which should be
labeled »—«, with a similar problem arising between the diagrams labeled
»0« and »oco«. However the symmetry in the roles played by the associated
polynomials in the defining formula neutralises this ambiguity.
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X X X X

Figure 6.

The one-variable polynomial, Qr (x), of an oriented knot or link, L, is a
polynomial consisting of a sum of finitely many terms each of which is the
product of an integer and some powers (either positive, zero, or negativel)
of the variable, »x«, and which satisfies the following fundamental formulae:

(i) if U denotes the standard unknotted circle in the plane, then Qyu (x) =1,
and

(ii) if K*, K, Ky, and K are planar pictures of oriented links in each of
which we have identified a small circular region of the picture containing
either a single crossing or, in the last cases, no crossing at all, according
to the convention shown in Figure 6, and such that outside these small
circular regions the planar pictures are exactly the same, then the
one-variable polynomial statisfies the formula

Qx+ (@) + Qx- (x) = x {Qx,(*®) + @k~ ()}

Furthermore, a fundamental property of the polynomial is that any two
topologically equivalent placements have exactly the same polynomial.

To illustrate the use of this polynomial invariant one may repeat the
above calculation of the polynomial associated to the right-handed trefoil.
However, in this case there are three polynomials to be calculated in order
to determine the fourth. Consider the configurations, shown in Figure 7,

Figure 7.

analogous to those shown in Figure 3. Here we find that T = K, and that both
K_ and K., are trivial knots so that, by definition, their polynomials are
identically I. Thus, as above, we must compute the polynomial associated fo
K. This is, of course, accomplished by using the set of configurations shown
in Figure 8 which are analogous to those depicted in Figure 4.

Figure 8.
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Here we discover that K, and K., are both trivial knots. Thus, just as in
the previous cases, we need only determine the polynomial associated to the
trivial link of two separated components, which it is convenient to denote
by U2 For this we employ the set of configurations shown in Figure 9 which
is the analogue of Figure 5.

Figure 9.

Here we find that K, = U? is the configuration whose associated polynomial
we wish to calculate and that all the other configurations are equivalent
to the trivial knot. As a consequence of the fundamental formula we have:

Qu (@ + Qu @) = 2{Qy: () + Qy (@)}
so that
1+1=x{Qug& + 1}

and, therefore,
A
Qu @) =2xt—1=pu

Thus, to compute the polynomial associated to the K, depicted in Figure
8 we have;
Qg (@) + Qp2 (@) = x {Qy (¥) + Qu (@)}
so that
Qg+ (@) = —2x™* + 1 + 2.

Finally to complete the calculation of the polynomial associated to the
right-handed trefoil we return to the set of configurations in Figure 7 from
which we compute, using the fact that the Qx. (x) just computed is the
Qx, (2);
Qr (@) + Qy (@) = x{Qg, (@) + Qy ()}
so that
Qr(x)=—1+x{—2ct+1+2x+ 1} = —3 + 2x + 222

Thus we see that although there is some formal similarity between abstract
structure of this last polynomial and the previous ones, the resulting poly-
nomials seem to have little in common. This, we shall see, proves to be an
advantage in certain situations, particularly those in which questions of
orientation are not relevant.

3. THE GENERAL THEORY OF POLYNOMIAL INVARIANTS

In the previous section we have described in some detail the funda-
mental calculational foundation of the theory of polynomials associated to
oriented and unoriented knotted and/or linked chains in space. In this section
we shall outline the broader aspects of the various theories, the fundamental
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properties they all enjoy, and try to delineate the various strengths and
weaknesses of the theories.

The first thing to note is that the Alexander polynomial and the Jones
polynomial are both special cases of the two-variable polynomial in that
they are gotten by specific choices of variables:

Alexander polynomial l=1i m =i (2 —t1/?)
Jones polynomial =1 m = i (12 —t1[?)
where i* = —1. Thus one might expect that the two-variable polynomial

is a more powerful discriminator in the study of oriented knots and links.
Indeed this is the case, even for questions of chirality, since there is an
eleven crossing knot which is chiral but its chirality is not detected by the
Jones polynomial but is detected by the two-variable polynomial. Unfortu-
nately, there are also knots which are chiral but which have polynomials
which do not exhibit the hoped for asymmetry with respect at the change
of sign of exponents. Nevertheless the Jones and two-variable polynomials
are extraordinarily successful in their ability to detect chirality when one
considers the entire population that has been tabulated to this point.

With respect to the census problem the Jones and two-variable poly-
nomials are rather more successful than the already extremely successful
Alexander polynomial, especially if one is confronted with identifying or
distinguishing knots of more than 10 crossings. They are not perfect as there
are famlies of examples for which none of the polynomials will have distinct
values. These arise by the operation of mutation of Conway® which only
becomes important at 11 crossings where the first such examples occur.
Unfortunately there are other very small families of examples which the
two-variable polynomial fails to distinguish. The new one-variable poly-
nomial seems strikingly more successful in these census problems if one is
willing to neglect the questions of orientation. It is important to understand
that this polynomial is completely insensitive to questions of orientation of
space and its constituent chains. Nevertheless, by direct calculation, one
discovers that the one-varibale polynomial distinguishes all the prime knots
through 9 crossings and all the prime links through 8 crossings and it is
able to distinguish families of knots where the previous polynomials fail.
Also, it too fails to distinguish between mutants. Furthermore, there are
additional cases where all the presently known polynomial invariants fail
to successfully distinguish between knotted configurations which are known
to be distinct by virtue of other algebraic-topological invariants.

For knots, configurations consisting of a single chain, the polynomials
are insensitive to the specific orientation of the chain. This is, however, not
the case for links of more than one component except for the one-variable
polynomial which was defined so as to be insensitive to the relative choices
of chain orientation. For the Jones polynomial, changing the orientation of
one of the constituent chain changes the polynomial only by the multiplica-
tion of the polynomial by a power of the variable t, the precise power
being determined by the algebraic linking information between the chain
whose orientation is changed and the other constituent chains. No such rela-
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tionship between the associated polynomials is known for the two-variable
polynomial at this time!

There are two natural operations which form new links form a pair of
links. The first of these is the »distant union« where one simply considers
the two separated links as one whole link. In this case, in each of the poly-
nomial theories, the resulting polynomial is simply the product of the two

~ A
separate polynomials with g, @, or p, as appropriate for the desired poly-
nomial. The second of these operations is a »connected union« where one
considers the above distant union, selects a small segment from a chain in
each, removes it, and joins their ends together in a parallel fashion. The
resulting polynomial is even simpler than the distant union. It is the product
of the polynomials associated to its constituents.

There are, at present, two major problems with this theory as it relates
to possible chemical applications. The first is that the relationship between
the algebraic structure of the polynomial invariants and the specific topo-
logical or spacial nature of the configurations to which they are associated
is not yet understood well enough to even guess if there might be some deep
connection that could be exploited in a chemical theory. There is, however,
the very striking and provocative nature of the way in which the polyno-
mials are developed from those associated to other states in which one has
broken the bonding pattern in relevant family of possible ways. To the novice
it would appear that there may be something going on here that could
provide some new insights in chemistry. However such matters are, for
the present, only a matter of conjecture.

The second difficulty with this polynomial theory arises in problems
where one wants to take a census of a large collection of spacial configurations
or wishes to study a single extremely complex configuration. The problem
is the complexity of the current calculational algorithms in terms of the
running time on even the very rapid contemporary computers. Recall that
to employ the defining functional formula to calculate the polynomial of, for
example, the Jones polynomial one must calculate the Jones polynomials
associated to two simpler configurations. Thus, if one begins each calculation
afresh, one is confronted with a potentially exponentially growing tree of
calculations as a function of the number of crossings in a planar presen-
tation of the configuration. Even with a reasonably efficient means of
making the calculation at each stage the number of such calculations
makes a simple-minded approach unfeasible for relatively complicated
examples, i. e. having projections of, say, 50 crossings. Thus a basic question
arises. Does there exist an algorithm for the calculation of the polynomial
invariants which is of polynomial growth as a function of the number of
crossings in a planar presentation of the knot or link?

If one is only interested in determining whether a given configuration
is knotted or not it is quite possible that the entire calculation can be reduced
to the calculation of a certain special value of the associated polynomials
or of certain terms of the polynomials. At this time, however, there does
not yet appear to be a truely effective and simple method which determines
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very rapidly the knottedness of a sufficiently large proportion of knotted
configurations so as to provide an effective filter.

Such questions are of considerable interest since a positive resolution
would provide new rapid and powerful techniques in the study of randomly
generated knots and links. Furthermore, one can easily imagine future appli-
cations to computer assisted studies of electron microscope pictures of large
molecular chains, e.g. DNA.

4. CONCLUSION

In this article, we have described a new family of algebraic and combi~
natorial invariants associated to knotted and/or linked oriented or unoriented
chains in space. These new invariants were introduced through a formalism
proposed for the Alexander polynomial by the work of Conway and made
more attractive by the discovery that the recently discovered Jones poly-
nomial also satisfied an analogous formal structure. Thus, the two-variabie
polynomial and the most recent of this new trend, the one-variable poly-
nomial, were presented by way of the vehicle of a sample calculation which,
at once, indicates the most elementary algorithm to implement a computer
assisted calculation of these invariants, indicates the elementary properties
of these invariants, and indicates the strengths and current weaknesses of
these invariants as a research tool.

We have shown how the Jones polynomial and the two-variable poly-
nomial are rather effective in the determination of the chirality of most
knotted or linked configurations despite the fact that there are a veryv small
number of exceptional cases among the configurations having realisations
as planar projections of up to 14 crossings. Similarly, the Jones, the two-
-variable, and especially the recently discovered, one-variable polynomials
are remarkably effective tools in distinguishing and classifying knotted
configurations despite the existence of a relatively small number of excep-
tional cases.

In addition, however, one sees the fundamental simplicity of the pro-
posed mathematical relationships and the analogy of these relationships with
the most elementary considerations of chemical models. As a consequence
they appear to be attractive areas for further research, both from the purely
mathematical point of view and from the perspective of one who is interested
in using geometrical and topological models for chemical and physical phe-
nomena.

APPENDIX: POLYNOMIALS OF SIMPLE KNOTS AND LINKS

Interpretation of the' tables is as follows: Knots are listed with the classical
Alexander-Briggs notation (see Rolfsen [R] for a convenient table of their pictures)
3, 4, 5y, 5y..., 8y, and ’coded’ forms of the polynomials will be given. The one-

-variable polynomial @ (x) = 2°_, a; x' will be writtena_, 2" +a_. +a ., + ...+
+ a,, with ayx® written a,.
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TABLE

Values of the One-Variable Polynomial

31
44
51
52
61
62
63
Ty
T2
T3
T4
s
Te
77
81
82
83
84
85
8¢
87
8g
89

817
818
819
820
821
224
424
52
635

The two-variable polynomial of a knot is of the form P.(l,m)Ziep: () m
where pi(l) =0 if 7 is odd and is a polynomial in even powers of ! otherwise.
The numbers in the i™ rounded bracket of the coded form of the polynomial give
the coefficients in psu-1y, the number in square brackets being the coefficient of
19 and as p; () contains only even powers of I, no entry occurs for the coefficient
of an odd power. Thus, for example, the polynomial associated to the left-handed
trefoil which we computed above to be —212—1*+4 12 m2? will be found listed
in the table as 3; with the associated coded form of the polynomial given as

([0) —2—1) ([0] D).

—34+2+2
e e A 4 2

5—3—f4 242

1—4—2+4+42
Idd—G—d o AE2
5—3—10+0+842
5—6—12 44, + 8 + 2

= o & 16— B0 2 4 2

wn§ 46 4 8—10—B 4+ 442
—3+2+6—6—4+4+2

1 i Bi19 - 0 BB A 2
140—4—61+246+2
5+2—12—10+ 6+ 8 + 2
5-+6—18—14 + 10 + 10 + 2

G L T4 154 —B J A 1 B
—T+0+22+2—20—4+6+2

L men @ e o 10 oG 4 A - B

G B G2 6 4 B
—114+14+26—16—24+ 2+ 8 + 2
1442428404642
—74+4420—8—20+2+8+2

T oo 8 =10 —Td 48 5 842

s d 4 16 —10—16 4 44842
—11+14+22—22+8+10+2
B e § o D O 6 4§ 2
B2 —8—12—4 484843
—3+10+10—22—16 + 10 + 10 + 2
14+84+0—22—10+12+ 10+ 2
—T7+16+10—32—16 + 16 + 12 + 2
—3+10+18—22—30+8+ 16 + 4
G 4 B 122024 & 10 16} 4
5+2+12—26—36+ 14+ 24 + 6
—11410+20—10—12+ 2 + 2

— 412512 —18—Ff 442

I 3§ B0 —8 L BB

—2x1 4142

O] il e o D

2xt—1—84 04642
4x1—4+1+1+0—16+0+12+4




CONFIGURATION CENSUS 683

TABLE

Values of the Two -Variable Polynomial

([0] —2 —1) (01 1)
G 1 B U R R (U )

([0]032) ([0]0—4—1) ([0]01)
([01—111)([0]1—1)

(—1[0]11) ([1] —1)

(121 2 1) ([—1] —3 —1) ([0] 1)

(1 BIY (—1[31—1) (1D
([0100—4—3)([0]00104)([0]00—6—1)([0]00C1)
(0] —10—1—1)(0]1—11)
(—2—210[0)(13—30[0])(—110T[0])
(—1020[0]) 1—21[0])

([0]020—1) ([0]0—321) ([0]01—1)

([11121) ((—11—2—2) ([0] 1)

(1 2[2]) (=2 [—2]—D) ([1])
(—1[010—1—1)([11—11)

([01 —3 —3—1) ([0] 4 7 3) ([0] —1 —5 —1) ([0] 0 1)
(10[—1]101) (-1 [2]—1)

(—2[—=2101) @ B] —2—1) ([—111)
(—2—5—41[0]) (384 [0]) (—1—5—1 [0]) (1 O [0])
(211 —1—1) ([—11—221) ([0] 1 —1)
(—2—4[—1]) 38 [3]) (=1 —5[—1]) (1 [0])
(—1—1[211) A 2[—2]—1) (—1[1])

(—2 [—3] —2) 3 [8] 3) (—1 [—5] —1) ([1])
(—3—6[—2]) 39 [3]) (—1 —5 [—1]) (1 [0])

(11 —1—2—1) ([—11—121) ([0] 1 —1)
(1101111 (—2[—1]—2) ([1])

([0] —2—1) (—1[—1]21) ([1] —1)

(1) (11 —111) ([0] 1 —1)

(0101 —3—4—1)([0] 0—253) ([0101—2)

([0] —2—1) (2] 5 2) ([—1] —4 —1) ([0] 1)

(—1 [—11—1) (2 [5] 2) (—1 [—4] —1) ([1])

1EIH A (1 [=3]—1 (1)
(—1—5—5001[0])(510001[0]) (—1—600710]) (100 [0])
([—11—4—2) (114 D) ([0] —1)

([0]—3 —3—1) ([0] 23 1) ([0] 0 —1)

Because the coding of the polynomials associated to links is rather more complicated,
we shall give their complete algebraic expressions. Furthermore, since the two-
-variable polynomial takes the relative orientations of the constituent chains into
consideration (changing all directions leaves the polynomial unchanged!) there are
two polynomials associated to most two component links. We shall give both in
those cases. Which one you have can be easily determined from the coefficient of
the term in m™. In these simple cases this term will be —(—I3)* (1 + I'!) where
/. is the linking number of the two oriented constituent components. Where one
polynomial is given, all polynomials are equal independent of the relative choices

of orientations.
22

442

5,2

635

I+ B)ymt—Iim
B+ mt—Iitm

—B—-0P)m14+ BB+ P)ym—IPB3md
5 —1)ymt 4 13 —1Y)m

(Ut —Dmt 4 @t + 20 + ) m— P m?
@242+ P)m? 4 (12 —2—)m? + mi
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SAZETAK
Konfiguracijski popis, topologijska hiralnost i nove kombinatorijske invarijante
K. C. Millett

Opisane su nove matematit¢ke metode koje se mogu upotrijebiti za razlikovanje
konfiguracija ¢vorova u prostoru i za odredivanje njihove topologijske kiralnosti.





