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An algorithm is proposed by which the Madelung constants
can be computed by direct summation with any precision given
by that of the computer used. The necessary program can be
made .very simple, requiring acceptable computation times due to .
a small number of necessary lattice points. The algorithm is
based on the calculation of arithmetical means of higher order
of partial sums of infinite alternating convergent series equal to
the Madelung constants. As an example, the Madelung constant
of cubic lattice was computed using only 21, 18, 16 members in
the axes, coordination planes and the space volume respectively.
The obtained value was MC= 1.74756460 + 6, with an estimated
error of -5 X 10-9< 6< 1 x 10-8•

INTRODUCTION

In solid state physics the lattice energies of crystals are of greatest impor-
tance. The interaction energy of two points charges z+e and z.,e, r +_ apart, is
z+z_e2/r +_. Similarly, the total electrostatic energy Um of n such point charges
of magnitude Zi (i = 1, 2, 3, ... , n) is

Um = ~ ZI Z2 e2/rij
pair

(1)

in which the summation extends over all pairs of charges, each pair being
considered. This may also be written in the form

Um = (1/2) ~'Zi Zi e2/rii
i j

(2)

where the summation is now a double sum over all charges and the super-
script prime indicates that the cases i = j are to be excluded. For bin ary
crystals such as sodium chloride, sodium nitrate, and calcium fluoride, the
results can always be expressed in the simple form

(3)

Here Um is the molar energy; z, e and z.: e are the absolute values of the
charges on the positive and negative ions; I is one of the characteristic
crystal dimensions: NA is the Avogadro constant and MC is the Madelung
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constant, a pure number independent of the dimensions of the lattice. The
series

MC = ~ ljr;j
i j

(4)

cannot be evaluated by uncritical summation because it converges with
extreme slowness. Up to 1959, two methods were available for summing the
Madelung series; the first was to replace the point charges with a distributed
charge and then use a mathematical manipulation to obtain a quickly eon-
vergent series; the second method was to arrange the terms so that sum-
mation tak es place over electrostatically neutral Iayers." In a series of papers
Sakamoto" calculated Madelung constants for several lattices, using a method
based on the previously calculated Born's »Grundpotential«-s. The first men-
tioned method gives values of limited accuracy, due to extremely slow
convergence, while remaining methods, being theoretical, need an independent
check of the values obtained. Since all Madelung terms were reported in
the literature as constants one should conclude that the series by which they
are defined, converge. The purpose of present paper is to describe a method
of direet computation of Madelung constants based on an algorithm by which
the alternating infinite series is transformed into a monotoriically descreasing
series whose rate of convergence is increased for many orders of magnitude.
Any Madelung constant can be defined as a sum of several alternating infinite
convergent series. It will be demostrated that the use of the proposed algo-
rithm permits the calculation of Madelung constant of the example cubic
lattice (with reciprocal distances of 21, 18, 16 lattice points in the axes, coordi-
nation planes and space volume, respectively) with a precision of 9 signif'icant
figures in several minutes with a common desk computer. We expect that
the same principle can be applied for the calculation of the Madelung con-
stant of any other binary crystal lattice. The algorithm is based on the cal-
culation of arithmetical means of the order equal to the number of lattice
points in the axes, planes and space volume, respeetively (e. g. 21, 18, 16 for
the cubic lattice as example). The derivation of the algorithm will also he
represented.

THEORETICAL

The principle of the derivation of the algorithm can be explained as
fcllowsr'

A convergent, alternating, infinite series can be rep resen ted by:
00

Soo = aa-·a! + ... ± ai ± ... = ~ (-l)iai (ai> O).
i~O

(5)

In the case of convergence it is valid (Soo = const.) :

lim Sn = S00' (6)
rz-e-co

The partial sum of the series reads
n

Sn = aa- al ± ... ± an = ~ (_l)i ai'
i~O

(7)

I f
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The series of the first arithmetical mean sum, S (1, n), between Sn+! and Sn+2
reads

(8)

The series of the third arithmetical mean sum, S (2, n) reads

S (2, n) = [S (1, n + 1) +- S (1, n + 2)]/2 = SI! + 2-2 [22 a,,+,- (2 + 1) an+2 + a" +3] , (9)

The series of the third arithmetical mean sum, S (3, n) reads

S (3, n) = [S (2, n + 2) + S (2, n + 3)]/2 =

= Sn + 2-3 [23 all+l - (22 + 2 + 1) an.'2 +- (2 + 1 + 1) an+3 - all+4], (10}

It follows therefrom that the series of the e-th arithmetical mean sum, S (e, n)
is [4]

S (e, n) = [S (e - 1, n + e - 1) + (S (e - 1, n + e)]/2 =
n+e+l

Sn + 2" ~ (_I)i+l k (e, i - n - I} ai'
i~Il+1

(11)

The coefficients for 1 ::; e are:
k (e, 0) = 2"

k( e, e) = 1

(12)

(13)

The remammg coefficients can be calculated for 2 ::; e and 1 ::; i ::; e - 1 by
the recursive formula

k (e, i) = k (e - 1, i·- 1) + k (e - 1, i) (14}

Then the scheme of calculation of the coefficients is as follows

k (e, 0) = 22
k (1, 0) = 21
k (2, 0) = 22
k (3, 0) = 23

k (e, i) = k (e - 1,i-I) + k (e - 1,i) k (1,1) = 1
k (e, e) = 1
k (2, 2) = 1

k (4, 0) = 24

k (2, 1) = k (1, 0) + k (1, 1)
k (3, 1) = k (2, 0) + k (2, 1)
k (3, 2) = k (2, 1) + k (2, 2)
k (4, 1) = k (3, 0) + k (3, 1)
k (4, 2) = k (3, 1) + k (3, 2)
k (4,3) = k (3, 2) + k (3, 3)

k (3, 3) = 1

k (4, 4) = 1

and so on,
Then it can be written

lim (S (e, 11) 'co Soo (15}

n = const, e -+ 00

and
lim (S (e, n) = Soo (16)

The method of averaging is already known.':" However, according to the
author's knowledge, it was not used in the form of an algorithm with high
order of averaging as here, i, e. with high e values,

The difference D (e, n) between two computed values S (e, n) is

D (e, n) = S (e - 1, n) - S (e, n) (17)
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and the quotient, Q (e, n), of two neighbouring differences

Q (e, n) = D (e, n)/D (e - 1, n). (18)

Then the infinite sum Soo equals to its computed part S (e; n) minus its
not-computed part, i. e. it can be defined by

Soo = S (e, n) - L D (e + i, n).
i=l

(19)

The not computed values of D (e = i, n) for i 2': 1 are

D (e + i, n) = D (e + i-I, n) Q (e + i, n). (20)

The condition of convergence of the series is D (e + 1, n)<D (e, n) and, also,
Q (e + 1,n)< Q (e, n)< 1. Consequently, the sum of all not computed dif-
ferences is

00

L D (e + i, n) < D (e, n) Q (e, n) L Q (e, n)'
i=l i=O

(21)

Since the right hand sum is a geometrical series with Q (e, n)< 1 it also holds:
00

L D (e + i, n) < D (e, n) Q (e, n)/[1 - Q (e, n)].
i=l

(22)

The following sum SE (e, n) can be defined:

SE (e, n) = S (e, n) - D (e, n) Q (e, n)/[1- Q (e, n)] (23)

which represents a better approximation to Soo than S (e, n) because the not
computed part of the sum was estimated and subtracted from the computed
sum S (e, n). The difference, 0 (e, n) is the error of computation, i. e.

(5'(e, n) = SE (e, n) - So.y (24)

If p and s are of the order magnitude of 0 (e, n) and SE (e, n) (and Soo) then

/) (e, n) = /)(e, n)' 10""1' (1 < /)(e, n)' < 10) (25)

and
SE (e, n) = SE (e, n)' 10-' (1 < SE (e, n)' < 10). (26)

If the computation with a given emax gives the result SE (ema" n) and if
the following condition is fulfilled (e< emax)

SE (e, n) - 5 . 10""1'< SE (emax' n) < SE (e, n), (27)

then also 0 (e, n)< 5 . 10-P and SE (e, n) is calculated with p-s significant
figures. The deviation of SE (emax, n) from Soo can be estimated from the
following inequality:

SE (emax - i, n) - 5 . 10""1' < SE (emax, n) < SE (emax - i, n) (i ~ 1). (28)

Then it is also
(29)
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THE COMPUTATION OF MADELUNG COSTANTS

The Madelung constant, MC=, is defined by the sum of reciprocal distan-
ces of all lattice points from the point (O,0, O).E. g. for the cubic lattice it can
be defined by

Z~±OO y~±oo X~±OO
MC= = ~ {~ [~(_I)Z-HJ+X+1/R (z, u. x)]),

±oo ±oo ±co
(30)

excluding the case when z = y = x = O; z, y, x are integers and

R (z, y, x) = Y Z2 + y2 + X2. (31)

Mathematically, the series of this type are relatively convergent. Since the
Madelung terms were always reported as constants it can be concluded that
the same series for binary lattices always converge.

Due to the symmetry, in order to avoid repetitive calculation of the same
distances, the sum MC= can be decomposed into three summands SX, SY, SZ:

00

SX = 6 ~ (_I)"+1/x
x~l

(32)

00 OC

SY = ~ ~ (_I)Y+"+1 F/Y y2 + X2,
y~l x~y

(33)

where F = 12 for y = x and F = 24 for y < x. The third summand can be
defined by

00 co 00

sz = ~ ~ ~ (_I)z+>J+X+1 F/Y Z2 + y2 + X2.
z=l y=z x=s)

(34)

here F = 8 for z = y = x, F = 24 for z = y < X and for z < y = x, while
F = 48 for z < y < x. Then the Madelung constant is the sum

MC= = sz + SY + SX. (35)

In analogy to e. g. (27) the three summands are defined by [SX (e), SY (e),
SZ (e) = SE (e, n), S (e, n) = 0, n = 0, Q (e) = Q (e, n), D (e) = De, n), the com-
putation was performed for n = ° for reasons of simplicity].

00

SX (e) = 2-e ~ (_I))x+1 F k (e, X -1)/x - D (e) Q (e)/[I- Q (e)] (36)
x~l

e+1 e-l-I
SY (e) = 2-e ~ ~ (_1)Y+X+1 F k (e, y -1) k (e, X -1)/Y y2 + X2_

yd x=y

-D (e) Q (e)/[I- Q (e)]. (37)

e+1 e+1 e+1
SZ (e) = 2-e ~ ~ ~ (_I)Z+1I+X+1 F k (e),z -1) k (e,y -1) k (e, X - 1/

y~l y~z z=s)

N Z2 + y2 + X2 - D (e) Q (e)/[l - Q (e)].

The values of F are the same as for the infinite series.
Then the computed Madelung constant reads

MC = SZ (emax) + SY (ema,) + SX (ema).

(38)

(39)

r
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The computation performed for p = 9 and s = O gives the following values
of the three summands

SX (21) = 4.158 883 08 - < 5 X 10-9

SY (18) = - 3.47113829 + < 5 y. 10-9

SZ (16) = 1.05981981 - < 5 X 10-9

and the lVIadelung constant

MC = SX (21) + SY (18) + SZ (16) = 1.74756460 + EJ - 5 X 109 < 1)< 1 X 10-8 (43)

The most accurate value known to the author was published by Saka-
mot05

(40)

(41)

(42)

MC = 1.747564594633 1822. (44)

It was calculated by using the previously calculated Born's »Grund-
potential«, not by direct summation. The difference of .- 5 X 10-9 between
both values indicates the basic correctness of the direct method of computation
proposed in the present note. It is obvious that the precision of the compu-
tation can be increased up to any higher precision, with in the limits imposed
by the accuracy of the computer used. Also, Callara and Miller" published
a method of calculation of the same lVIadelung constant. However, their value
differed from both cited values by - 8.5 X 10-6•

REFERENCES
1. A. B j o r c k und G. Dah 1q u i s t, Nmnerische methoden, R. Oldenburg Ver-

lag, Mimchen, Wien 1972.
2. N. Ha g and e r und Y. S u n d b 1a d, AufgabensammLung, Numerische Metho-

den, 2. Losungen, R. Oldenburg Verlag, Mi.inchen, Wien 1972.
3. J. V. C a Il ara and J. D. M i Il e r, CoHoid and Interface Science, Vol. III

(Ed. M. K e r k er,), Academic Press, New York 1976, p. 157.
4. M. Mir n i k and D. B a b i ć, A SimpLe Method of Inc1'easing Convergence

Rate of A!te1'nating Infinitesima! Series, Zbornik radova V. znanstvenog skupa:
Proračunavanje i projektiranje pomoću računaLa, Zagreb, 1983, p. 72-74.

5. Y. Sa k amo to, J. Chem. Phys. 28 (1958) 164..
6. T. C. W a d i n g t o n, Adv. Ino1"g. Chem. and Radiochem. 1 (1959) 157.

SAŽETAK

Izravno računanje Madelungovih konstanti

M. Mimik

Izveden je algoritam kojim je moguće izravnim zbrajanjem izračunati Made-
lungove konstante raznih binarnih kristalnih sustava s preciznošću koju omogućuje
upotrijebljeno računalo. Potreban program može se načiniti vrlo jednostavnim tako
da su vremena računanja prihvatljiva, jer je potreban malen broj prostornih
parametara. Algoritam se temelji na računanju ari tm etičkih sredina višeg reda
alternirajućih beskonačnih konvergirajućih redova kojima se mogu definirati Ma-
delungove kon stan te. Kao primjer izračunana je Madelungova konstanta za ku-
bičnu rešetku sa svega 21, 18, 16 članova u osima, u plohama osi i u prostoru
između njih. Dobivena vrijednost iznosi 1,74756460 + EJ, s procijenjenom vrijedno-
šću pogreške - 5 X 10-9 < EJ < 1 X 10-8• Direktnim sumiranjem za istu preciznost
bilo bi potrebno računati s oko 109 članova u osima.




