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The paper consists of three parts. In Part A the cyclic conju-
gation in porphin and some related compounds is examined. It is
shown that the Hiickel (4m+2)-rule isviolated so that conjugation
along both 16-, 17-, 18-, 19- and 20- membered cycles causes sta-
bilization of the rc-electron system of porphin. In Part B some com-
ments on the topological resonance energy method and its appli-
cation to porphin are given In Part e the four existing methods
for the calculation of the effect of cyclic conjugation on the
stability of ot-electron systems are compared and their mutual
relationship revealed.

PART A

EFFECT OF CYCLIC CONJUGATION ON THE THERMODYNAMIC STABILIY OF PORPHIN

INTRODUCTION

As it is well known-, porphyrins and metalloporphyrins are among
the most important natural products: iron-porphyrins form the prostetic
groups of haemoproteins such as haemoglobins, cytochromes, catalases and
peroxidases, whereas the chlorophylls are magnesium chelates of the closely
related chlorins.

The parent compound of porphyrins is porphin (I), a fully conjugated
26 n-electron system containing a variety of cycles of size 16, 17, 18, 19
and 20. Hence, it is natural to expect that conjugation along these cycles
will in a significant man ner influence the physico-chemical (and therefore
also biological) properties of porphyrins. A wealth of experiemntal evidence
accumulated in the last decades confirming this viewpoint (see, in particular,
references':" and the papers cited therein).

In the last ten years the present author (in cooperation with a number
of colleagues) developed a theory which enables the estimation of the effect
of cyclic conjugation arising from any particular cycle of a conjugated mole-
cule7-12. This approach is based on the mathematical formalism of graph
theory'" and is presently elaborated within the framework of the Hiickel
molecular orbital (HMO) model. The theory of cyclic conjugation can be
us ed to analyze any rr-electron property of a conjugated molecule, but is
nowadays applied mainly to the study of the effect of cycles on total n-ele-
ctron energy.
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Although the rr-electrcn energy constitutes only a smaller part of the
total energy of a molecule, it is the crucial quantity Ior the understanding
of the thermodynamic behaviour of conjugated compounds--v. The n-electron
energy as calculated with in the simple HMO scheme is, of course, a rough
approximation, but is certainly one of the most reliable outcomes of the
HMO model. HMO total rc-electron energy was the topic of a number of eon-
temporary investigations'<F.

The effect ef (O, Z) of a cycle Z on the total n-electron energy of a conju-
gated system whose molecular graph'" is G can be calculated from

00

ef (G, Z) = _1_ S In I ep (G, ix) I dx.
Jt ep (G, ix) + 2 ep (G - Z, ix)

-00

(1)

In the above formula i = Y - 1 whereas ([> (O, x) symbolizes the characte-
ristic polynomlal-" of graph O. Amore precize specification of the notation
used in eq. (1) is given in Part C of this paper.

The quantity ef (O, Z) is just an estimate of the effect of. the cycle Z on
the thermodynamic stability of the corresponding conjugated molecule". If
ef (O, Z)> 0, then cyclic conjugation along the cycle Z increases the stability
of the molecule. If ef (O, Z) < 0, then the cyclic conjugation along the cycle
Z has a destabilizing effect. These effects have been calculated for a great
variety of conjugated molecules".

The following regularities have been observed" for the quantity ef (O, Z):
(a) If the size of the cycle Z is 4m + 2 (that is, 6 or 10 or 14 or ... ),

then ef (O, Z) is positive.
(b) If the size of the cycle Z is 4m (that is, 4 or 8 or 12 or ... ), then

ef (O, Z) is negative.

Statements (a) and (b) are known as the extended Hiickel (4m + 2)-rule.
Its precise formulation was possible for the first time by using graph-theoreti-
cal reasoning. Rule (b) was later rigorously proved for alternant hydro-
carbons? while rule (a) holds only for the great majority, but not for all
alternant conjugated hydrocarbonsš-". In the following we shalI see that a
significant violation of the Huckel rule occurs in the case of porphin.

In order to avoid any misunderstanding we point out the basic differences
between the Huckel (4m + 2)-rule which holds for monocyclic conjugated
systems and its extension to polycyclic molecules. The original Hiickel rule
states that 4m + 2 rc-electrons in a monocyclic conjugated molecule form a
stable closed shell configuration, contrary to the case of4m n-electrons, which
form a polyradical open shell configuration. This result holds irrespective
of the size of the cycle. Hence, in the standard Hiickel rule the number of
n-electrons rather than the size of the cycle is the stability-determining
factor. We note in passing that the Hiickel rule for monocyclic systems is a
consequence of symmetry and can be deduced by using group-theoretic
arguments.

Attempts to extend the Hiickel rule to polycyclic systems have a long
history. The main obstacle in the case of polycyclic conjugated molecules is
that there is no unambiguous and self-evident way of deciding which part
of the total stabilization (or destabilization) due to cyclic conjugation comes
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from a particular cyc1e. In addition, symmetry arguments are of no use in
polycyc1ic systems. Graph-theoretical methods enabled one to overcome these
difficulties (although the mere fact that four different ef (G, 2)'s have been
proposed in the literature shows that some ambiguity still remains). These
graph-theoretical techniques for the ca1culation of the contribution of a
particular cyc1e to the total effect of cyclic conjugation are discussed in
some detail in Part C of the present paper.

In the case of polycyc1ic conjugated molecules it is not possible to speak
about the number of Jt-electrons in a particular cycle, since these electrons
belong simultaneously to all cyc1es. Therefore, in all approaches towards the
extension of the Huckel (4m + 2)-rule to polycyc1ic systems, the size of the
cyc1e rather than the (undefined) number of x-electrons is taken into account.
Whenever in the present paper we speak about the Hiickel rule we mean
its extension to polycyc1ic conjugated molecules and understand that 4m + 2
refers to the size of the corresponding cyc1e.

On the Topology of Porphin
The molecules investigated in the present paper are collected in Figure l.

These are porphin (I), the NH-tautomer of porphin (II), the doubly protonated

I II

2+ 2-

m
Figure 1. Porphiri (I), the NH-tautomer of porphin (II), protonated porphin (III)

and deprotonated porphin (IV)
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porphin dication (III) and the doubly deprotonated porphin dianion (IV), each
having 26 n-electrons.

The topology of therc-electron network of porphin is represented by
graph Gp• As amatter of fact, this graph corresponds to a (hypothetical)

Gp
conjugated hydrocarbon C24H16, which we shall call the parent hydrocarbon
of porphin.

It is easy to see that the porphin graph Gp has four 5-membered cyc1es
and 24= 16 distinct macrocyc1es: one 16-membered, four 17-membered, six
18-membered, four 19-membered and one 20-membered cyc1e.

Consequetnly, porphin has also 16 macrocyc1es, some of which are equi-
valent because of symmetry. They will be labeled according to the following
pattern. For example, Zl8 (N, NH) denotes an 18-membered cycle passing
through one N- and one NH-atom. There are four equivalent cyc1es of this
type. The complete list of the cyc1es of porphin is given in Table II.

The labeling of the cyc1es of II-IV is fully analogous. They are also
list ed in Table II.

RESULTS

In order to be able to see the pequliarities of the n-electron system of
porphin we present first the ef (G, Z) of the parent hydrocarbon. These have
been calculated by means of eq. (1) and are collected in Table 1.

TABLE I

Effect of Cycles on the Stability of the Parent Hydrocarbon of Porphin. AH Values
are in Units of 10-6 (J

molecule cycle multiplicity ef (G, Z)

parent hydrocarbon Z16 1 -7522
of porphin Z17 4 5143

Z18 6 210
Z19 4 -193
Z20 '1 -28

1
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An inspection of Table I shows that the Hiickel (4m + 2)-rule is fully
obeyed. Hence, the parent hydrocarbon of porphin behaves just like all other
conjugated molecules studied previously". The magnitude of the effects of
the cycles is very small and, in addition, significantly decreases with the
increase of the size of the cycle. For instance, the effect of the 20 membered
cycle is more than 250 times smaller than the effect of the 16-cycle.

The effect of cyclic conjugation in the case of I-IV is drastically
different, as it can be seen from Table II. The ef (G,Z) values in Table II
are also obtained by means of eq. (1), using the parametrization scheme for
the heteroatoms, as recently recommended by Van-Catledge'",

TABLE II

Effect of Cycles on the StabiLity of Porphin (I) and its three Derivatives (II-IV),
AH VaLues are in Units of 10-6 P

molecule cycle multiplicity ef (G, Z)

I Z16 1 7519
Z17 (N, NH, N) 2 9972
Z17 (NH, N, NH) 2 3368
Z18 (N,N) 1 12997
Z18 (N, NH) 4 4201
Z18 (NH,NH) 1 1271
Z19 (N) 2 5161
Z19(NH) 2 1480
Z20 1 1702

II Z16 1 7173
Z17 (N, NH, N) 2 9548
Z17 (NH, NH, N) 2 3255
Z18 (N, N) 1 12491
Z18 (N,NH) 4 4073
Z18 (NH, NH) 1 1244
Z19 (N) 2 5026
Z19 (NH) 2 1457
Z20 1 1688

III Z16 1 3878
Z17 4 4743
Z18 6 5673
Z19 4 6615
Z20 1 7451

IV Z16 1 12725
Z17 4 6816
Z18 6 3248
Z19 4 1335
Z20 1 451

DISCUSSION

The first thing that one observes in Table II is that all ef (G,Z) values
are positive. Hence, in the case of porphin all cycles present in the molecule
contribute towards thermodynamic stabilization. Furthermore, the effects are
much larger than in the case of the parent hydrocarbon and only very slightly
decrease (or even increase) with increasing the size of the cycle. This all
points to an extraordinary stabilization due to cyclic conjugation which

r
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occurs in porphin and which much resembles the conjugation effects in aro-
matic benzenoid hydrocarbons.

The Hiickel (4m + 2)-rule is completely violated in porphin. Not only
that 16- and 20-membered cycles stabilize the molecule, but odd-membered
cycles have comparable or even higher effects.

We may conclude that the above topological analysis revealed the unusual
position of the porphin system among conjugated molecules. Its exceptional
conjugation pattern may provide a clue for the understanding why Nature
has chosen porphyrins to act in the most important biochemical processes.

Some further observations are also worth mentioning.
There has been a long dispute concerning the correct position of the NH

hydrogen atoms in porphin1•2,4. Cycles of the same type have similar effects
in both I and II, but the effects in II are always slightly weaker. Thus, from
the viewpoint of cyclic conjugation, the structure I should be somewhat more
favourable then the structure II.

Another discussion was about the cycle along which rc-electron deloca-
lization occurs in porphin1,2,4. The two major candidates were Z18 (N,N) and
Z16. Our calculation shows that the former is somewhat better, but indicates
a third delocalization mode, namely via the two Z17 (N, NH, N) cycles (see
Figure 2). However, a correct interpretation of our results is that delocali-

Z1S-model

Z17( N, NH, N)- model
Figure 2. Delocalization modes in porphin

I
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j

zation occurs along several cycles simultaneously and that in the case of
porphin, the most important among them are Z18 (N, N), the two Z17 (N, NH, N)'s
and Z16 (in that order).

PART B

COMMENT ON THE APPLICATION OF THE TOPOLOGICAL RESONANCE ENERGY

METHOD TO PORPHIN

A few years ago the topological resonance energy (TRE) method19,~O
was applied to porphin and some related compounds'". In the meantime it
became clear that TRE has a number of serious and inevitable shortcom-
ings%2-!7.The paper'" can be viewed as a typical example of inconclusive and
incorrect results reached by the TRE method.

It has been shownš" that TRE measures the joint effect of all cycles on
total n-electro n energy. In the case of porphyrins the dominant part of TRE
comes from the individual and collective effects of the four pyrrole rings.
(We calculated that these contributions are two orders of magnitude greater
than the effects of macrocycles examined in Part A of this paper). Therefore,
it is not at all surprising that the TRE method cannot account for the much
more subtle (and chemically more important) conjugation effects of the
large cycles in porphin.

In particular, it has been found'" that for porphin I, TRE = 0.392 whereas
for its open-chain analogue V, TRE = 0.447.

y
Therefore, the TRE model forces one to conclude that the transformation
V ~ I, which introduces conjugation along the 16-, 17-, 18-, 19- and 20-mem-
bered cycles, will substantially decrease the stability of the n-electron system.
This absurd conclusion is in obvious contradiction with the entire chemistry
of porphyrins and, in particular, with the results obtained in Part A of
this paper.

In order to get some information about cyclic conjugation in porphin, the
TRE values of its individual cycles have been calculated.P This is a further
artifact in ref. 21, since it is a rather naive assumption that cyclic conjugation
in an isolated cycle is the same as the conjugation along a cycle within a
complicated polycyclic molecular topology. The estimates obtained in ref. 21
are, of course, in substantial disagreement (often even in sign) with what is
reported in the present paper. It is worth noting that methods for the cal-
culation . of ef (G, Z) became available7,8.,29much before the investigations
reported in ref. 21 were completed.
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PART C

ON METHODS FOR THE CALCULATION OF THE EFFECT OF CYCLIC CONJUGATION

Four methods for the calculation of the effect of a cycle on total rc-electron
energy have been proposed7,10,12,29.We show now that they are closely related,
both formally and numerically. In order to do this we shall use the recently
developed ji -polynomial formalism 10.

Let G be a molecular graph'" and ZI, Z2,"" Zr the cycles contained in ito
(For an example see Part A and the discussion concerning the cycles of the
porphin graph Gp• For this graph, r = 20). Associate a variable weight ta to
each of the cycles Za, a = 1, 2, ... , r, and denote the vector (tJ, t2, ••• , tr) by t.

If ti = t2 = ... = tr = O,then we write t = O. If ti = t2 = ... = tr = 1, then
we write t = lo

Let G - Za be the subgraph of G, obtained by deletion of all vertices of
Za. Then the u-polynomial of G is determined byl0

f,l (G, t, x) = ep (G, x) + 2 ~ (1 - ta) ep (G - Za' x) +
a

+ 22 ~ (1 - ta) (1 - tb) ep (G - Za - Zb' x) +
a<b

+23 ~ (1-ta)(1-tb)(1-te)ep(G-Za-Zb-Ze'X)+... (2)
a.<b<c

where >([J (H, X) denotes the characteristic polynomial" of the graph H, H = C,
G - Za, G - Za - Zb etc. In formula (2) we adopt the conventions that
ep (H - Zi - Zj' x) = Oif Zi and Zj are not disjoint (L e. have common vertices)
and that >([J (H - Zi>x) = 1 if the cycle Zi embraces all the vertices of H.

Note that if t = 1, then the u-polynomial reduces to the characteristic
polynomial.

Define, finally, the unit vectors eJ, e2, ... , en such that all components of
ej are zero, except the j-th component which is equal to one, j = 1, 2, ... , 1'.
Then, of course,

t = ti el + t2 e2 + ... + tr er'

The HMO total n:-electron energy E (G) corresponding to the molecular
graph G can be calculated from the characteristic polynomial ep (G) according
to a well established procedure. This is symbolized by the mapping f

f: ep (G, x) -+ E (G).

Applying now the same mapping to the u-polynomial we get a quantity
E (G, t)

f: f,l(G,t,x)-+E(G,t)

which, of course, depends on the vector t. For t = 1, E (G, t) coincides with
E (G).

Varying the weight of the cycles of G we formally change the extent to
which these cycles contribute to the total n-electron energy. In particular,
the choice ta = Ocorresponds to a complete neglect of the effect of the cycle Za.

Then the first method? for the calculation of the effect of Za on E (G)
can be formulated as

(3)
L If'~."", t.'U,t i.L .. :j,l.1l 'I
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the method of Aiharaš? reads

ef2 (G, Za) = E (G, ea) - E (G, O)

whereas the recently proposed »local« method " obeys

ef3 (G, Ze) = O E (G, t)jO ta II~I'

(4)

(5)

The method proposedin ref. 10. is based on the decomposition of the effect
of a cyc1e Za into first-, second-, third- and higher-order contributions. The
k-th order contribution coming from the cycle Za is given by

ef4 (k) (G, Za) = (l/k!) Ok E (G, t)/(O talk II~o (6)

and the total effect of Za is then

(7)

In the case of conjugated systems with occupied bonding MO's and
empty antibonding MO's, it can be shown!' that formula (3) reduces to the
previously given formula (1). In some exceptional cases, a strict application
of (3) would give complex-valued resultsš". This difficulty has been recently
overcome'" by introducing ef3 (C, Za). Nevertheless, in normal situations the
use of efi (C, Za) and its special form ef (C, Za) should be recommended.

We now show that the method proposed in ref. 10 is equivalent to that
earlier given by Aihara:

(8)

In order to do this expand E (C, Aea) in a power series of A. and assume (as
it has already been done in (7)) that the series converges for A. :::; 1. Direct
calculation and the use of (6) give

E (G, A.ea) = E (G, O) + ef4(t) (G, Za) A.+ ef4(2) (G, Z) A.2+ '"
Setting A. = 1 and having in mind (7) we obtain (8).

The three different methods (3), (4) and (5) give, however, very close
numerical results, especially in the absence of degenerate and almost dege-
nerate energy levels. Weshall demonstrate this facto

Suppose that the effects of cyc1ic conjugation on total n-electron energy
are nearly additive functions, i. e. that

E (G, t) = E (G, O)+ ti ef* (G, ZI) + t2 ef* (G, Z2) + ... + tr ef* (G, Zr) (9)

holds at least as a rough approximation. The nature of the coefficients
ef* (C, Za) will become c1ear later on.

Setting t =1 and t = 1- ea into (9) and substracting the so obtained
equations we arrive at

efi (G, Za) = ef* (G, Za)'

Setting t = ea into (9) and having in mind (4) we obtain

ef2 (G, Za) = ef* (G, Za)'

Differentiating (9) with respect to ta and using (5) we get

ef3 (G, Za) = ef* (G, Za)'
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It is obvious that the approximation (9) becomes an exact formula if the
components ta of t approach zero. Differentiating (9) with respect to ta and
using (6) we see that

ef* (G, Za) = ef4<t> (G, Za)'

This latter relation is an exact one. It shows that the three methods for the
estimation of the effect of cyclic conjugation give identical results within the
first order (linear) approximation. Differences between efi (G, Z), ef2 (G, Z)
and ef3 (G, Z) are consequences of second- and higher-order terms which are
usually small. This explains why efi (G, Z), ei, (G, Z) and eh (G, Z) often have
almost identical numerical values.
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SAZETAK

Ciklička konjugacija u porfinu

Ivan Gutman

Rad se sastoji od tri dijela. U dijelu A su izložena istraživanja o cikličkoj
konjugaciji u porfinu i nekim srodnim spojevima. Pokazano je da je u porfinu
narušeno Hiickelovo pravilo 4m+2 i to tako da konjugacija uzduž bilo kojeg od
16-, 17-, 18-, 19 i 20-članog prstena uvijek dovodi do stabilizacije n-elektronskog
sustava. U dijelu B se daju neke primjedbe na metodu topološke rezonancijske
energije i njezinu primjenu na porfin. U dijelu C su uspoređene četiri postojeće
metode za procjenu utjecaja cikličke konjugacije na stabilnost n-elektronskih su-
stava i ukazano je na njihovu međusobnu povezanost.




