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Abstract: A cactus is a connected graph in which any two cycles have at most one vertex in common. We determine the unique graphs with 
maximum signless Laplacian spectral radius in the class of cacti with given number of cycles (cut edges, respectively) as well as in the class of 
cacti with perfect matchings and given number of cycles. 
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INTRODUCTION 
LL graphs in this paper are simple. Let G be a graph on 
n vertices with vertex set V(G) and edge set E(G). Let 

A(G) be the adjacency matrix of G. The matrix Q(G) = D(G) 
+ A(G) is called the signless Laplacian matrix of G, where 
D(G) is a diagonal matrix of (vertex) degrees of G. It is well 
known that Q(G) is a semi-definite matrix and thus its 
eigenvalues are all nonnegative. The signless Laplacian 
spectral radius of G is the largest eigenvalue of Q(G), 
denoted by q(G). For more matrices associated to a graph, 
see the book of Janežič et al.[1] 
 If G is connected, then Q(G) is irreducible and by the 
Perron-Frobenius theorem, q(G) has multiplicity one and 
there exists a unique positive unit eigenvector 
corresponding to q(G), which is the Perron vector of Q(G). 
The study of the signless Laplacian spectral radius of graphs 
has received much attention.[2–10] 
 A cactus is a connected graph in which every edge 
appears in at most one cycle, see, e.g. Ref. [11]. Note that 
trees and unicyclic graphs are cacti. The (adjacency) spectral 
radius and least eigenvalue of a cactus have been studied to 
some extent,[12–15] and the distance spectral radius of a cactus 
was also studied.[16] Li and Zhang[7] determined the unique 
graphs with maximum signless Laplacian spectral radius in 
the class of cacti with given numbers of vertices and pendant 
vertices, and in the class of cacti with perfect matching and 
given number of vertices, respectively. 

 For 0 ≤ k ≤ [(n – 1)/2], let ( , )n kC  be the class of all 
cacti on n vertices with k cycles. 
 For 0 ≤ k ≤ n – 3, let ( , )n kF  be the class of all cacti on 
n vertices with k cut edges. 
 For 0 ≤ k ≤ n – 1, let ( , )n kG  be the class of all cacti 
on 2n vertices with perfect matchings and k cycles. 
 In this paper, we determine the unique cacti with 
maximum signless Laplacian spectral radius in ( , )n kC  for 0 
≤ k ≤ [(n – 1)/2], ( , )n kF  for 0 ≤ k ≤ n – 3, and ( , )n kG  for 0 
≤ k ≤ n – 1, respectively. 
 The spectral radius was, long ago, put forward as a 
measure of molecular branching,[17] while the Laplacian 
spectral radius was used for describing the shape and 
folding of DNA molecules.[18] It is well known that the 
Laplacian and signless Laplacian spectra of bipartite 
graphs coincide. Thus, chemically interesting cases for 
signless Laplacian spectral radius are the fullerenes, 
fluoranthenes and other non-alternant conjugated 
species. 
 

PRELIMINARIES 
Let G be a connected graph with V(G) = {v1,...,vn}. The 
Perron vector of Q(G) is the column vector x = (

1vx ,...,
nvx )T, 

which can be considered as a function defined on V(G) 
which maps vertex vi to 

ivx  for i = 1,2,...,n. 
 For an edge subset F of a graph G, G – F denotes the 
graph obtained from G by deleting the edges in F, while for 
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an edge subset F' of the complement of G, G + F' denotes 
the graph obtained from G by adding the edges from F'. 
 Denote by Cn, Pn and Sn the cycle, the path and the 
star on n vertices, respectively. 
 For a graph G with u ∈ V(G), NG(u) denotes the set of 
neighbors of u in G, and the degree of u in G is dG(u) = 
|NG(u)|. 
 The following two lemmas were proved in Refs. [19] 
and [20], respectively. 
 Lemma 2.1. Let G be a connected graph with u,v ∈ 
V(G). Suppose that w1,...,ws ∈ NG(v) \ (NG(u) ∪ {u}), where s ≥ 
1. Let x = (x1,...,xn)> be the Perron vector of Q(G), and G' = G – 
{vwi : i = 1,...,s} + {uwi : i = 1,...,s}. If xu ≥ xv, then q(G') > q(G). 
 Lemma 2.2. Let G be a connected graph and e = uv a 
non-pendant edge of G. Suppose that NG(u) ∩ NG(v) = ∅. Let G' 

be the graph obtained from G – {uv} by identifying u and v into 
u, and adding a new pendant edge at u. Then, q(G') > q(G). 
 The following lemma follows from the Perron-
Frobenius theorem, see, e.g., Ref. [5]. 
 Lemma 2.3. Let H be a proper subgraph of a 
connected graph G. Then, q(G) > q(H). 
 For n ≥ 3, k ≥ 0, and 0 ≤ p ≤ (n –2k – 1)/2, let Gn,k,p be 
an n-vertex graph obtained by identifying a vertex of each 
of k triangles, a vertex of each of t paths P2, and a terminal 
vertex of each of p paths P3, where t = n – 2k – 2p – 1, see 
Figure 1. 
 Lemma 2.4. For n ≥ 3, k ≥ 0, and 0 ≤ p ≤ (n –2k – 1)/2, 
q(Gn,k,p) is the largest root of the equation f(x) = 0, where f(x) 
= x5 – (n – p + 6)x4 + (6n – 6p + 10)x3 – (10n + 4k – 9p + 3)x2 + 
(3n + 12k)x – 4k. In particular, q(Gn,k,0) is the largest root of 
the equation x3 – (n + 3)x2 + 3nx – 4k = 0, and for odd n, 
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 Proof. The characteristic polynomial of Q(Gn,k,p) was 
given in the proof of Lemma 4 in Ref. [8], from which the 
first part follows. 
 Let g(x) = x3 – (n + 3)x2 + 3nx – 4k. If p = 0, then it is 
easy to see that f(x) = (x2 – 3x + 1)g(x), which, together with 
the fact that q(Gn,k,0) ≥ q(P3) = 3, implies that q(Gn,k,0) is the 
largest root of the equation g(x) = 0. 
 If p = 0, k = (n –1)/2, then f(x) = (x2 – 3x + 1)(x – 1)[x2 

– (n + 2)x + 2n – 2], and thus 
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 For a cactus G with at least one cycle, the deletion of 
all edges of G on cycles results in a forest. A nontrivial 

connected component of such a forest containing a unique 
vertex v on some cycle is said to be a branch of G at v. If G 
is a tree, we also call it a branch at one of its vertices. 
 

SIGNLESS LAPLACIAN SPECTRAL 
( , )n kCRADIUS OF GRAPHS IN  

Let Gn,k = Gn,k,0. Note that Gn,0 = Sn. 
 Theorem 3.1. Let G ∈ ( , )n kC , where 0 ≤ k ≤ [(n – 
1)/2] and n ≥ 3. Then, q(G) ≤ q(Gn,k) with equality if and only 
if G ≌ Gn,k, where q(Gn,k) is the largest root of the equation  
x3 – (n + 3)x2 + 3nx – 4k = 0. 
 Proof. By Lemma 2.4, q(Gn,k) is the largest root of the 
equation x3 – (n + 3)x2 + 3nx – 4k = 0. Let G be a graph in 

( , )n kC  with maximum signless Laplacian spectral radius. 
We need only to show that G ≌ Gn,k. 
 Let x be the Perron vector of Q(G). 
 Suppose that k ≥ 1 and there is a cycle of length at 
least 4. Let v1 ...vrv1 be such a cycle with length r ≥ 4. 
Without loss of generality assume that xv1 ≥ xv2. Let  
G' = G – {v2v3} + {v1v3}. Obviously, G' ∈ ( , )n kC . By Lemma 
2.1, we have q(G0) > q(G), a contradiction. Thus, if k ≥ 1, 
then all cycles of G are triangles. If n = 3, then k = 1 and thus 
the result follows. So let n ≥ 4.  
 Claim 1. If k ≥ 2, then any two triangles of G have one 
common vertex. 
 Suppose that there are two disjoint triangles T1 and 
T2 in G. Then, there exists a unique shortest path v1 ...vs 

joining them, where s ≥ 2, v1 ∈ V(T1), vs ∈ V(T2). If s > 2, then 
vi   V (T1) ∪ V (T2) for 2 ≤ i ≤ s – 1. Since G is a cactus, any 
path joining T1 and T2 starts from v1 and ends in vs. We may 
assume that xv1 ≥ xvs. Let w1 and w2 the neighbors of vs in T2. 
Let G' = G – {vsw1,vsw2} + {v1w1,v1w2}. Obviously, G' ∈ ( , )n kC . 
By Lemma 2.1, we have q(G') > q(G), a contradiction. This 
proves Claim 1.  
 Claim 2. If k ≥ 3, then any three triangles of G have 
exactly one common vertex. 
 Suppose that there are three triangles T1, T2 and T3 in 
G such that they have no common vertex. By Claim 1, the 
common vertices of T1 and T2, T2 and T3, and T1 and T3 induce 

 

Figure 1. Graph Gn,k,p. 
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another triangle having a common edge with T1, a 
contradiction. Thus, Claim 2 follows. 
 By Claims 1 and 2, we have: if k ≥ 2, then all triangles 
of G have exactly one common vertex, which we denote by 
v0. If k = 1, choose v0 such that 

0vx  is maximum among 
vertices with degree at least 3 on the unique triangle, and 
if k = 0, choose v0 to be a non-pendant vertex. 
 Claim 3. For k ≥ 1, there is no branch of G at a vertex 
different from v0. 
 Suppose that there is a branch T at vertex v on some 
triangle L of G with v ≠ v0. Let G' = G – {vw : w ∈ NT (v)} + 
{v0w : w ∈ NT (v)} for 

0vx  ≥ xv, and G' = G – {v0w : w ∈ NG(v0) 
\ V(L)} + {vw : w ∈ NG(v0) \ V (L)} for 

0vx  < xv. In either case, 
G' ∈ ( , )n kC , and by Lemma 2.1, we have q(G') > q(G), a 
contradiction. Thus, Claim 3 follows. 
 If there is a branch T of G at v0 (possibly k = 0 and G = 
T), then T is a star with center v0. Otherwise, suppose that 
there is a path v0v1 ...vs in T, where s ≥ 2. Let G' be the graph 
obtained from G by deleting the edge v0v1, identifying v0 

and v1 into v0, and adding a new pendant edge to v0. 
Obviously, G' ∈ ( , )n kC . By Lemma 2.2, q(G) < q(G'), a 
contradiction. Now by Claims 1–3, G ≌ Gn,k. □ 
 Let G be a cactus on n ≥ 3 vertices. Let k be the 
number of cycles of G, where 0 ≤ k ≤ [(n – 1)/2]. By Theorem 
3.1 and Lemma 2.3, q(G) ≤ q(Gn,k) ≤ q(Gn,[(n – 1)/2]) with 
equalities if and only if G ≌ Gn,k and k = [(n –1)/2], i.e., G ≌ 
Gn,[(n – 1)/2]. Thus, q(G) ≤ q(Gn,[(n – 1)/2]) with equality if and only 
if G ≌ Gn,k. By Theorem 3.1, we have q(Gn,[(n – 1)/2]) = 

   2( 2 4 12) / 2n n n  for odd n, and q(Gn,[(n – 1)/2]) is 
the largest root of the equation x3 – (n + 3)x2 + 3nx – 2n + 4 
= 0 for even n. 
 

SIGNLESS LAPLACIAN SPECTRAL 
( , )n kFRADIUS OF GRAPHS IN  

In view of the proofs of Lemmas 2.6 and 2.7 in Ref. [7], we 
deduce the following two lemmas. 
 Lemma 4.1. Let Y be a connected graph with u0 ∈ V(Y ). 
For m ≥ 5, let G1 be the graph obtained by identifying u0 and 
a vertex of Cm, G2 be the graph obtained by identifying u0 

and a vertex of each of (m – 1)/2 triangles for odd m, and 
G3 be the graph obtained by identifying u0, a vertex of each 
of (m – 4)/2 triangles, and a vertex of one quadrangle for 
even m, see Figure 2. Then, q(G1) < q(G2) if m is odd, and 
q(G1) < q(G3) if m is even. 
 Lemma 4.2. Let Y be a connected graph with u0 ∈ V 
(Y ). Let G4 be the graph obtained by identifying u0 and a 
vertex of each of two quadrangles, and G5 be the graph 
obtained by identifying u0 and a vertex of each of three 
triangles, see Figure 3. Then, q(G4) < q(G5). 
 For 1 ≤ r ≤ n/2 – 1, let '

,n rG  be n-vertex graph 
obtained by identifying a vertex of each of r – 1 triangles, a 

vertex of a quadrangle, and a vertex of each of n – 2r – 2 
paths P2, see Figure 4. 
 Lemma 4.3. For n ≥ 4 and 1≤ r ≤ n/2 – 1, q( '

,n rG ) is the 
largest root of the equation f(x) = 0, where f(x) = x5 – (n + 6)x4 

+ (7n + 7)x3 – (14n + 4r – 10)x2 + (6n + 16r – 16)x – 8r + 8. 

 

Figure 2. Graphs G1, G2, and G3. 
 

Figure 3. Graphs G4, and G5. 
 

 

 

Figure 4. Graph G'n,r. 
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 Proof. Let t = n – 2r – 2. Label the vertices of '
,n rG  as 

v0,u1,...,ur−1, 
' '
1 1,..., ru u , v1, v2, v, w1,..., wt, , see Figure 4. 

 Let Q = Q( '
,n rG ), q = q( '

,n rG ) and x be the Perron 
vector of Q. By Lemma 2.3, q ≥ q(C4) = 4. 
 Since (q – 2)   '

0i i
u v u

x x x  and (q – 2)  '
0i i

vu u
x x x  

for 1 ≤ i ≤ r−1, we have  '
i i

u u
x x  for 1 ≤ i ≤ r – 1 and thus 

 
    ' '

1 1 1 1
... ...

r r
u u u u

x x x x . Since (q – 1) 
0iw vx x for 

1 ≤ i ≤ t, we have 
1 tw vx x . Thus, 
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 Since x ≠ 0, we have 
0 1 1 1

Τ( , , , , ) 0v u v v wx x x x x , and 
thus det(D) = 0, where 
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 By a direct calculation, we have det(D) = f(q). 
 Now it follows that q is the largest root of the 
equation f(x) = 0. □ 
 Theorem 4.1. Let G ∈ ( , )n kF , where 0 ≤ k ≤ n – 3. 
 (i) If n – k is odd, then q(G) ≤ q(Gn,(n – k – 1)/2) with 
equality if and only if G ≌ Gn,(n – k – 1)/2, where q(Gn,(n – k – 1)/2) 
is the largest root of the equation x3 – (n + 3)x2 + 3nx – 2n + 
2k + 2 = 0. 

(ii) If n – k is even, then q(G) ≤ q(G'n,(n – k – 2)/2) with 
equality if and only if G ≌ G'n,(n – k – 2)/2, where q(G'n,(n – k – 2)/2) is 
the largest root of the equation x5 – (n + 6)x4 + (7n + 7)x3 – 
(16n – 2k – 14)x2 + (14n – 8k – 32)x – 4n + 4k + 16 = 0. 
 Proof. By Lemmas 2.4 and 4.3, if n – k is odd, then 
q(Gn,(n – k – 2)/2) is the largest root of the equation x3 – (n 
+ 3)x2 + 3nx – 2n + 2k + 2 = 0, and if n – k is even, then 
q(G'n,(n – k – 1)/2) is the largest root of the equation x5 – (n 
+ 6)x4 + (7n + 7)x3 – (16n – 2k –14)x2 + (14n – 8k – 32)x – 
4n + 4k + 16 = 0. Let G be a graph in ( , )n kF  with 
maximum signless Laplacian spectral radius. We only 
need to show that is odd and is even. 

 The result is trivial for n = 3 and for n = 4 with k = 0. 
Suppose n ≥ 4 and (n,k) ≠ (4,0). By Lemma 2.3 and the fact 
that q(Cs) = 4 for s ≥ 3, we have G ≇ Cn. 
 Since k ≤ n – 3, G contains at least one cycle. By 
similar arguments as in Claims 1 and 2 in the proof of 
Theorem 3.1, if there are at least two cycles, then all cycles 
of G have exactly one common vertex, denoted by v0. If 
there is exactly one cycle in G, then choose v0 such that the 
corresponding entry of the Perron vector of Q(G) is 
maximum among vertices with degree at least 3 on the 
unique cycle. By similar arguments as in Claim 3 in the proof 
of Theorem 3.1, there is no branch of G at a vertex different 
from v0. If there is a branch T of G at v0, then by Lemma 2.2, 
T is a star with center v0. 
 If G contains a cycle of length at least 5, then by 
Lemma 4.1, we may have a graph G' ∈ ( , )n kF  (of the form 
G2 or G3) such that q(G) < q(G'), a contradiction. Thus, any 
cycle of G has length 3 or 4. If G contains two quadrangles, 
then by Lemma 4.2, we may have a graph G' ∈ ( , )n kF  (of 
the form G5) such that q(G) < q(G'), a contradiction. Thus, G 
has at most one quadrangle. Thus, G ≌ Gn,(n – k – 1)/2 if n – k 
is odd and G ≌ G'n,(n – k – 2)/2 if n – k is even. 
 

SIGNLESS LAPLACIAN SPECTRAL 
( , )n kGRADIUS OF GRAPHS IN  

For a graph G, let ∆1(G) be the maximum degree of G. If 
dG(u) = ∆1(G), where u ∈ V (G), then let ∆2(G) = max{dG(v) : 
v ∈ V(G) \ {u}}. 
 The following lemma is a particular case of Theorem 
4.2 in Ref. [21]. 
 Lemma 5.1. Let G be a graph on at least two vertices 
with ∆i = ∆i(G) for i = 1,2. Then, 
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Figure 5. Graph Hn,k,i. 
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 The following lemma was given in Page 23 of Ref. [2] 
in plain text. 
 Lemma 5.2. Let G be a connected graph on n ≥ 4 
vertices. Then, q(G) ≥ ∆1(G) + 1 with equality if and only if G 
is the star Sn. 
 For n ≥ 2, k ≥ 0, 0 ≤ i ≤ k, and n – k – i – 1 ≥ 0, let Hn,k,i 

be the graph obtained from G2n–2i,k,n–k–i–1 by attaching a 
pendant edge at each vertex with degree two of i triangles, 
see Figure 5. 
 Lemma 5.3. For n ≥ 3, k ≥ 1, 1 ≤ i ≤ k and n – k – i – 1 
≥ 0, we have q(Hn,k,i) < q(G(Hn,k,i–1)). 
 Proof. By Lemma 5.1, 


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By Lemma 5.2, q(Hn,k,i–1) > n + k – i + 2. If n + k – i ≥ 6, then 
q(Hn,k,i) ≤ n + k – i + 2, and thus q(Hn,k,i) < q(G(Hn,k,i–1). 
 Suppose that n + k – i < 6. Since k ≥ i and n ≥ 3, we 
have n = 3, 4, 5. Since k + i ≤ n − 1 and k ≥ 1, we have k = 1, 
2. Thus, (n,k,i) = (3,1,1), (4,1,1), (4,2,1), (5,1,1), (5,2,2). By a 
direct calculation, we have 

 q(H3,1,1) = 5.2361    <    5.3839 = q(H3,1,0), 

 q(H4,1,1) = 5.7711    <    6.2860  = q(H4,1,0), 

 q(H4,2,1) = 6.5741    <    7.2871 = q(H4,2,0), 

 q(H5,1,1) = 6.5051    <    7.2261 = q(H5,1,0), 

 q(H5,2,2) = 6.7359    <    7.4133 = q(H5,2,1). 

 Thus, the results follows. 
 Let Hn,k = Hn,k,0. 
 Theorem 5.1. Let G ∈ ( , )n kG , where n ≥ 2 and 0 ≤ k 
≤ n – 1. Then, q(G) ≤ q(Hn,k) with equality if and only if G ≌ 
Hn,k, where q(Hn,k) is the largest root of the equation x5 –(n + k + 
7)x4 + (6n + 6k + 16)x3 – (11n + 13k + 12)x2 + (6n + 12k)x – 4k = 0. 
 Proof. By Lemma 2.4, q(Hn,k) is the largest root of the 
equation x5 – (n + k + 7)x4 + (6n + 6k + 16)x3 – (11n + 13k + 12)x2 

+ (6n + 12k)x – 4k = 0. Let G be a graph in ( , )n kG  with 
maximum signless Laplacian spectral radius. We only need to 
show that G ≌ Hn,k. 
 Let x be the Perron vector of Q(G) and M be a fixed 
perfect matching of G. 
 Suppose that k ≥ 1 and there is a cycle C = v1 ...vpv1  

of length p ≥ 4. Without loss of generality assume that xv1 = 
min{xv : v ∈ V(C)}. Obviously, one of v1v2 and v1vp, say v1v2 is 
not in M. Let G' = G – {v1v2} + {vpv2}. Then, M is still a perfect 
matching of G', and G' ∈ ( , )n kG . By Lemma 2.1, q(G') > q(G), 
a contradiction. Thus, if k ≥ 1, then all cycles of G are 
triangles.  

 Claim 1. If k ≥ 2, then any two triangles of G have a 
common vertex. 
 Suppose that there are two disjoint triangles T1 and T2 in 
G. Then, there exists a unique shortest path v1 ...vs joining 
them, where s ≥ 2, v1 ∈ V(T1), vs ∈ V(T2). If s > 2, then vi   V(T1) 
∪ V(T2) for 2 ≤ i ≤ s – 1. Note that any path joining T1 and T2 

starts from v1 and ends in vs. We may assume that xvs ≥ xv1. Let 
T1 = uv1w. Suppose that uv1 ∈ M. Then, uw   M and that ww’ 

∈ M for some vertex w’ ∈ NG(w) \ {u,v1}. If xv1 ≥ xw, let G’ = G−{wy 
: y ∈ NG(w) \ {u,v1}} + {v1y : y ∈ NG(w) \ {u,v1}}. Obviously, M’ = 
M – {uv1,ww’} + {uw,v1w’} is a perfect matching of G’. 
Otherwise, let G’ = G − {v1y : y ∈ NG(v1) \ {u,w}} + {wy : y ∈ NG(v1) 
\ {u,w}}. Obviously, M is still a perfect matching of G’. In either 
case, G’ ∈ ( , )n kG . By Lemma 2.1, q(G’) > q(G), a contradiction. 
Thus, uv1   M. Similarly, wv1   M. Let G’ = G – {uv1,wv1} + 
{uvs,wvs}. Obviously, G’ ∈ ( , )n kG . By Lemma 2.1, q(G’) > q(G), 
a contradiction. Thus, Claim 1 follows. 
 By the same argument as in Theorem 3.1, we have 
 Claim 2. If k ≥ 3, then any three triangles of G have 
exactly one common vertex. 
 By Claims 1 and 2, we have: if k ≥ 2, then all the 
triangles of G have exactly one common vertex, denoted 
by v0. If k = 1, choose v0 such that 

0vx  is maximum among 
vertices with degree at least 3 on the unique triangle, and 
if k = 0, choose v0 such that xv0 is maximum among vertices 
of G. 
 Claim 3. If k ≥ 1 and there is a branch T at vertex v on 
some cycle of G, then T is a tree consisting of pendant paths 
of length 2 and possibly one of length 1 at v. If k = 0, then G 
is a tree consisting of pendant paths of length 2 and 
possibly one of length 1 at v0. 
 Let u be a vertex furthest from v in T (possibly k = 0, 
v = v0, and G = T). Suppose that the distance between v and 
u in T is at least 3. Since G has perfect matchings, u is a 
pendant vertex adjacent to a vertex u' of degree 2. Let w be 
the neighbor of u' different from u. Obviously, w ≠ v. Let G' 

= G – {wu'} + {vu'} if xv ≥ xw and G' = G – {vv'} + {wv'} 
otherwise, where v' is a neighbor of v on some cycle such 
that vv'   M. Obviously, M is still a perfect matching of G', 
and G' ∈ ( , )n kG . By Lemma 2.1, q(G') > q(G), a contradic-
tion. Thus, any vertex in T is reachable from v by a path of 
length at most 2. Now Claim 3 follows from the fact that G 
has perfect matchings.  
 Claim 4. For k ≥ 1 and a triangle C = v0uu1 in G, if there 
is a pendant edge at u, there is a pendant edge at u1. 
 The claim is trivial for k = 1. Suppose that k ≥ 2, uv is 
a pendant edge, and there is no pendant edge at u1. Then, 
uv,v0u1 ∈ M. If 

0vx  ≥ xu, let G' = G – {uv} + {v0v}. Obviously, 
M' = M – {uv,v0u1} + {uu1,v0v} is a perfect matching of G'. 
Otherwise, let G' = G – {v0y : y ∈ NG(v0) \ {u,u1}} + {uy : y ∈ 
NG(v0) \ {u,u1}}. Obviously, M is still a perfect matching of 
G'. In either case, G' ∈ ( , )n kG . By Lemma 2.1, q(G') > q(G), 
a contradiction. Thus, Claim 4 follows. 
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 Claim 5. For k ≥ 1, there is no pendant path of length 
2 in G at a vertex different from v0. 
 Suppose that v0uu1 is a triangle in G and there is a 
pendant path uvw at u. Then, vw ∈ M. If xv0 ≥ xu, let G' = G − 
{uv} + {v0v}. Suppose that xv0 < xu. Since G has perfect 
matchings, we have by Claim 4 that any edge on a triangle 
incident to v0 is not in M, implying that there is a branch, 
say T0 at v0. Then, by our choice of v0, we have k ≥ 2, and for 
any vertex y ∈ NG(v0) \ ({u,u1} ∪ V (T0)), v0y /∈ M. Let G' =  
G − {v0y : y ∈ NG(v0) \ ({u,u1} ∪ V (T0))} + {uy : y ∈ NG(v0) \ 
({u,u1} ∪ V(T0))}. Obviously, M is still a perfect matching of 
G' and G' ∈ ( , )n kG  whether xv0 ≥ xu or not. By Lemma 2.1, 
we have q(G') > q(G) in either case, a contradiction. Thus, 
Claim 5 follows. 
 By Claims 1–5, G ≌ Hn,k,i for some i with 0 ≤ i ≤ k. If n 
= 2, k ≥ 1 the result is trivial. If n ≥ 3, k ≥ 1, then by Lemma 
5.3, G ≌ Hn,k. 
 Note that ( ,0)nG  is the set of trees of order 2n with 
perfect matching. Thus, the case k = 0 in Theorem 5.1 has 
been studied in Ref. [22]. 
 

CONCLUSION 
In this paper, we investigate the extremal problems for 
signless Laplacian spectral radius of cacti. We determine the 
unique graphs with maximum signless Laplacian spectral 
radius of graphs in the class of cacti with given number of 
cycles (cut edges, respectively) and in the class of cacti with 
perfect matchings and given number of cycles. The extremal 
graphs (except the case for trees) are not bipartite. 
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