

Mining Software Repositories for Defect
Categorization

Sakthi Kumaresh, and Ramachandran Baskaran

Abstract— Early detection of software defects is very important
to decrease the software cost and subsequently increase the
software quality. Success of software industries not only depends
on gaining knowledge about software defects, but largely reflects
from the manner in which information about defect is collected
and used. In software industries, individuals at different levels
from customers to engineers apply diverse mechanisms to detect
the allocation of defects to a particular class. Categorizing bugs
based on their characteristics helps the Software Development
team take appropriate actions to reduce similar defects that
might get reported in future releases. Classification, if performed
manually, will consume more time and effort. Human resource
having expert testing skills & domain knowledge will be required
for labeling the data. Therefore, the need of automatic
classification of software defect is high.

This work attempts to categorize defects by proposing an
algorithm called Software Defect CLustering (SDCL). It aims at
mining the existing online bug repositories like Eclipse, Bugzilla
and JIRA for analyzing the defect description and its
categorization. The proposed algorithm is designed by using text
clustering and works with three major modules to find out the
class to which the defect should be assigned. Software bug
repositories hold software defect data with attributes like defect
description, status, defect open and close date. Defect extraction
module extracts the defect description from various bug
repositories and converts it into unified format for further
processing. Unnecessary and irrelevant texts are removed from
defect data using data preprocessing module. Finally grouping of
defect data into clusters of similar defect is done using clustering
technique. The algorithm provides classification accuracy more
than 80% in all of the three above mentioned repositories.

Index Terms— Software Defect, Defect Classification, Bug
Repository, Clustering, Bug Categorization.

I. INTRODUCTION
oftware defect can be defined as imperfections in software
development process which disenables the software to fail
to meet the desired expectations [14]. Software defects are

inherent in the software process development, and it is also a
significant factor contributing to software quality.

 Developing defect free software product is impossible, but
the organization can aim at minimizing defects by investing
majority of the effort in detecting and preventing defects thro-

Manuscript received February 27, 2015; revised April 12, 2015.
S. Kumaresh is with the MOP Vaishnav College for Women, Chennai,

India (e-mail: sakthi.kma@ gmail.com).
R. Baskaran is with the Department of Computer Science and Engineering,

Anna University, Chennai, India. (e-mail: dr.baskaran10@gmail.com).

ugh effective defect management process. Software defect
detection is done at various phases of software development
through activities like Requirement’s Review, Code
Inspection, walkthrough and testing. Detected defects are then
stored in software repositories for further analysis.

 Software bug repositories holds large amount of useful
information about software defects [5]. It contains attributes of
defects like defect id, description, status, open date, close date
etc. Software description holds text data which tells us details
about the defect. Bugs are reported to these repositories by
non-technical people who cannot assign correct class to these
bugs. Developers may be proficient in one particular domain,
assigning a particular bug to relevant developer is important as
it could save time and would help to maintain the interest level
of developers. However, assigning the right bug to the right
developer is quite difficult for tri-ager without knowing the
actual class; the bug belongs to. [6]

 Data mining techniques can be applied to handle large
amount of data and text mining in particular to extract the
knowledge from bug repositories. Categorizing defects into
types and performing analysis may be beneficial to software
organizations, but defects are not grouped into categories as it
involves huge effort and time [10]. Thus there is a need for an
automated approach that could help developers assign
category labels to defects during defect analysis [10].

 This work attempts to categorize bugs into classes by
proposing an algorithm called SDCL. The algorithm proposed,
works in three modules namely Defect extraction module,
Data pre-processing and clustering module. Defect extraction
module extracts the defect data from various software
repositories like Bugzilla, JIRA and Eclipse and converts it
into a unified format. Defect details collected from various
bug repositories are then pre-processed for efficient defect
categorization. Parsing the defect data, Stop word removal and
Stemming is performed through data pre-processing module.

A. Defect Classification
 Classification is one of the popular data mining techniques to
categorize the defects into classes. Software bug classification
is the process of classifying the software bugs into different
categories. Classification of the software defect data is done in
order to get deeper insight into defect details. Software defect
classification is an essential part of improving software
quality. Manual classification consumes lot of time and effort
and people with domain knowledge and testing skills are
required. Numerous techniques and algorithms are available

S

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 11, NO. 1, MARCH 2015 31

1845-6421/03/8389 © 2015 CCIS

FESB
Typewritten Text
 Original scientific paper

to automate the defect classification process. SDCL algorithm
proposed in this paper aims to categorize defects into classes
using clustering technique. Once categorization of software
defects are done, defect pattern can be analyzed which in turn
helps to find out the root causes of the defects. The scope of
this study is limited to categorizing defect into various classes
using text clustering technique.

B. Clustering Technique
 A cluster is a collection of similar objects which shows
some similar characteristics between them and shows some
dissimilar characteristics between the objects in other clusters.
There are number of clustering algorithms available and
various techniques exist for measuring the distances for the
clusters data points [7].

 Clustering technique is very useful in the text domain, where
the objects to be clustered can be of different type such as
documents, paragraphs, sentences or terms. Clustering can be
used for number of tasks like information retrieval, web
analysis, marketing and medical diagnostic, corpus
Summarization and Document Classification [12]. In this
work, clustering is done using vector space model, in which
the closeness between the defect data is identified using cosine
similarity measure. The efficiency of our algorithm is tested
on data collected from three software repositories Bugzilla,
JIRA and Eclipse. The results show that our defect
categorization algorithm could achieve an accuracy of more
than 80%.

 The rest of this paper is structured as follows. Section 2 gives
details about bug repository. Section 3, reviews the related
work on software defect classification using clustering
technique. Section 4 details about the proposed Software
Defect CLustering (SDCL) through three modules namely,
Defect Extraction module, Data pre-processing and clustering
module. Section 5 briefs about implementation details and
section 6 presents the performance measure of the proposed
algorithm. Finally section 7 concludes the paper with future
research.

II. BUG REPOSITORY
 Organizations aim to develop defect free software, but
defects are inevitable during software development. So, all
software projects need defect tracking system to track the
defects related to software. Software bugs are managed using
bug tracking tools like Bugzilla, Eclipse, JIRA etc. These are
online repositories which contain useful information about
software defect in HTML or XML format. Knowledge
discovery from such software bug repositories is essential to
know about the details of the defects. These repositories
posses useful information about defects like defect summary,
description, open date, closed date, severity, priority, user
comments etc. Many of the defect related attributes like defect
description are in textual form. To extract knowledge from
bug repositories data mining techniques can be used. In this
work, an attempt has been made to categorize the defect in
different labels on the basis of defect description using
clustering technique. In order to take corrective actions for the
defects, the defects have to be assigned to the right person.

This can be accomplished by categorizing the bugs into
various categories.

III. LITERATURE SURVEY
 Mining software repositories is essential as it contains
information about defects. Software defect prediction,
classification is done using software repositories. An approach
to automatically identify the duplicate bug reports in the
software bug repositories is proposed by Jalbert and Weimer
[1]. Naresh kumar et al [5] presented a software bug
classification algorithm, CLUBAS (Classification of Software
Bugs Using Bug Attribute Similarity). CLUBAS is a hybrid
algorithm, and is designed by using text clustering, frequent
term calculations and taxonomic terms mapping techniques
thereby categorizing bug data. Neelofar et al [6] realizes that
assigning a particular bug to relevant developer could save
time and would help to maintain the interest level of
developers by assigning bugs according to their interest.
However, assigning right bug to right developer is quite
difficult for tri-ager without knowing the actual class, the bug
belongs to. Hence in this paper, they have classified the bugs
in different labels on the basis of summary of the bug. Lian Yu
et al [9] discusses that it is hard to understand the crux of the
problem and the debuggers must be well equipped with
domain knowledge. In [7] Naresh Kumar Nagwani et al used
Suffix Tree Clustering (STC) algorithm for software bug
classification. STC can be applied to create the clusters of
software bug record. Surendra Naidu [8] proposed the system
for classifying various defects using decision tree based defect
classification technique, which is used to group the defects
after identification. P. V. Ingle et al [13] have presented
different types of clustering methodology and categorize
cluster as simple, medium and complex cluster. They does
defect clustering using K means clustering algorithm. NLP
based Information Retrieval system for mining defect data
repository based on the quality of text description was
proposed by Schugertl P et al [4]. Ferdian Thung [10] has
worked on defect categorization technique by analyzing both
texts from bug reports and code features from bug fixes.
Analyzed data from three software system and classified them
according to three categories of Orthogonal Defect
Classification (ODC). The categories include control and data
flow, structural and non-functional. Thung was able to achieve
77.8% accuracy by using SVM multi class classification
algorithm.

An algorithm, Lingo is proposed by Osinski et al. [2] for
clustering search results of text documents, Lingo uses
algebraic transformations of the term-document matrix, and
frequent phrase extraction using suffix arrays. Qinbao Song et
al [3] have proposed a FAST algorithm for selecting the
Feature subset for clustering and evaluated empirically. In this
they have adopted the efficient Minimum-Spanning Tree
(MST) method.

IV. SOFTWARE DEFECT CLUSTERING (SDCL) ALGORITHM
 Software defect reports that are extracted from bug
repositories contain lot of defect related attributes. Attributes
like Defect description and summary are the important one in

32 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 11, NO. 1, MARCH 2015

the bug repository which holds text data. For Effective
categorization of the software defect, a text classification
scheme is required. This work, attempts to categorize software
defects by proposing an algorithm called Software Defect
CLustering (SDCL) algorithm. This algorithm contains three
modules to perform defect categorization using bug data from
software repositories. The various modules used in this
algorithm are Defect Extraction, pre-processing and clustering
which is depicted in fig 1. Defect Extraction module extracts
defect data from various bug repositories and stores in primary
database. Stemming the defect data and stop word removal is
done during pre-processing. Finally defect clusters are created
based on the cosine similarity measure.

 There is no universal correct way to categorize bugs, it is
recommended to adapt some taxonomy to categorize bugs. By
categorizing bugs, we can pick bug category that has more
number of bugs, focus on it, and take preventive actions in
future projects in order to avoid such defects from recurring
[15]. While adopting taxonomy to categorize bugs, this work
attempts to use Logical and syntax defects in addition to
assignment and interface bug taxonomy given by Orthogonal
Defect Classification (ODC). The following algorithm
presents the various steps involved in SDCL.

Fig. 1 Software Defect Clustering (SDCL)

A. Module 1: Defect Extraction
 Fig 2 shows the interface created for defect extraction. In this
module, the steps involved in extracting defect reports from
various sources are taken one by one. Initially bug reports
from various bug repositories are taken as input. Later these
reports are converted into unified format to enable them to
store in database for further analysis.

Fig. 2 Defect Extractions

Steps involved in defect extraction are shown below:

B. Module 2: Data Pre-processing
 Defect description is one of the important attribute of the
defect reports. It gives details about defect. As these data are
available in the form of text, we need to do some processing in
order to make it available for defect analysis. Here, every
defect description is treated as Bag-of-words. Data pre-
processing involves three steps namely parsing the data, stop
word removal and applying stemming to the text. Parser does
the process of removing unnecessary text from the defect
description. The unnecessary text may include text found
between hyphens, after bullets and between parentheses.[19]
Def_Parser function outputs each defect description as a set of
words by removing the unnecessary semicolons, colons,
exclamation marks etc. Interface created for doing the pre-
processing task is shown in figure 3.

Fig. 3 Data Pre-processing

Another pre-processing task involves the elimination of “stop”
words. Stop words are very common words like the articles
“the” and “a” that do not add to the information content of a
text string. These words are irrelevant to the defect analysis
and are therefore eliminated. A further task that is performed
in text mining is “stemming.” Stemming algorithm attempts to
replace a word, to the “stem” or main root of the word. It
reduces the frequency of unique words. Commonly used

S. KUMARESH AND R. BASKARAN: MINING SOFTWARE REPOSITORIES FOR DEFECT CATEGORIZATION 33

algorithm for stemming is the “Porter’s Algorithm” [18].
Module 2 gives the steps involved in pre-processing.

C. Clustering
 Clustering is the process of grouping a set of data object into
classes of similar objects [11]. It is the most common form of
unsupervised learning, meaning, finding natural grouping of
instances given un-labeled data. Clustering help users
understand the natural grouping or structure in data set. The
quality of a clustering result depends on the similarity measure
used by the clustering method and its implementation [16].

As software defect description holds text data, Clustering of
defects based on the similarity of terms in defect description is
done in this study. For this purpose, distance based clustering
algorithm is used to find the similarity measure between the
defect description. One of the popular similarity function
called cosine similarity is employed to find the closeness
between two defect descriptions.

 Cosine similarity comes under vector space model. The set of
defect description in a collection then is viewed as a set of
vectors in a vector space. Vectors deals only with numbers. In
this work, we are dealing with defect description which holds
text data. Hence TF and IDF are used to convert text into
numbers so that it can be represented by a vector. In reality
each defect description will be of different size. On a large
defect description, the frequency of the terms will be much
higher than the smaller ones. Hence normalization of text
based on its size is necessary. A simple way to achieve this is
to divide the term frequency by the total number of terms.
Using (1), we can find out the similarity between two defect
descriptions. Various steps involved in clustering are shown in
module 3.

Cosine Similarity (Ddx,Ddy) = Dot product(Ddx,Ddy) /
 || Ddx|| * || Ddy|| [17] (1)

Dot product (Ddx,Ddy) = Ddx[0] * Ddy[0] + Ddx[1] * Ddy[1] * … *
Ddx[n] * Ddy[n]

|| Ddx|| = square root(Ddx[0]2 + Ddx[1]2 + ... + Ddx[n]2)

|| Ddy || = square root(Ddy[0]2 + Ddy[1]2 + ... + Ddy[n]2)

V. IMPLEMENTATION DETAILS

 The entire algorithm is implemented in java eclipse
environment with a maximum of 2500 defect reports. Defect
reports with missing data are eliminated. Defect reports are
taken from three different repositories with 495, 1083, 2095
records for experimentation of the algorithm. Java supports
traversing into the xml using parsers. The bug reports that are
retrieved from bug repositories are in the xml format which
are later stored in primary database using java program. The
Document Object model and Simple Application for XML
(SAX) are the popular parsing tools in java. DOM is
comparatively slow and supports adding new elements to the
xml file. But here the requirement is to store the xml
content in a database. Using SAX the data from the xml file
are transferred to the local variables and then using JDBC, the
data are stored in the database.

2. PERFORMANCE MEASURE

 Table 1 illustrates a confusion matrix to evaluate the
performance of classification problem. Accuracy and F-
measure are the two performance measure that is used in this
study.

TABLE I.
CONFUSION MATRIX

 Same Cluster Different Clusters

Same Class True Positive (TP) False Negative (FN)
Different
Classes False Positive (FP) True Negative (TN)

TABLE II.

PERFORMANCE MEASURE

Measure Formula Meaning

Precision

TP / (TP + FP)

Precision is the ratio of the
number of correctly classified
defects and the actual number of
defects which was assigned to
the type.

34 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 11, NO. 1, MARCH 2015

Recall TP / (TP + FN)

Recall is the ratio of the number
of correctly classified software
defects and the number of
software defects which belongs
to the type.

Accuracy (TP + TN) / (TP +
TN + FP + FN)

Accuracy is defined as the
number of defects that are
correctly classified to the total
number of defects.

A. Accuracy and Rand index
The Rand index measures the percentage of decisions that are
correct. It is simply the measure of accuracy [20]. The
accuracy measure for the JIRA, Eclipse and Bugzilla are
shown in fig 4. It is observed from the experimental results
that accuracy wise SDCL performs well and maintains more
than 80% accuracy for different samples in all of the above
mentioned repositories.

TABLE III:
RESULTS

Data
Sources

Instance
s

Precisio
n Recall F-

Measure Accuracy

JIRA 495 0.279 0.354 0.312 84.84%

Eclipse 1083 0.419 0.372 0.394 89.38%

Bugzilla 2095 0.253 0.306 0.277 82.24%

Fig. 4 Accuracy Measure

B. Precision and Recall
The following chart shows the performance of SDCL
algorithm in terms of precision and Recall. It gives good
precision for Eclipse data records than other two repositories.

Fig 6: Performance of SDCL algorithm

C. F-Measure
F-Measure is a combined measure of Precision and Recall
parameters. F-Measure is calculated using (2). Fig 5 shows the
F-Measure for the three repositories taken for study. From the
F-Measure view point, the values are consistent for JIRA and

Eclipse, and it is slightly lesser for Bugzilla. The higher value
of F-measure indicates higher quality of the classifiers. SDCL
performed well for JIRA and Eclipse when compared to
Bugzilla.
 𝐹 = (2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (2)

Fig. 5 F-Measure

VII. CONCLUSION
 Defect classification is a difficult task to perform unless and
otherwise the person involved in classifying defect has
extensive knowledge about software testing. Moreover
classifying defect involves lot of time, cost and effort.
Therefore, this work attempts to do automatic defect
classification through clustering techniques. The clustering
technique helps the project managers to know the category of
defect and helps them to assign right defect to the right
personnel.

 Realizing the need for automatic defect categorization, in this
work, SDCL algorithm is proposed for categorization of
software defects using clustering technique. Here, clustering is
done based on vector space model using cosine similarity to
judge the closeness between text data. Once the similar defects
are grouped according to the above technique, from each
clustered defect description, frequent terms are generated, and
the term with highest frequency is assigned as a class label to
the cluster. Defect clusters are created under the category,
syntax and logical in addition to assignment and interface
defect taxonomy given by ODC.

 In order to improve the efficiency of the algorithm, the future
scope of the work is related to extracting key phrases from the
defect description and then applying clustering technique to
group defect data into various categories. By doing so, the
time involved in similarity calculation and the comparison of
terms in the text can be reduced thereby reducing the response
time of the automatic defect classification system.

REFERENCES
[1] N. Jalbert and W. Weimer, “Automated Duplicate Detection for

Bug Tracking Systems,” IEEE International Conference on
Dependable Systems & Networks, Anchorage, 24-27 June 2008,
pp. 52-61.

[2] S. Osinski, J. Stefanowski and D. Weiss, “Lingo: Search Results
Clustering Algorithm Based on Singular Value Decomposition”,
Proceedings of the Springer International Intelligent Information

S. KUMARESH AND R. BASKARAN: MINING SOFTWARE REPOSITORIES FOR DEFECT CATEGORIZATION 35

Processing and Web Mining Conference, Zakopane, 17-20 May
2004, pp. 359-368.

[3] Qinbao Song, “A FAST Clustering-Based Feature subset
selection algorithm for High Dimensional Data”, IEEE
transactions on knowledge and Data Engineering, Volume 25,
Issue 1, pp 1-14, August 2011,

[4] Schugerl P, Riling J, Charland P, “Mining Bug Repositories – A
Quality Assessment”, Proc of the International Conference on
Computational Intelligence for Modelling control &
Automation, Vienna, 10-12 December 2008, pp 1105-1110.

[5] Naresh Kumar, CLUBAS: An Algorithm and Java Based Tool
for Software Bug Classification Using Bug Attributes
Similarities. Journal of Software Engineering and Applications,
5, 436-447,2012.

[6] Neelofar, Muhammad Younus Javed, Hufsa Mohsin, “An
Automated Approach for Software Bug Classification” in
proceedings of the Sixth International Conference on Complex,
Intelligent, and Software Intensive Systems (CISIS),2012

[7] Naresh Kumar Nagwani , “Software Bug Classification using
Suffix Tree Clustering (STC) Algorithm IJCST Vol. 2, Issue 1,
March 2011

[8] M. Surendra Naidu et al. , “ Classification of Defects in
software using Decission Tree Based Algorithm’,International
Journal of Engineering Science and Technology (IJEST), ISSN :
ISSN : 0975-5462 Vol. 5 No.06 June 2013

[9] L. Yu, C. Kong, L. Xu, J. Zhao and H. Zhang, "Mining Bug
Classifier and Debug Strategy Association Rules for Web-Based
Applications," in 08 Proceedings of the 4th international
conference on Advanced Data Mining and Applications , 2008.

[10] Ferdian Thung, David Lo, and Lingxiao Jiang, “Automatic
Defect Categorization” (2012). Research Collection School of
Information Systems. Available at:
http://ink.library.smu.edu.sg/sis_research/1681

[11] Ashish Moon and T Raju “ A Survey on Document Clustering
with Similarity Measures”, published in International Journal of
Advanced Research in Computer Science and Software
Engineering” Volume 3, Issue 11, November 2013.

[12] Charu C Aggarwal, ‘A Survey of Text Clustering Algorithms”
[13] P. V. Ingle, M.M Deshpande, “Software Quality Analysis with

Clustering Method” International Journal of Applied
Information Systems (IJAIS), Foundation of Computer Science
FCS, New York, USA. International Conference & workshop on
Advanced Computing 2013 (ICWAC 2013) – www.ijais.org 8

[14] Sakthi Kumaresh and Baskaran R, “Defect Analysis and
Prevention for Software Process Quality Improvement”,
published in International Journal of Computer Applications vol
8 – No 7, October 2010.

[15] http://www.khannur.com/stb3.3.htm
[16] http://www.cs.put.poznan.pl/jstefanowski/sed/DM-

7clusteringnew.pdf
[17] https://janav.wordpress.com/2013/10/27/tf-idf-and-cosine-

similarity/
[18] Atika Mustafa, Ali Akbar and Ahmed Sultan, “Knowledge

Discovery using Text Mining: A Programmable Implementation

on Information Extraction and Categorization”. International
Journal of Multimedia and Ubiquitous Engineering, Vol4 No 2,
April 2009.

[19] Ayaz Ahmed Shariff K, MohammednAli Hussain, Sambath
Kumar, “Leveraging Unstructured Data into Intelligent
Information Analysis. Proceedings of the International
Conference on Information and Network Technology”, IPCSIT
volume 4, 2011.

[20] http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-
clustering-1.html

Sakthi Kumaresh is a Research Scholar at
Bharathiar University, Coimbatore, India; she
obtained her Master’s Degree from Madurai
Kamaraj University, Madurai, TN, India in 1996
and M Phil in Computer Science from Periyar
University, Salem, TN, India in 2006.She is
currently working as Associate professor at
Department of Computer Science in MOP

Vaishnav College at Chennai. She has more than a decade of
teaching experience. Her areas of specialization include Software
Engineering, Software Project Management, Software Testing,
Software Quality Management, Unified Modeling Language, Data
Mining and knowledge Engineering. She is a researcher in the area of
Software Quality Engineering. She has publications in National and
International conferences and in several International journals.

Ramachandran Baskaran is working as the
Associate professor in Department of computer
science, Anna University, Chennai. He has
obtained his M.E. and Ph.D. in the field of
Computer Science and Engineering in Anna
University at Chennai, India. He is having more
than a decade of experience as an academician
and his research areas include Multimedia and
principles, Software quality engineering,
Software Agents and Distributed networking. He

has published around 75 research papers in National and International
Journals and Conferences. He is a member of various forums. He is
the editor and a reviewer of various journals. He is guiding research
scholars working in area of software standards for Attributes Specific
SDLC Models & Evaluation and Metric Based Efficient Traffic
Management.

36 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 11, NO. 1, MARCH 2015

http://www.khannur.com/stb3.3.htm
http://www.cs.put.poznan.pl/jstefanowski/sed/DM-7clusteringnew.pdf
http://www.cs.put.poznan.pl/jstefanowski/sed/DM-7clusteringnew.pdf
https://janav.wordpress.com/2013/10/27/tf-idf-and-cosine-similarity/
https://janav.wordpress.com/2013/10/27/tf-idf-and-cosine-similarity/

	I. INTRODUCTION
	A. Defect Classification
	B. Clustering Technique

	II. BUG REPOSITORY
	III. literature survey
	IV. software defect clustering (SDCL) algorithm
	A. Module 1: Defect Extraction
	B. Module 2: Data Pre-processing
	C. Clustering
	A. Accuracy and Rand index
	B. Precision and Recall
	C. F-Measure

	vii. conclusion
	References

