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Abstract: Euler characteristic is a topological invariant, a number that describes the shape or structure of a topological space, irrespective of 
the way it is bent. Many operations on topological spaces may be expressed by means of Euler characteristic. Counting polyhedral graph figures 
is directly related to Euler characteristic. This paper illustrates the Euler characteristic involvement in figure counting of polyhedral graphs 
designed by operations on maps. This number is also calculated in truncated cubic network and hypercube. Spongy hypercubes are built up by 
embedding the hypercube in polyhedral graphs, of which figures are calculated combinatorially by a formula that accounts for their spongy 
character. Euler formula can be useful in chemistry and crystallography to check the consistency of an assumed structure. 
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1. INTRODUCTION 
1.1. Euler Characteristic 

ULER characteristic[1] is a topological invariant, a single 
number that describes the shape of a structure regard-

less of its tiling; it is denoted by χ (small Greek “chi”) and 
makes the subject of study in algebraic topology, polyhe-
dral combinatorics, crystallography and in many other 
mathematical fields.[2] Euler characteristic, named after 
Leonhard Euler, was originally defined for polyhedra and 
used to check the consistency of a proposed structure.  
 Any polyhedron can be represented in the plane by 
a 3-connected planar graph (also called a polyhedral 
graph). The number of vertices v, edges e, and faces f of a 
convex polyhedron are related by the Euler’s polyhedron 
formula 

 v e f χ   , (1) 

in which case χ =2, i.e., the Euler characteristic for the 
sphere. The surface of nonconvex polyhedra may have var-
ious χ-values (see below). 
 There are many proofs of Euler's formula,[2–7] as 
many definitions and implications in various mathematical 
fields of the Euler characteristic were explored (these are, 
however, out of the aim of this study). 

 Euler characteristic of a closed orientable surface can 
be calculated from its genus g (the number of tori in a con-
nected sum decomposition of the surface, or the number 
of handles or holes an object has) by the Poincaré formula 

 2(1 )v e f χ g     . (2) 

 Euler characteristic of a closed non-orientable sur-
face can be calculated from its non-orientable genus k (the 
number of real projective planes in a connected sum de-
composition of the surface or the number of cross-caps 
needed to be attached to the sphere to make it homeo-
morphic to that surface) as 

 2χ k  . (3) 

 A surface is orientable, when it has two sides, or it is 
non-orientable, when it has only one side, like the Möbius strip.  
 In differential geometry, the Gauss-Bonnet theo-
rem[8] states that the geometry of a surface S (as described 
by Gaussian curvature K) is related to its topology (as ex-
pressed by Euler characteristic) 

 2
S
KdS πχ . (4) 

 Positive/negative χ - values indicate positive/negative 
curvature of the polyhedral structure. 
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 A discrete analog of the Gauss–Bonnet theorem is 
due to Descartes;[9] it shows that the overall angular defects 
(i.e., disclinations), measured in full circles, is the Euler 
characteristic of the polyhedron.  

 2pp
φ πχ . (5) 

 More recently, a "combinatorial curvature" which 
parallels "Gaussian curvature" of the embedding surface, 
was proposed.[10,11] 
 Euler characteristic can be calculated for general sur-
faces as the alternating sum of figures of dimension/rank k 

 0 1 2 3 ...,χ f f f f      (6) 

by finding a polygonization of the surface (i.e., a description 
as a CW-complex[12,13]). 

1.2. Operations on Maps 
Structures discussed hereafter are represented by simple, 
non-directed graphs. Their design was made by operations 
on maps, merely applied on the Platonic solids: tetrahedron 
(T), cube (C), octahedron (O), dodecahedron (D) and icosa-
hedron (I). A map is a discretized closed surface, i.e., a pol-
yhedron P, while the operations on maps are topological 
modifications of a parent map. The symmetry of parents is 
preserved by running these operations. Several operations 
are known (under various names/symbols) and currently 
used to decorate/transform a given mathematical object: 
dual d; medial m; truncation t; leapfrog l; polygonal pk, 
snub, etc. The reader is invited to consult some publications 
in this respect.[14–16] In the following, only the most used 
map operations are shortly described. 
 
Dual d(P) is obtained by putting a point in the center of each 
face of a polyhedron P, next joining two such points if their 
corresponding faces share a common edge; it is the 
Poincaré dual. Vertices of d(P) represent faces in the parent 
polyhedron and, vice versa. Dual of the dual returns the 
original polyhedron: d(d(P)) = P. Tetrahedron is self-dual 
while the other Platonics form pairs: d(C) = O; d(D) = I. Du-
alization is an operation in any dimensions and can be writ-
ten, with the Schlӓfli symbols,[17] as the reverted polytope 
figure type: {a,b,c,...,y,z} becomes {z,y,…,c,b,a} in the dual 
polytope. In general, the facets of a polytope's dual will be 
the topological duals of the polytope's vertex figures.  
 A Petrie dual (or Petrial) is also known;[18] it is a map 
having vertices and edges of the original polyhedron and 
whose faces are the set of Petrie polygons. The Petrie pol-
ygon of a polyhedron is a skew polygon of which every two 
consecutive edges (but not three) belong to one of the 
faces of the parent polygon. For the Platonic polyhedra (T, 
C, O, D and I), the Petrie polygons are: 3 squares, 4 hexa-
gons, 4 hexagons, 6 decagons and 6 decagons, respectively. 

Petrie polygon for a regular polytope of n dimensions is a 
skew polygon such that every (n – 1) consecutive sides (but 
not n) belong to one of the facets of the parent polytope. 
Petrials are useful in visualizing the symmetric structure of 
higher-dimensional regular polytopes. 
 
Truncation t(P) is achieved by cutting off the neighborhood 
of each vertex by a plane close to the vertex, such that it 
intersects each edge incident in the vertex. The resulted 
truncated map (i.e., polyhedron) is always a three-con-
nected one. The truncated polyhedron is of the type {2e, 
3e, e + χ}, where e denotes the number of edges in the par-
ent object while the numbers within brackets refer subse-
quently to the vertices, edges and faces of the truncated 
transform; it works in polytopes of any dimension, creating 
a new facet instead of each vertex. This was the main oper-
ation used by Archimedes in building its well-known 13 sol-
ids while the term Archimedean solids was given by Kepler.  
 
Medial m(P) is obtained by pairwise joining the midpoints 
of parent edges if the pair edges span an angle. Medial is 
always a 4-valent graph, symmetric between the parent 
and its dual, that is m(P) = m(d(P)). The figure type of the 
transformed polyhedron is: {e, 2e, e + χ}.This operation ro-
tates the parent s-gonal faces by π/s. By medial, edges of 
the parent polyhedron are reduced to a point; this property 
can be used in topological analysis of edges. This operation 
is also known as the rectification or even ambo (Conway 
notation[16]). Applying twice mm (medial of a medial) is the 
same as expansion operation of Conway or Johnson’s can-
tellation operation.[14] 
 
Leapfrog l(P) is a composite operation[19–21] that can be 
written as: l(P) = t(d(P)). It rotates the parent s-gonal faces 
by π/s. In a three-connected polyhedron, the transformed 
polyhedron is of the type: {2e, 3e, e + χ}. Note that, in the 
transform l(P), the vertex degree is always 3, since this op-
eration involves a truncation that provides a trivalent lat-
tice.  
 
Polygonal pk(P) operation is achieved by adding a new ver-
tex in the center of each face of a polyhedral graph, next 
put k – 3 points on the boundary edges. Connect the central 
point with one vertex on each edge (the endpoints in-
cluded): the parent face will be covered by triangles (k = 3), 
squares (k = 4) and pentagons (k=5), respectively. The 
transformed polyhedron is of the type: {(k – 2)e + χ, ke, 
2e}.[21] 
 
Snub is the dual of p5 operation:[21] s(P) = d(p5(P) and  s(P) = 
s(d(P)). The snub polyhedron is of the type: {2e, 5e, 3e + χ}. 
In case P = T, the snub is the icosahedron: s(T) = I. 

 The paper is organized as follows. After an introduc-
tion to Euler characteristic definitions, the operations on 
maps are described. The main results refer to pairs of map 
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operations (Section 2), with some details on the truncation 
operation and its use in transforming the cubic crystal net-
work and the hypercube (Section 3). A further Section 4 
introduces the spongy hypercubes, built up by embedding 
the hypercube in polyhedra, on which Euler characteristic 
is calculated. Conclusions and references will close the 
article. 
 

2. PAIRS OF MAP OPERATION 
The alternating sum of figures of rank k of an n-polytope is 
equal to the Euler charasteristic χ, as shown in (6). Next, ac-
cording to the Poincaré formula (2), χ =2(1 – g), with g being 
the genus of the surface in which the polyhedral graph is 
embedded; in case of the sphere, χ = 2 and g = 0; for the to-
rus, χ = 0 and g = 1, while in case χ < 0, the surface shows a 
negative curvature. 
 
Theorem 1. Let {v, e, f } and {n1e + δ, n2e, n3e} be types of a 
parent polyhedron and its derivative polyhedron o(P) (ob-
tained by a map operation o). Also, let both P and o(P) have 
the same Euler characteristic χ. Then, δ = χ if and only if 
(n1 + n3) = n2. 
 
Proof. Assuming that the transformed polyhedron o(P) has 
the same χ-characteristic as the parent polyhedron P, the 
Euler formula (1) can be re-written, in case of o(P), as:  

 (n1e + δ) – (n2e) + (n3e) = χ , (7) 

and rearrange it as: 

 e(n1 – n2 + n3) + δ = χ . (8) 

It is clear that equality  = holds only if  

 (n1 + n3) = n2 . (9) 

Condition (9) is both a necessary and sufficient condition 
for Theorem 1 to be true. 
 
Corollary 1 (2). The dual of the generalized transform 
d(o(P)) will have the type: {n3e, n2e, n1e + χ}. This comes out 
from the property of Schläfli symbol that its reversal gives 
the symbol of the dual polyhedron. 
 
Corollary 1 (3). Difference in the number of vertices of pol-
yhedral graphs transformed by selected pairs of map oper-
ations, o1 and o2, equals the Euler characteristic of the 
embedding surface (Table 1): |V(o1(P))| – |V(o2(P))| = χ. 
Difference may be done with respect to the polyhedron 
faces but the counting of faces is more expensive. Such 
pairs of map operations will be illustrated in the following 
(Figures 1 to 4). The figure count for the structures in 
Figures 2 to 4 is given in Table 2. Note that the number of 
points/atoms suffixes the name of structures. 

 

3. TRUNCATION OPERATION 
Let H = (V, E) be a simple graph with the vertex set V and 
edge set E. A perfect matching M of a simple graph H having 
an even number of vertices |V(H)| = 2h is a subset 

( ) ( )E M E H  of its h pairwise nonincident edges covering 
all vertices of H. Similarly, a cycle cover C is a set of disjoint 
cycles covering all vertices of H, ( ) ( )E C E H . Note that, in 
general, not every graph has M and/or C. In a simple cubic 
graph, the two subsets of edges are dijoint and comple-
mentary: ( ) ( ) 0E M E C   and ( ) ( ) ( )E M E C E H  , mean-
ing their union contains all the edges of H. These notions 
are illustrated in Figure 5. 
 There is a result from Ref. [22], stating that: a neces-
sary and sufficient condition for a simple cubic graph G, 
without quadrilaterals, to be isomorphic to the truncation 
t(H) of a simple cubic graph H is possessing by G a cyclic 
cover C all whose components are triangles (see Figure 5).  
 The above result may be extended to a simple graph 
having all the vertices of degree d: the cyclic cover will con-
sist of disjoint d-cycles. If the graph possesses vertices of 
different degree dk, the cyclic cover will be the union of dk-
cycles. 
 Truncation may be seen as a defect occurring in a 
crystal network, like that envisaged in Figure 6. While the 
full realization of truncation leads to a uninodal (i.e., single 
atom type) net, the defects induce a variety of atom types 
(Figure 6, right). RSI[23] was calculated by embedding the 8-
unit structures in a larger corresponding nets. 

Table 1. Operations on maps and pair of operations pro-
viding the Euler characteristic. 

Operation o(P) d(o(P)) 

leapfrog ( l ) {2e, 3e, e+χ} {e+χ, 3e, 2e} 

medial ( m ) {e; 2e; e+ χ} {e+χ; 2e; e } 

medial^k=1,2,..( m^k ) 
{2^(k–1)e, 2(2^(k–1))e, 

2^(k–1)e+χ} – 

p4 = dm^2 {2e+χ, 4e, 2e} {2e, 4e, 2e+χ}=m^2 

truncation ( t ) {2e, 3e, e+χ} {e+χ, 3e, 2e} 

|V(o1(P))|–|V(o2(P))|= o1 o2 

 dm m 

 dl m 

 dt m 

 p4 d(p4)=mm 

 p4 l 

 p4 t 

|V(t(P))|=|V(l(P))|= 
|V(mm(P))|= 2|V(m(P))| (different edges and faces)  

|V(p4(P))|= |V(dmm(P))| (identical edges and faces)  
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 Counting the rings around any atom in such a trans-
formed net, as the ring signature index RSI, recently pro-
posed by us,[23] could be a useful tool in theoretical 
crystallography.  
 Let now focus attention on the hypercube Qn; the 
truncation replaces any parent vertex in Qn by a simplex  
Sn–1 (Ref. [24]) and these all trigonal substructures are 
disjoint while their union will cover all the vertices in the 
truncated transform t(Qn). 
 Squares 4(2) are changed by octagonal 8(2) faces 
while cubes are changed by truncated cubes (Figures 7 and 8). 
 The number of these simplices equals the number of 
vertices in Qn: |V(Qn)| = 2^n; the number of vertices in each 
symplex equals n (see Table 3). In the above structures, n 
denotes the dimension or better the rank,[25] since we refer 

here to shapes rather than to geometric polytopes. Figure 
count in the hypercube and its truncated transforms is de-
tailed in Table 3. The number of k-facets t(Qk) is counted by 
adding to Qk (that equals the number of substructures with 
8(2) faces) the number of facets of the corresponding sim-
plex, as: 

 2k n k n
n kQ  ;   1

1
k n
n kS 

 ; 1( )k k k
n n nt Q Q S   . (10) 

 

4. SPONGY HYPERCUBES 
It is well-known that the Cartesian product of n edges pro-
vides the hypercube: 2( ) n

nP Q . Next, the Cartesian pro-
duct of two hypercubes is another hypercube: i j i jQ Q Q  .  

   
p4(C).26; (8(4^3).18(4^4)) t(C).24; (3.8^2) l(C).24; (4.6^2) 

   
p4(D).62 (12(4^5).30(4^4).20(4^3)) t(D).60 

(3.10.10) 
l(D).60=C60 

(5.6.6) 

Figure 1. Operations applied on Cube C (top) and Dodecahedron D (bottom): o1 = p4 (left); o2 = t (truncation, middle); and o2 = l 
(leapfrog, right); vertex number differece: χ = 2 (Euler characteristic of the sphere). 

   
H6.8.48 {44} dm(H6.8).96 {44} m(H6.8).96 {44} 

Figure 2. Operations acting on a square-tiled torus (left): o1 = dm (dual of medial, middle) and o2 = m (right); vertex number 
differece: χ = 0 (Euler characteristic of the torus). 
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Let now take the graph G(d,v) of a d-connected polyhedron 
on v-vertices and make n-times the Cartesian product with 
an edge; the operation results in a “spongy hypercube” 

2( , , ) ( , ) n
nG d v Q G d v P  .On each edge of the original 

polyhedral graph, a local hypercube Qn will evolve; these 
hypercubes are incident in a hypervertex, according to the 
original degree, d. It means that, in a spongy hypercube, the 
original 2-faces will not be counted. Figure 9 illustrates such 
a spongy hypercube, built on the fullerene C60 (Ih). 
 
Conjecture 4. The k-faces of a spongy hypercube ( , , ),nG d v Q  
built on a 3-polytope with vertices of degree d, are 

combinatorially counted from the previous rank faces; their 
alternating sum accounts for the genus of the embedding 
surface 

 

( 1)

( , , , ) ( ) ( 1)( )

                           2 ; 1; 0,1,.. .

n

n k

G d v Q k v n d n d n k

n
n k n

k
 

     

 
   
 

 (11) 

0

( 1) ( ) 2(1 ); 1; 0,1,..
n

k
k

k

f χ M g n k n


      . (12) 

Table 2. Figure count for the objects in Figures 2 to 4. 

Structure v e f3 f4 f5 f6 f7 f χ g Diff 

H6.8 48 96 0 48 0 0 0 48 0 1 – 

m(H6.8) 96 192 0 96 0 0 0 96 0 1 – 

dm(H6.8) 96 192 0 96 0 0 0 96 0 1 0 

H340 340 510 0 0 12 118 36 166 –4 3 – 

dm(H340) 506 1020 0 510 0 0 0 510 –4 3 -– 

m(H340) 510 1020 340 0 12 118 36 506 –4 3 –4 

C280 280 420 0 0 0 0 120 120 –20 11 – 

p4(C280) 820 1680 0 840 0 0 0 840 –20 11 – 

l(C280) 840 1260 0 0 0 280 120 400 –20 11 –20 

 

   
H340 dm(H340).506 {43.45.46.47} m(H340).510 

Figure 3. Operations acting on a triple torus (left): o1 = dm (dual of medial, middle) and o2 = m (right); vertex number differece: 
χ = –4; g = 3. 

   
d(s(D)@s(D)7S.120).280 p4(C280).820 l(C280).840 

Figure 4. Operations acting on a dodecahedral multi-torus (left): o1 = p4 (middle) and o2 = l (leapfrog, right); vertex number 
differece: χ = -20; g = 11. 
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 Formula (11) represents the “embedding” of the hy-
percube on any d-polyhedral cage[26] (see the factor in the 
front of the almost classical hypercube counting), which 

transforms that cage in a hyper-multi-torus. Formula (12) 
gives the Euler characteristic, as a function of genus; in the 
graphs of Platonic solids, g = fw(G)/2, with fw being the 

   
t(D).60 M(D) C(D) 

Figure 5. Truncation of the dodecahedron D. 

   
RS = 4^12; |{27} | deg = 6;  

RSI = 12 
RS = 3^4.8^4; |{108} | deg = 5 

RSI = 4 
|V| = 55; 39 atom types 

RSI = 0.0663145 

Figure 6. Truncation of the cubic net (left): fully truncated (middle) and with defects (right). 

 
  

Q4.16 t(Q4).64 t(Q3).24 

Figure 7. Truncation of the hypercube Qn. 

 
  

S3.4 S4.5 S5.6 

Figure 8. Truncation of hypercube Qn: simplices Sn–1 substructures. 
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“window” faces of the polyhedron (embedded in an 
oriented surface). Formula (12) expresses the “spongy” 
character of these structures by the genus g of the hyper-
surface. Note that (11) ignores the (hyper-) prisms evolved 
on each f2 face of the original cage. In this respect, the case 
of full-hypercube is compared to the case of spongy-one 
(Table 4).  
 Formulas (11) and (12) are confirmed by the data listed 
in Tables 4 to 9. Figures and calculations were done by our 
original software programs CVNET[27] and Nano Studio.[28] 
 

5. CONCLUSIONS 
Euler characteristic is a topological invariant that describes 
the shape or structure of polyhedra, or polytopes, in gen-
eral. Counting polyhedral graph figures is directly related to 

Table 3. Figure count in truncated hypercube Qn. 

Qn           

n v e – – 4(2) 3 4 5 6 χ 

3 8 12 – – 6 0 0 0 0 2 

4 16 32 – – 24 8 0 0 0 0 

5 32 80 – – 80 40 10 0 0 2 

6 64 192 – – 240 160 60 12 0 0 

7 128 448 – – 672 560 280 84 14 2 

t(Qn) n × v(Qn) n × e(Qn)         

n v e 3(2) 8(2) 2 3 4 5 6 χ 

3 24 36 8 6 14 – – – – 2 

4 64 128 64 24 88 24 – – – 0 

5 160 400 320 80 400 200 42 – – 2 

6 384 1152 1280 240 1520 1120 444 76 – 0 

7 896 3136 4480 672 5152 5040 2968 980 142 2 

 
Table 4. Figure count for spongy cubic C8(Qn) hypercube (g = 3). 

C8(Qn)\k 0 1 2 3 4 5 χ 

Q3 8 12 6 0 0 0 2 

Q4 16 32 24 8 0 0 0 

Q5 32 80 80 40 10 0 2 

Q6 64 192 240 160 60 12 0 

Q7 128 448 672 560 280 84 2 

C8(Q1)3 8 12 0 0 0 0 –4 

C8(Q2)4 16 32 12 0 0 0 –4 

C8(Q3)5 32 80 56 12 0 0 –4 

C8(Q4)6 64 192 192 80 12 0 –4 

C8(Q5)7 128 448 576 352 104 12 –4 

 
Table 5. Figure count for spongy dodecahedral C20(Qn) hypercube (g = 6). 

C20(Qn)\k 0 1 2 3 4 5 χ 

(Q1)3 20 30 0 0 0 0 –10 

(Q2)4 40 80 30 0 0 0 –10 

(Q3)5 80 200 140 30 0 0 –10 

(Q4)6 160 480 480 200 30 0 –10 

(Q5)7 320 1120 1440 880 260 30 –10 

 

 

   
Figure 9. Spongy C60(Q4).480 (top), with its hyper-faces 
(bottom, left and middle) and a hyper-edge (bottom, right).
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Euler characteristic. In this paper, it was shown the involve-
ment of Euler characteristic in figure counting of polyhedral 
graphs designed by operations on maps. In this respect, 
pairs of operations were identified; it was shown that the 
difference of vertex number of the transformed graphs pro-
vide the Euler characteristic. The truncation operation and 
its use in transforming the cubic crystal network and the 
hypercube were detailed. Spongy hypercubes were built up 
by embedding the hypercube in polyhedral graphs, on 
which Euler characteristic was calculated by a general com-
binatorial formula, accounting for the “spongy” character 
of such structures. Concluding, the Euler characteristic is a 
theoretical tool, particularly useful in chemistry and crystal-
lography to check the consistency of an assumed structure.  
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C12(Qn)\k 0 1 2 3 4 5 χ 

(Q1)3 12 30 0 0 0 0 –18 

(Q2)4 24 72 30 0 0 0 –18 

(Q3)5 48 168 132 30 0 0 –18 

(Q4)6 96 384 432 192 30 0 –18 

(Q5)7 192 864 1248 816 252 30 –18 

 
Table 8. Figure count for spongy octahedral C6(Qn) hypercube (g = 4). 

C6(Qn)\k 0 1 2 3 4 5 χ 

(Q1)3 6 12 0 0 0 0 –6 

(Q2)4 12 30 12 0 0 0 –6 

(Q3)5 24 72 54 12 0 0 –6 

(Q4)6 48 168 180 78 12 0 –6 

(Q5)7 96 384 528 336 102 12 –6 

 
Table 9. Figure count for spongy C60(Qn) hypercube (g = 16). 

C60(Qn)\k 0 1 2 3 4 5 χ 

(Q1)3 60 90 0 0 0 0 –30 

(Q2)4 120 240 90 0 0 0 –30 

(Q3)5 240 600 420 90 0 0 –30 

(Q4)6 480 1440 1440 600 90 0 –30 

(Q5)7 960 3360 4320 2640 780 90 –30 

 

https://www.ics.uci.edu/~eppstein/junkyard/euler/refs.html
https://doi.org/10.1017/CBO9781139171472
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