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Abstract: The worldwide spreading of Internet, in combination 

with the development of new low power and low cost embedded 

devices, has enabled the so-called Internet of Things vision. 

Wireless Sensor Networks represent an invaluable resource for 

realizing such scenario, inside which new and innovative 

applications could be developed. However, the low availability of 

resources and the reduced processing capacity of the target 

embedded platforms make the development of the next-

generation applications very challenging. This paper proposes an 

innovative system architecture, called STarch, able to simplify 

the development of new applications and protocols for resource-

constrained objects. It is meant to follow the software engineering 

principles and to support a wide range of applications, making 

both the programming easier and the code portable over multiple 

hardware platforms. STarch simplifies the network configuration 

process, through the use of an automatic mechanism based on the 

XML language and it runs properly on different operating 

systems, including FreeRTOS and Contiki. The feasibility of the 

proposed architecture has been proved by using a test bed 

approach, while an extensive performance analysis have been 

carried out in order to demonstrate its effectiveness in terms of 

memory requirements and processing delays. 

 

Index terms: Wireless Sensor Networks, System Architecture, 

Contiki, Protocol Design, Performance Evaluation. 

 

I. INTRODUCTION 
 

The next-generation Internet aims to assert the concept of 
Internet of Things (IoT) [1], according to which the everyday 

objects that surround us will become proactive actors of the 

global Internet, with the capability of generating and 

consuming information. In such vision, Internet is no longer 

seen as a tool for linking people to services, but as a means to 

allow the realization of the new Machine-to-Machine (M2M) 

paradigm. Wireless Sensor Networks (WSNs) can facilitate 

this evolution process, thanks to their ability to self-configure 

and self-organize. Moreover, the recent progress in embedded 

systems has enabled the development of low-cost, low-power, 

multifunctional sensor nodes, characterized by ad hoc 
communication. Such nodes are able to capture important data 

from the surrounding environment (e.g., humidity, pressure, 

temperature) and transmit them to a processing centre for a 
proper utilization. This main feature makes WSNs suitable for 

the development of a wide range of applications, such as 

building automation, surveillance, military operations, 

healthcare, and logistics. However, sensor nodes are typically 

battery powered devices with very limited resources and, 

therefore, the development of next generation applications has 

to be tailored to meet the resource constraints of these devices 

[2, 3, 4, 5]. Furthermore, the wide range of sensor nodes 

available on the market are characterized by very different 

hardware features, especially in terms of computation 

capabilities, communication range and power consumption. A 

protocol optimized for a specific device may not work 
properly on a different hardware platform. All these issues 

make the design of new applications and network protocols for 

WSNs very challenging.  

A key element for the design of new applications for WSNs 

is the development of the protocol stack. Typically, developers 

design and configure a protocol stack according to standard 

models (e.g., the ISO/OSI model) [6, 7]. Such a stack is 
characterized by a tight coupling between protocols at adjacent 

layers of the stack. Each of them has to interface directly and 

exclusively with the lower layer and with the higher layer to 

request and provide communication services. Moreover, such 

stack is based on isolation among different layers, so that each 

protocol cannot share own control information with the rest of 

the stack without violating such a constraint. Consequently, a 

stack built by following the classical approach should be used 

as a whole and its porting to different platforms might require 

significant effort. This is even more true for those proprietary 

solutions, often not disclosed, which are highly optimized for 

very specific applications and platforms, and merge protocols 
as much as possible. 

An alternative approach for the development of a protocol 

stack for embedded systems is the cross-layer design [8, 9, 10, 

11]. It basically consists in making protocols at different layers 

able to share information and to collaborate with each other, in 

order to reduce considerably the waste of resources due to 

useless redundancy. However, this approach may lead to 

produce “spaghetti” code, which increases the coupling among 
different protocols, making the code poorly portable. 

A possible solution to the previous problems is the  

definition of a new programming approach based on the use of 

a software core able to (i) ease the development of a protocol 

in a modular way, (ii) enable the communication among 

protocols through an intermediary and without direct coupling, 
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(iii) support different cross-layer optimizations, thanks to an 
inherent programming structure that allows to easily find out 

and avoid redundancy, and (iv) enable the immediate porting 

of single protocols and of entire stacks among different and 

heterogeneous hardware platforms through a protocol 

abstraction layer. 

At present, only a few architectures with the same 

optimization purposes have been introduced in the literature. 

One of the most performing solutions is the Information 
DRiven Architecture (IDRA) [12, 13]. It is expressly designed 

to support next generation applications on resource 

constrained networked objects. IDRA presents useful 

optimizations at an architectural level that include support for 

cross-protocol interactions, energy efficiency, quality-of-

service (QoS), mobility and heterogeneous network. However, 

it does not provide a hardware abstraction layer able to 

simplify the porting of the implemented network protocols 

among different HW platforms. 

This paper presents a new system architecture, named 
STarch, which meets all the requirements above mentioned. It 

is meant to follow the principles of SW engineering and to 

support different and heterogeneous applications, making both 

the programming easier and the code portable over multiple 

hardware platforms. More in detail, STarch allows indirect and 

dynamic interaction among protocols at any communication 

layer, together with the use of common data spaces for 

coordination and information sharing. It follows the principle 

of the “blackboard model”, where several network protocol 
agents read and write on a common information base in order 

to share knowledge and cooperate in support of network setup 

and management. STarch also simplifies the network 

configuration process through the use of an automatic 

mechanism based on the XML language [14].  It is able to run 

properly on different operating systems (OSs), including 

FreeRTOS and the Contiki [15]. The use of the Contiki’s 

simulation/emulation environment (i.e., the Cooja network 

simulator and the MSPsim device emulator) further simplifies 

the cumbersome and time-consuming job of developing and 

debugging applications for WSNs. In order to demonstrate the 
actual portability of the proposed approach a simple routing 

protocol has been implemented and validated by using four 

embedded devices. Furthermore, an extensive simulation 

performance analysis has been carried out to demonstrate the 

effectiveness of STarch in terms of memory requirements and 

processing delays. 

The rest of the paper is organized as follows. Section II 

reports some recent related works. Section III provides a 
description of the proposed software architecture STarch. 

Implementation details about porting issues of STarch on the 

Contiki OS and the test environment are summarized in 

Section IV, while in Section V, simulation and experimental 

results are discussed. Conclusions are drawn in Section VI. 

 
II. RELATED WORKS 

 

This section summarizes the most important research 
studies related to the design of new solutions able to simplify 

the development of network protocols presented in the 
literature.  

In [16], Dunkles et al. present the Chameleon architecture, 

which is part of the Contiki OS and aims to simplify the 

development of new protocol solutions by separating the 

protocol logic from implementation details related to the 

packet creation. Specifically, authors introduce the concept of 

“packet attributes” as an abstract representation of all 

information usually contained in the packet headers. Packet 
attributes, together with application data, are transformed into 

packets by some specific header transformation modules, 

which know all details about the headers management. 

However, such modules are implemented in the higher layers 

of the network stack, above the MAC protocol, and therefore, 

the MAC header does not take any advantage from their use. 

In [17], Finne et al. present Chi, a full-system configuration 
architecture, which aims to improve network performance by 

separating protocol logic and system configuration. This 

separation allows to customize the configuration without 

changing the inner logic of a protocol. The main component of 

Chi is a blackboard that holds the system configuration along 

with the relevant part of the system state. It provides also an 

abstraction of all shared variables, accessed through an 

independent module in each sensor node. Besides providing a 

programming interface for accessing such variables, the 

blackboard has also a notification process for subscribers of 

value modifications. 

The marshalling/unmarshalling problem (i.e., network-byte-
order and host-byte-order conversions) is addressed in [18].  

The authors present a solution able to mask this problem to the 

developer, who can access to the packet structure just as to a 

data structure in the memory. This data structure matches the 

packet layout, and accessing it is pretty much like accessing to 

a regular type in the C language. The compiler assures that this 

type has the same representation on all platforms and 
generates any proper conversion code. This solution simplifies 

the development of new applications and protocols, and the 

adaptation of existing ones, in order to make them 

interoperable on different hardware platforms. 

The WASP (Wirelessly Accessible Sensor Populations) 

European IST Project [19] aimed to develop an integrated 

model for implementing applications using wireless sensor 

networks. One of the main outcomes of this project was the 
definition of the so called WASP Postmaster, based on the 

concept of communication decoupling among protocols 

through the use of letters, which are mainly associated to 

packets and timers. The WASP architecture provides also an 

abstraction level to the reference hardware/software platform, 

thus permitting an easy portability of the code on multiple 

platforms. 

Let us observe that the works summarized above do not 
present a complete architecture able to support the 

development of next-generation applications but they only 

introduce optimizations that aim to solve individual problems. 

A more complete system, called IDRA architecture, is 

proposed in [12, 13].It simplifies the development of new 

network protocols by delegating common operation to the 

system. The system is responsible for queue provisioning, 
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packet generation and packet interactions. More in detail, in 
IDRA, protocols are not tasked with header creation or 

manipulation but they make use of packet attributes to add 

information to the packet. As a result, the protocol logic and 

packet representation are decoupled. Furthermore, this 

architecture uses a shared buffer to store outgoing and 

incoming packets, so as to limit the total number of multiple 

packets in different layers. The IDRA architecture also 

provides mechanisms for supporting advanced network 

requirements for next generation sensor application. In 

particular, it supports energy efficiency requirements by 

reducing the number of packet transmissions, enforces QoS by 
managing different packet priorities and uses shared neighbour 

table to support network mobility.  

STarch differs from all the presented architectures for two 

main aspects: (i) it is easily portable among different platforms 

and system architectures, because it adopts a platform 

abstraction layer; (ii) it simplifies the network configuration 

process through the use of an automatic mechanism based on 

the XML language. 
 

III. SYSTEM DESIGN 

 

STarch is a new framework for network protocol design and 

programming. It replaces the traditional paradigm of 

direct/coupled communication among application layer (APP), 

network layer (NWK), Hardware Abstraction Layer (HAL), 

and among protocols of a stack, by using a broker able to 
guarantee an indirect/decoupled communication. This broker 

is called Network Layer Manager (NLM) and it acts as a 

central coordinator. It provides the developer with a set of 

Application Programming Interfaces (APIs) able to simplify 

the process of implementing and validating a new application 

or protocol solution. Specifically, the NLM module manages 

the common aspects of protocol design and implementation, 

like packet handling, timer scheduling, inter-layer 

communication and coordination, and adaptation to the host 

platform.  Details of these services are hidden to the 

developer, who can focus mainly on the definition of the 
protocol’s behaviour, rather than on its inner logic. Figure 1 

shows the STarch block diagram, while more information 

about the most important features of the proposed architecture 

are given in the following. 

 
A. Modularity 

 

STarch allows interaction among different protocols without 
that they have knowledge of identities of each other. In 

STarch, each protocol is represented by a so-called Network 

Entity (NENT),which identifies a category of protocols with 

similar functionalities (e.g., reliable/unreliable transport, 

address-/data-centric routing, tracking, time synchronization, 

service discovery, etc.). Protocols of the same class can 

replace each other without affecting the overall behaviour of 

the stack. This simple but useful feature allows increasing the 
modularity of the architecture to a very large extent. 

Before starting their activities, protocols must register 
themselves to the NLMby calling a specific API, declaring 

their class identifier and the callback point (i.e., entry point) 

through which they will receive messages from other entities. 

The NLM registers such an information and replies to 

protocols by sending them, through the associated callbacks, 

an acknowledgement (ACK) letter without attachments. Once 

received the ACK letter, each protocol is allowed to start 

running. This feature could be useful to perform the 

replacement of single protocols or of the entire stack at run-

time. A device management logic might decide to replace a 
running protocol with a new one still not active. In this case, 

the former must deregister itself by calling another NLM API. 

The NLM first acknowledges the protocol’s request, secondly 

removes the information associated to the old protocol. The 

new protocol must register itself to the NLM with the already 

mentioned procedure. 

 

B. Cross-layer communication 

 

STarch entities communicate with each other in a 
cooperative way through a mail exchange service. STarch uses 

a letter as data and information carrier, and the NLM can be 

considered a postmaster that sorts and dispatches the stack’s 

internal mail. Every entity can write letters directed to any 

other entity, which will later receive, read and handle their 

contents. This communication strategy allows to route data 

and control information among protocols in a very arbitrary 

way or, in other words, to change easily the protocol execution 

order at run-time, based on the actual network management 

needs. Let us observe that STarch does not charge a specific 
module with this task. Every entity, in principle, may decide to 

change the destination of its letters. The “path” followed by 

letters and the way it might change at run-time is out of the 

scope of this work. The described way of exchanging 

information among NENTs makes the cross-layer 

communication quite anonymous, since letters writers and 

readers do not need to know exactly the identity of the 

 
Fig. 1.  STarch protocol stack architecture 
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protocol which requests or provides a service, but they only 
need of an abstract view of it. 

A delivery priority level is assigned to each letter. Before 

being processed, letters are temporarily stored inside some 

First In First Out (FIFO) queues, called mailboxes (MBOXs), 

arranged according to their delivery priorities. The NLM 

module manages the mailboxes, sorts the letters and 

dispatches them, giving precedence to letters that are more 

time critical than others. Let us observe that in such a way 
STarch architecture is able to provide support for specific QoS 

requirements. 

Each letter may also have an attachment. Timers are usually 

attached to letters. In this case, the writer and the reader likely 

correspond to the same entity. Anyway, the developer can 

define new letter types, with specific attachments. This is a 

flexible and simple way to allow protocols to share complex 
object by means of the mail exchange mechanism. More in 

detail, the letter types are declared at compile-time and 

currently they include: acknowledgement, packet, timer and 

user, the latter meant for any other purpose. However, this list 

can be extended based on actual needs. Of course, source and 

destination entities must agree on the kind of letters they want 

to exchange, according to the “communication protocol” 

existing (or to be defined) between the two entities. All the 

entities belonging to the same class must be able to prepare 

and interpret the letter types defined for each of them. The 

letter type is an attribute of the letter and is used by the letter’s 

producer/consumer to interpret the letter’s attachment. The 
letter is a carrier of many types of information (i.e., 

attachments). It is received by an entity through its registered 

callback. Once received the letter, the entity can read the 

letter’s type attribute and handle the letter accordingly. To 

clarify the letter concept the sequence diagram of creation, 

delivery and use of a packet letter is shown in Figure 2. 

 

C. Platform virtualization 

 

STarch provides an abstract view of the actual 
hardware/software platform to applications and network 

protocols, in order to make the code extremely portable on 

heterogeneous devices. As shown in Figure 3, it brings a 

STarch Operating System Abstraction Layer (OSAL). This 

layer interacts with the HAL or the OS of the host device and 

hides their features to the developer, enabling, in such a way, a 

platform-independent programming. Consequently, a protocol 

stack designed and developed on the STarch OSAL is 

straightforwardly portable above different software/hardware 

platforms. The porting effort is reduced to establish functional 

links between corresponding APIs of the STarch abstraction 
layer and of the actual underlying operating system. 

 

D. Dynamic stack configuration 

 

Besides the mailboxes, the NLM provides three shared 

memory areas to guarantee asynchronous communication 

among the network entities. One of them is called 
Configuration Information Base (CIB) and it is mainly 

intended to store protocol stack configuration settings 

specified by the user in terms of attribute-value pairs. This 

centralization of the configuration management allows to 

significantly reduce the code redundancy. It also reduces the 

memory occupation and allows to propagate a configuration 

change to multiple protocols as soon as they request for an 

update. Furthermore, separating configuration from protocol 

logic enables consistent dynamic reconfiguration, without 

 
 
Fig. 3.  Virtualization of the software and hardware platform 

 

 
Fig. 2.  Sequence diagram of creation, delivery and use of a packet letter 
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changing the protocol implementation. This is possible if, for 
instance, a commissioning network entity is invoked at run-

time to change some CIB parameter settings, and later requests 

for a reset of the system. In such a case, the already registered 

network entities should update their configuration status by 

reading the latest values of the parameters of interest from the 

CIB. 

Every network entity can access to information contained in 

the CIB area according to its privileges. In particular, every 
CIB parameter can be written by a single network entity, said 

the “owner” of the parameter itself, and read by a restricted set 

of entities, based on a fixed security policy. Let us observe 

that every CIB parameter is associated with a data type, which 

is identified by a code that is known to all the entities. Based 

on this code, every entity can read the right format of a CIB 

parameter’s content/value. If a parameter is not present, a 

proper error code is returned to the querying entity. 

 
E. Network management 

 

Following the specifications of standard models (e.g., the 
ISO/OSI model), protocols cannot share with each other 

information collected from the network, unless a number of 

well-defined SAP primitives (e.g., request/confirm) are 

available for this purpose. Addresses, routes, distances, 

positions, statistics concerning other nodes in the network are 

examples of information collected by different protocols 

separately, often with high degree of redundancy, and waste of 

dedicated resources (e.g., memory, processing, bandwidth). In 

STarch, all network entities share with each other information 

obtained from other nodes in the network, through the use of a 
repository called Network Information Base (NIB). It is 

actually a table, whose entries are associated to different 

network members. 

Entities can insert, delete and query such table by means of 

a powerful NIB Query Language (NQL), very similar to the 

SQL language. The NLM must check whether a network 

entity is allowed to execute a query or not, based on its 

privileges. Such an admission control is needed to protect NIB 
information against security attacks. More in detail, the NQL 

is based on query statements (i.e., select, insert, delete) and 

clauses (i.e. what, where, order_by). The statements are used 

to retrieve, add o remove information to/from the NIB. As 

previously introduced, the NIB is seen as a list of records (i.e., 

rows of a table), each composed by a list of attributes (i.e., 

columns of a table). The statements rule the access to entire 

NIB records, while the clauses are used to filter attributes and 

records, and to sort records based on specific attributes. The 

select statement includes all the clauses and returns a set of 

records, which is a view of the NIB, filtering out all the NIB 

attributes and records that are of no interest for the querying 
entity. The insert statement allows adding a new record to the 

NIB by specifying only a subset of attributes and making the 

others assume a default value. Finally, the delete statement 

allows removing a record from the NIB by specifying a 

matching condition. 
 

F. Simplifying network protocols 

 

As previously mentioned, the STarch architecture simplifies 

the design of a network protocol taking care of common 

operations, such as packet creation and handling. 

More in detail, the NLM provides a mechanism for 
optimized packing that makes use of “packet attributes”, 

which are an abstract representation of information contained 

in the packet headers. Network entities may read and/or write 

attributes of their interest. Moreover, the NLM takes care of 

constructing outgoing packets and of parsing incoming ones. 

Every packet attribute is characterized by: (i) a unique name 

used as identifier, (ii) a type associated to the host memory 

representation of the attribute value, (iii) a bit size of the 

portion of the host representation that will be actually packed, 
(iv) a bit offset for the alignment of the attribute in the packet, 

and (v) a “More” flag indicating whether the attribute is 

grouped with the following one in the packet to form a single-

byte or a multi-byte field. 

A packet may optionally contain special attributes used to 

transfer among different protocol layers additional information 

about the packet itself, such as Received Signal Strength 
Indication (RSSI), Link Quality Indication (LQI), 

timestamp(s), statistics (e.g., number of re-transmissions), 

transmitter and receiver addresses. 

Furthermore, the NLM provides some shared buffers, called 

Packet Pool (PKP) that allow to queue more than one 

outgoing or incoming packet. Such buffers are organized in 

different queues, characterized by a different priority level and 

served according a priority model (i.e., the oldest packet in the 
transmission/reception queue with the highest priority is 

served first).   

 

G. Support for heterogeneous networks 

 

In heterogeneous environments, neighbouring devices might 

use different communication technologies. To limit the 

dependence of network protocols on a specific radio 
technology, in STarch the radio management is entirely 

delegated to a network entity, called Radio Manager (RMNG), 

which is implemented by a MAC protocol or a wrapper of a 

radio driver. 

The RMNG entity was designed to decouple the higher 

layer protocols from underlying radio technologies. For 

example, a routing protocol could be used with different radio 

technologies, without having direct knowledge of which radio 
technology is currently used. The high layer protocol simply 

uses network connections established by the actual link layer 

protocol. Furthermore, the RMNG, if extended with the 

needed logic, could switch between different network 

interfaces, provided that the host device is an hardware 

gateway with multiple network interfaces installed. The choice 

of the right network device to use may be based on 

opportunistic needs (e.g., use of the shortest link, use of the 

largest bandwidth) or dictated by traffic flow (e.g., from 

wireless sensor device to Internet).As a result, multiple 
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services can reside on the same node, each with one or more 
associated communication interfaces. 

 

H. Support for the Internet Standard IPv6 

 

The STarch architecture provides an adaptation layer for the 

Internet standard IPv6 [20], which is backed by a network 

entity that redirects IPv6 packet letters to the underlying radio 

manager and vice versa and, at the same time, allows bridging 
IPv6 networks with other STarch-based proprietary networks. 

More in general, when an application wishes to send data or 

to be notified of incoming data through the STarch 

architecture, it has to use a Network API (NAPI) that is 

delegated to an entity, which will make the link between the 

application and the network stack. Indeed, this is a transport 

entity that allows communication among multiple 
applications’ ports and can operate in two modes: 

 Transmission mode: it gets the message from the source 

application and splits it in multiple fragments if the 

message is too long with respect to the Maximum 

Transmission Unit (MTU) of the used radio interface; 

then, each fragment is inserted into a packet that is, in its 

turn, enveloped into a letter to be later sent to the NLM 

for dispatching; 

 Reception mode: the entity receives a letter for a 

destination application, then extracts the packet from it 

and, in particular, the message fragment; such a fragment 
is reassembled with the other fragments received 

previously and next from the same source application, in 

order to restore the complete message that is finally 

passed to the destination application’s callback. 

Note that similar entities, which would adapt the STarch 

architecture to work with any existing standard or legacy 

solutions, can be easily developed. 

 

I. Support to network configuration 

 

Configuring a network may become very complex, 

especially if the number of parameters used by applications, 

protocols and system is high. To cope with this problem, the 

STarch framework can be configured through an automatic 

process that involves the use of the XML language. 
Specifically, the developer has to create a system 

configuration file named config.ini,encoded in XML 

according to a formalized and well-defined data dictionary. 

This configuration file can be written in two ways: via a text 

editor (i.e., the programmer manually enters all the necessary 

tags for the correct configuration of the file) or via a Graphical 
User Interface (GUI). This GUI is implemented as a plugin for 

the Eclipse Integrated Development Environment (IDE) [21] 

and it aims to make the creation of the configuration file easier 

and less time-consuming. 

Once installed, the plug in allows the configuration of all 

the information contained in the config.ini file without 

worrying about the physical structure of the file itself (i.e., the 

correct utilization of the XML tags according to the data 

dictionary). In particular, the plugin provides a wizard that 
assists the programmer in choosing the appropriate parameters 

without taking care of the constraints to be respected for 

editing, since these constraints are calculated by the 

application and provided to the user through graphics widgets. 

 
IV. IMPLEMENTATION DETAILS AND TEST ENVIRONMENT 

 

In this section, details about the porting of the STarch 

architecture on the Contiki OS are discussed, and, afterward, 

the platform used to validate the proposed architecture and the 

test settings are described. 

 
A. Porting to the Contiki OS 

 

As previously declared, STarch provides its own abstraction 
layer on top of any platform-dependent operating system, 

guaranteeing that STarch-based code can be easily ported to 

different hardware and software platforms. When a module 

needs to invoke a low level system service it simply calls the 

associated STarch API. Therefore, porting STarch to the 

Contiki OS has required only few and well-defined steps. 

Contiki is a popular open-source operating system targeted 
to small microcontroller architectures. As shown in the right 

side of Figure 4, Contiki is characterized by a communication 

stack organized in several layers, in which both protocol 

solutions and radio transceiver features can be easily 

configured. The lowest layer of the stack is the 

NETSTACK_CONF_FRAMER. It is in charge of the data 

packet format conversion before the transmission over the 

physical channel. The upper layer is the 
NETSTACK_CONF_RADIO. It directly manages the wireless 

transceivers features through the appropriate device driver. 

These two first levels can be considered the PHY layer of the 

ISO/OSI model. The third layer of the Contiki stack is the 

NETSTACK_CONF_RDC, which cannot be directly mapped 

to the ISO/OSI model. It is just below the MAC layer, 

identified as NETSTACK_CONF_MAC, and it is in charge of 

managing the radio duty cycling to provide energy saving 

capabilities. The last layer of the stack is the 

NETSTACK_CONF_NETWORK providing the functionality of 

the network layer of the ISO/OSI model. 

Considering the above described communication stack 

architecture, the STarch porting has been realized by acting on 

the NETSTACK_CONF_RADIO and 

theNETSTACK_CONF_RDC layers as shown in Figure 

4.More in detail, in order to ensure a proper management of 

the packets coming from the network, a simple RDC driver, 

able to interrupt the packets flows in the Contiki OS and send 

them toward the STarchOSAL, has been implemented. On the 
contrary, the STarch abstraction layer can directly interface 

with the RADIO driver to send a packet toward the network. 

The use of the NETSTACK_CONF_RADIO macro, defined 

in the Contiki OS, allows the abstraction from the actual radio 

driver. 
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In order to integrate STarch into the Contiki system a new 
Makefile (i.e., Makefile.STARCH), including all files needed 

to make STarch properly run, has been developed. To not 

modify substantially the structure of the Contiki OS, the new 

Makefile has been stored in the project’s directory and 

included in the project's Makefile. Furthermore, to guarantee 

the correct working of the STarch architecture with all 

platforms supported by the Contiki with the minimum effort, 

all definitions related to STarch have been included in a new 

project-conf.h file, which can be easily included in new 

projects. 

Another important aspect that has required particular 
attention during the porting activity was the management of 

the processes' execution flow. STarch can be run in both 

single-task and multi-task operating modes. The choice of the 

proper mode to be used depends on the features of the 

operating system which STarch is executed over, since it could 

not support the multiprogramming mode or could support it 

only partially. Let us observe that Contiki supports multi-

threading by implementing it as a library that can be 
optionally linked with programs that explicitly require it. This 

feature is important whenever a lengthy computation is 

performed, given that the event-driven kernel will monopolize 

the CPU and will make the system unresponsive to external 

events. However, the thread scheduling has to be planned and 

designed by the programmer who decides its logic based on 

timer expiration or on the execution of specific conditions. 

This means that all threads must be declared in advance and 

used together within the same process structure in order to 

define a scheduling logic. 

The discussed issues suggested us to consider the single-
task operating mode, to assure a proper working of STarch on 

the Contiki OS. 

Finally, the last step of the described porting activity has 

involved the implementation of the APIs provided by the 
STarch abstraction layer, which allows interfacing with the 

underlying operating system. These APIs are essentially 

related to packets transmission and reception, time and timers 

management, memory management and the terminal activity. 

 

C. Test settings and data collection scenario 

 

As previously introduced, the performances of the STarch 

architecture have been evaluated by means of extensive 

simulation campaigns while an experimental campaign has 

demonstrated the actual usability of the proposed architecture 

on real embedded devices.  

All simulations and tests have been performed considering a 

simple Link State Routing (LSR) protocol, based on the 

following rules: 

 Each node sends periodically and in case of connectivity 

changes an advertisement packet, containing its address, a 

sequence number, the list of the last discovered 

neighbours, and the number of hops traversed by the 

packet itself (initially reset). 

 When a node receives an advertisement packet, it checks 

whether a copy of the packet, recognized by the same 

sequence number, has been previously received, and, in 

such a case, it discards the packet. Otherwise, the node 

creates or updates an entry in the local Link State Table 

(LST), containing the addresses of the node that originally 

produced the message and of its actual neighbours. 

Finally, the node increments the counter of the hops 

traversed by the packet and rebroadcasts it to inform other 

nodes of the included information. 

 Once completed the LST initialization phase above, when 

a node needs to send a data packet to a target destination, 

it first establishes the shortest path in number of hops 
towards the target based on the information stored in the 

LST, then sends the packet to the next hop along the path 

found. The packet will be relayed hop-by-hop until it is 

received by the destination, which will reply with an 

acknowledgement packet. 

The experimental campaign (called STM3210_TEST in the 

rest of the paper) has been carried out by using four 

STM3210-EVAL Evaluation boards [22] of 
STMicroelectronics, equipped with the SPIRIT1 Sub 1-GHz 

transceiver [23] (Figure 5). The selected board is a complete 

development platform for STMicroelectronic's ARM Cortex-

M3 core-based STM32F103ZET6 microcontroller, while 

SPIRIT1 chip is a very low-power RF transceiver, intended for 

RF wireless applications in the Sub 1-GHz band and air data-

rate programmable from 1 to 500 Kbps. The FreeRTOS 

operating system was adopted. The test has been performed in 

an indoor environment, positioning the four nodes at the 

corners of a square with arbitrary side and numbering them 

according to the clockwise direction. The maximum length of 
a communication link is equal to the square side. According to 

the implemented application, node 3 reads a text and sends the 

read words to node 1, which writes them on a terminal. After 

sending a word and before sending the next one, node 3 waits 

for an acknowledgement from node 1. This process is repeated 

until the transmission of the whole text is completed and then 

it restarts endlessly. 

The simulation campaigns (called WISMOTE_SIM in the 
rest of the paper) have been carried out by using Cooja, the 

Contiki network simulator. Cooja integrates MSPsim, a tool 

that can emulate motes based on the MSP430 microcontroller. 

Cooja/MSPsim provides cycle-accurate simulation of the 

individual devices, as well as bit-level accurate simulation of 

 
Fig. 4.  STarch porting to the Contiki OS. 
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their radio transceivers. As a consequence, Cooja/MSPsim 

allows running the exact same binaries in the simulator as on 

actual hardware. Specifically, we considered the WiSMote 

platform [24], which is equipped with an MSP430F5 
microcontroller having 16 kB of RAM and 256 kB of flash 

memory. The board integrates the CC2520 transceiver, a 2.4 

GHz wireless transceiver compliant with the IEEE 802.15.4 

standard. The same application developed for the test bed has 

been used, while a simple network of two nodes has been 

evaluated. In this case, node 1 (called sensor in the rest of the 

paper) replies to node 2 (called sink) sending back, together 

with the acknowledgements, also the text received. This 

simple network allows to evaluate the STarch performance 

minimizing the influence of the routing protocol. To better 

appreciate the effectiveness of the proposed architecture, an 
ideal channel, characterized by a packet error rate equal to 

zero, has been simulated. Furthermore, to analyse the system 

behavior with different levels of network load, five data rates 

have been considered during the simulations: 1 packet per 

second (high load), 1 packet every 15 seconds, 1 packet every 

30 second (medium load), 1 packet every 45 seconds, and 1 

packet per minute (a typical data rate used in sensor networks 

[25]). For each packet rate, three different values of message 

length, which match to packets sent using 1 fragment, 2 

fragments, or 3 fragments, were considered. The main 

simulation parameters are reported in Table I, while the results 

of the performed analysis are discussed in the next section. 

During the simulation campaigns, the following metrics 

have been evaluated: (i) average fragment transmission delay 

(i.e., the time interval between the creation of a letter, 

containing the application message, and its transmission to the 

radio driver); (ii) average fragment reception delay (i.e., the 

time interval between the reception of a packet by the radio 

driver and the end of its management by the recipient 
protocol); (iii) average routing protocol delay (i.e., the time 

interval between the delivery of a letter to the routing protocol 

and the end of its processing); (iv) average reaction time to a 

timer expiration (i.e., the time interval between the notification 

of the expiration of a timer in the Contiki OS and the time 

instant when the corresponding timer letter is processed from 

STarch); (v) memory footprint (i.e., the memory footprint of 

the whole architecture and of each components). The last 
metric has been measured considering the following memory 

sections: .text, including the functions of a program; .data, 

which contains initialized global variables; .bss, which 

contains uninitialized global variables; and .rodata, which 

contains the constant global variables. 

Finally, we observe that all simulations were carried out by 

using the independent replications method and all results are 

characterized by a 95% confidence interval with a 5% 
maximum relative error. 

 
V. RESULTS 

 

In this section, main results obtained by both simulations 
and experimental campaigns are separately reported. 

 

A. System validation 
 

Figure 6 shows the messages generated by nodes 3 and 1 

during the STM3210_TEST.For each node, the first set of 

messages is related to advertisement packets exchanged to 

build the LSR table. Next, the node starts printing application 

and routing messages associated with data packets and 

acknowledgement packets, according to the node role (i.e., 

data source, forwarder, or data destination).The test bed has 
demonstrated the actual functionality of the architecture and 

the portability of the STarch-based protocol as a function of 

devices characteristics (e.g., clock speed, memory) and of the 

operating systems. 

 

B. Performance analysis 

 

The results of the WISMOTE_SIM tests are reported and 
discussed in this sub-section. 

Figure 7 shows the average delay for the transmission of a 

packet or, in case of fragmentation, of a fragment, versus the 

 
Fig. 5.  STM3210-EVAL Evaluation board equipped with the 
SPIRIT1 Sub 1-GHztransceiver. 

 

TABLE I 
SIMULATION PARAMETERS 

Parameter Value 

Network Topology Chain 

Number of nodes 2 

Data Rate 1 packet per second 

1 packet every 15 seconds 

1 packet every 30 seconds 

1 packet every 45 seconds 

1 packet per minute 

Number of fragments 1, 2, 3 
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data rate for the sink and the sensor nodes. All measured 
values are expressed in ms, while the used data rates are 

reported in seconds, indicating the elapsed time between two 

consecutive packets. The three used packet sizes are labelled 

as PS with the indication of the number of fragments needed 

to transmit a packet. Let us observe that all curves exhibit a 

constant trend, which indicates that in all configurations the 

measured delays are not affected by the data rate. On the 

contrary, the transmission delay significantly increases when 

the packet size increases. This behaviour is mainly due to 

queuing delays of different fragments. Indeed, a message 

fragmentation causes the creation of two or three letters that 
are immediately dispatched to the routing protocol to be 

handled. Obviously, the protocol, but in general the whole 

architecture, can manage only a letter at a time, and the 

queuing delay of different fragments significantly affects the 

average transmission delay. Moreover, in the sink node 

(Figure 7.a), the protocol cannot transmit a queued fragment 

until it has received an acknowledgment from the sensor, 

referred to the previous transmission. As consequence, each 

fragment suffers from a different transmission delay. Although 

the curves related to the two nodes show a similar trend, 

however, the transmission of a fragment on the sensor node 
requires a longer execution time than that measured on the 

sink node. This result is due to the more complex activity of 

the routing protocol on the sensor, which has to manage the 

acknowledgements and, before transmitting, has to wait the 

reception of a fragment from the sink. 

The results of the average reception delay are reported in 

Figure 8. Also in this case, the measured delays are not 

influenced by the data rate, since all curves are characterized 
by a constant trend. Moreover, Figure 8.a shows that the sink 

reception delay significantly increases for higher values of 

packet size. When a packet is received, a letter containing such 

information is immediately sent to the NAPI. At the same 

time, if a packet is composed of more than one fragment, a 
letter is sent to the radio manager, in order to require the 

transmission of the first queued fragment. In such a case, the 

reception delay increases. A similar behaviour is not shown by 

the sensor node (Figure 8.b) because it uses a different 

procedure for packet transmission. Regardless of the number 

of fragments that compose the message, after receiving a 

fragment, the sensor node always transmits an 

acknowledgment containing the application payload. 

Furthermore, let us observe that the sensor node delays are 

significantly greater than those of the sink. Upon receipt of a 

fragment, in fact, the sensor node first requires the packet 
transmission, sending a letter to the radio manager, and then 

manages the received fragment. This produces a lengthening 

of the packet delivery time. 

Figure9 shows the protocol delay analysis in the sink and 

the sensor nodes. Let us observe that all kinds of letters 

managed by the routing protocol have been considered in this 

analysis. Regarding the sink node (Figure 9.a), the protocol 

delay slightly increases for higher data rates. In the analysed 
scenario, in fact, the sink node periodically checks the status 

of all routes, and when the timer associated with this check 

expires a proper letter is created. Consequently, when the data 

rate decreases also the number of application letters decreases, 

on the contrary, the number of letters due to a timers 

expiration remains constant. However, timer letters require 

less processing time than data letters. Furthermore, when the 

packet size increases also the protocol delay increases, since a 

great number of data letters is produced. On the contrary, in 

the sensor node (Figure 9.b), the protocol delay is not 

influenced by the data rate and the packet size considered, 
because this node does not manage timer letters. These results, 

therefore, represent a more reliable estimate of the protocol 

average execution times. 

 

 
 

Fig. 6.  Output messages collected for nodes 1 and 3 during the STM3210_TEST carried out by using four STM3210-EVAL Evaluation 
boards running FreeRTOS. 
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                                                              (a)                                                                                                      (b) 

Fig. 7. Average delays for the transmission of a fragment versus the data rate during the WISMOTE_TEST for: (a) the sink node, and (b) 
the sensor node. 

 
                                                             (a)                                                                                                         (b) 

Fig. 8. Average delays for the reception of a fragment versus the data rate during the WISMOTE_TEST for: (a) the sink node, and (b) the 
sensor node. 

 
                                                             (a)                                                                                                          (b) 

Fig. 9. Protocol delays versus the data rate during the WISMOTE_TEST for: (a) the sink node, and (b) the sensor node. 
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Although the implemented protocol and the considered 
scenario significantly affect the obtained results, however, the 

performed analysis allowed us to approximately estimate the 

delay introduced by the Starch architecture. Specifically, 

considering the sink node, a packet size equal to 1 fragment, 

and the maximum data rate (i.e., 1 s), in order to reduce as 

much as possible the influence of the routing protocol, the 

STarch delay can be evaluated using the following equation: 

 

             (               )          
 

  (1) 

 

where        represents the average transmission delay, 

        represents the average reception delay, and         

is the average delay introduced by the routing protocol. This 

value is approximately equal to 1971,665   . The discussed 

tests confirmed that acceptable values for delay-tolerant 

applications, such as those developed for WSNs, are 

guaranteed. 

Another interesting performance metric is the reaction time 
of the STarch architecture to the expiration of a timer. This 

analysis involves only the sink node, since, as previously 

described, the sensor node does not manage timers. The curves 

in Figure 10clearly show that the measured delays are not 

affected by the data rate and the packet size. It is important to 

observe that the average reaction time to timer expiration is 

about 540μs, a very low value for a WSN. 

The memory footprint of the different architectural com- 
ponents is shown in Table II. The whole architecture requires 

about 16kB ROM and 8kB RAM memory, under the memory 

limit of most sensor nodes. Furthermore, this larger initial 

memory cost is compensated by the small size of the STarch 

network protocol, which only requires about 7 kB of memory. 

The memory requirements of the described components are 

limited. This shows that these techniques can be used in most 

typical sensor networks. 

 

 

VI. CONCLUSIONS 

One of the most exciting challenges of the modern digital 

communication technology concerns the realization of the 

Internet of Things vision, inside which innovative applications 

could be developed. The most used networking protocols are 

application-specific, platform-dependent, and are stacked 
according to standard models; however, such protocol stacks 

are very often characterized by high degrees of coupling and 

redundancy. Alternative design approaches can be found in 

literature and, basically, aim to remove redundancy among 

protocols as much as possible isolating common information 

and functionalities. 

This paper has presented and evaluated STarch, a novel 
integrated protocol architecture that shares goals of the 

aforementioned approaches and, in addition, decouples 

protocols from each other, from applications, and from the 

 

TABLE II 

MEMORY FOOTPRINT OF THE DIFFERENT ARCHITECTURAL COMPONENTS IN BYTES 

Components .text .rodata .data .bss 

NAPI 1988 0 0 2768 

NLM 366 0 1 6 

NIB 5832 0 0 0 

CIB 498 0 0 0 

PKP 3752 0 0 28 

MAILBOX 988 0 0 22 

NENT 192 0 0 6 

TIMER 620 0 0 8 

RADIO MANAGER 630 0 0 0 

STARCH OSAL 696 0 1 20 

CONFIG 0 0 858 4288 

TOOL 498 0 0 0 

PROTOCOL 7528 0 0 100 
 

STARCH 24066  

ROM RAM 

16060 8006 
 

PROTOCOL 7628  

ROM RAM 

7528 100 

 

 

 

 

Fig. 10. Reaction time of the STarch architecture to the expiration 
of a timer during the WISMOTE_TEST. 
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underlying SW/HW platform. STarch-based protocols are 
easily portable, maintainable, and configurable. Particularly, 

configuration is assisted by a powerful Eclipse-based GUI and 

applies to both protocols and whole host system. 

The actual feasibility of the proposed architecture has been 

proved by using a test bed approach, while an extensive 

simulation campaign has demonstrated its effectiveness. 

Specifically, the analysis has shown that STarch is able to 

introduce only low delays and to quickly react to a timer’s 
expiration. Moreover, it was demonstrated that the memory 

overhead of each components is small enough to be 

implemented on resource constrained embedded devices. 

A performance evaluation by using real devices, such as 

STMicroelectronics’ or other chip vendors’ products, and the 

design of important improvements, including integration of 

different communication technologies (e.g., WSN and RFID) 
represent a natural evolution of this work. 
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