
Implementation and Validation of a New Protocol

Stack Architecture for Embedded Systems

Danilo Blasi, Luca Mainetti, Luigi Patrono, and Maria Laura Stefanizzi

Abstract: The worldwide spreading of Internet, in combination

with the development of new low power and low cost embedded

devices, has enabled the so-called Internet of Things vision.

Wireless Sensor Networks represent an invaluable resource for

realizing such scenario, inside which new and innovative

applications could be developed. However, the low availability of

resources and the reduced processing capacity of the target

embedded platforms make the development of the next-

generation applications very challenging. This paper proposes an

innovative system architecture, called STarch, able to simplify

the development of new applications and protocols for resource-

constrained objects. It is meant to follow the software engineering

principles and to support a wide range of applications, making

both the programming easier and the code portable over multiple

hardware platforms. STarch simplifies the network configuration

process, through the use of an automatic mechanism based on the

XML language and it runs properly on different operating

systems, including FreeRTOS and Contiki. The feasibility of the

proposed architecture has been proved by using a test bed

approach, while an extensive performance analysis have been

carried out in order to demonstrate its effectiveness in terms of

memory requirements and processing delays.

Index terms: Wireless Sensor Networks, System Architecture,

Contiki, Protocol Design, Performance Evaluation.

I. INTRODUCTION

The next-generation Internet aims to assert the concept of
Internet of Things (IoT) [1], according to which the everyday

objects that surround us will become proactive actors of the

global Internet, with the capability of generating and

consuming information. In such vision, Internet is no longer

seen as a tool for linking people to services, but as a means to

allow the realization of the new Machine-to-Machine (M2M)

paradigm. Wireless Sensor Networks (WSNs) can facilitate

this evolution process, thanks to their ability to self-configure

and self-organize. Moreover, the recent progress in embedded

systems has enabled the development of low-cost, low-power,

multifunctional sensor nodes, characterized by ad hoc
communication. Such nodes are able to capture important data

from the surrounding environment (e.g., humidity, pressure,

temperature) and transmit them to a processing centre for a
proper utilization. This main feature makes WSNs suitable for

the development of a wide range of applications, such as

building automation, surveillance, military operations,

healthcare, and logistics. However, sensor nodes are typically

battery powered devices with very limited resources and,

therefore, the development of next generation applications has

to be tailored to meet the resource constraints of these devices

[2, 3, 4, 5]. Furthermore, the wide range of sensor nodes

available on the market are characterized by very different

hardware features, especially in terms of computation

capabilities, communication range and power consumption. A

protocol optimized for a specific device may not work
properly on a different hardware platform. All these issues

make the design of new applications and network protocols for

WSNs very challenging.

A key element for the design of new applications for WSNs

is the development of the protocol stack. Typically, developers

design and configure a protocol stack according to standard

models (e.g., the ISO/OSI model) [6, 7]. Such a stack is
characterized by a tight coupling between protocols at adjacent

layers of the stack. Each of them has to interface directly and

exclusively with the lower layer and with the higher layer to

request and provide communication services. Moreover, such

stack is based on isolation among different layers, so that each

protocol cannot share own control information with the rest of

the stack without violating such a constraint. Consequently, a

stack built by following the classical approach should be used

as a whole and its porting to different platforms might require

significant effort. This is even more true for those proprietary

solutions, often not disclosed, which are highly optimized for

very specific applications and platforms, and merge protocols
as much as possible.

An alternative approach for the development of a protocol

stack for embedded systems is the cross-layer design [8, 9, 10,

11]. It basically consists in making protocols at different layers

able to share information and to collaborate with each other, in

order to reduce considerably the waste of resources due to

useless redundancy. However, this approach may lead to

produce “spaghetti” code, which increases the coupling among
different protocols, making the code poorly portable.

A possible solution to the previous problems is the

definition of a new programming approach based on the use of

a software core able to (i) ease the development of a protocol

in a modular way, (ii) enable the communication among

protocols through an intermediary and without direct coupling,

 Manuscript received July 10, 2013, revise September 30, 2013.

 L. Mainetti, L. Patrono, and M.L. Stefanizzi are with the Department of

Innovation Engineering at University of Salento, Lecce, Italy (email:

luca.mainetti, luigi.patrono, laura.stefanizzi@unisalento.it).

 D. Blasi is with the Advanced System Technology/Ultra Low Power Radio

and Network at STMicroelectronics, Lecce, Italy (email: danilo.blasi@st.com).

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2013 157

1845-6421/09/8302 © 2013 CCIS

FESB
Typewritten Text
 Original scientific paper

(iii) support different cross-layer optimizations, thanks to an
inherent programming structure that allows to easily find out

and avoid redundancy, and (iv) enable the immediate porting

of single protocols and of entire stacks among different and

heterogeneous hardware platforms through a protocol

abstraction layer.

At present, only a few architectures with the same

optimization purposes have been introduced in the literature.

One of the most performing solutions is the Information
DRiven Architecture (IDRA) [12, 13]. It is expressly designed

to support next generation applications on resource

constrained networked objects. IDRA presents useful

optimizations at an architectural level that include support for

cross-protocol interactions, energy efficiency, quality-of-

service (QoS), mobility and heterogeneous network. However,

it does not provide a hardware abstraction layer able to

simplify the porting of the implemented network protocols

among different HW platforms.

This paper presents a new system architecture, named
STarch, which meets all the requirements above mentioned. It

is meant to follow the principles of SW engineering and to

support different and heterogeneous applications, making both

the programming easier and the code portable over multiple

hardware platforms. More in detail, STarch allows indirect and

dynamic interaction among protocols at any communication

layer, together with the use of common data spaces for

coordination and information sharing. It follows the principle

of the “blackboard model”, where several network protocol
agents read and write on a common information base in order

to share knowledge and cooperate in support of network setup

and management. STarch also simplifies the network

configuration process through the use of an automatic

mechanism based on the XML language [14]. It is able to run

properly on different operating systems (OSs), including

FreeRTOS and the Contiki [15]. The use of the Contiki’s

simulation/emulation environment (i.e., the Cooja network

simulator and the MSPsim device emulator) further simplifies

the cumbersome and time-consuming job of developing and

debugging applications for WSNs. In order to demonstrate the
actual portability of the proposed approach a simple routing

protocol has been implemented and validated by using four

embedded devices. Furthermore, an extensive simulation

performance analysis has been carried out to demonstrate the

effectiveness of STarch in terms of memory requirements and

processing delays.

The rest of the paper is organized as follows. Section II

reports some recent related works. Section III provides a
description of the proposed software architecture STarch.

Implementation details about porting issues of STarch on the

Contiki OS and the test environment are summarized in

Section IV, while in Section V, simulation and experimental

results are discussed. Conclusions are drawn in Section VI.

II. RELATED WORKS

This section summarizes the most important research
studies related to the design of new solutions able to simplify

the development of network protocols presented in the
literature.

In [16], Dunkles et al. present the Chameleon architecture,

which is part of the Contiki OS and aims to simplify the

development of new protocol solutions by separating the

protocol logic from implementation details related to the

packet creation. Specifically, authors introduce the concept of

“packet attributes” as an abstract representation of all

information usually contained in the packet headers. Packet
attributes, together with application data, are transformed into

packets by some specific header transformation modules,

which know all details about the headers management.

However, such modules are implemented in the higher layers

of the network stack, above the MAC protocol, and therefore,

the MAC header does not take any advantage from their use.

In [17], Finne et al. present Chi, a full-system configuration
architecture, which aims to improve network performance by

separating protocol logic and system configuration. This

separation allows to customize the configuration without

changing the inner logic of a protocol. The main component of

Chi is a blackboard that holds the system configuration along

with the relevant part of the system state. It provides also an

abstraction of all shared variables, accessed through an

independent module in each sensor node. Besides providing a

programming interface for accessing such variables, the

blackboard has also a notification process for subscribers of

value modifications.

The marshalling/unmarshalling problem (i.e., network-byte-
order and host-byte-order conversions) is addressed in [18].

The authors present a solution able to mask this problem to the

developer, who can access to the packet structure just as to a

data structure in the memory. This data structure matches the

packet layout, and accessing it is pretty much like accessing to

a regular type in the C language. The compiler assures that this

type has the same representation on all platforms and
generates any proper conversion code. This solution simplifies

the development of new applications and protocols, and the

adaptation of existing ones, in order to make them

interoperable on different hardware platforms.

The WASP (Wirelessly Accessible Sensor Populations)

European IST Project [19] aimed to develop an integrated

model for implementing applications using wireless sensor

networks. One of the main outcomes of this project was the
definition of the so called WASP Postmaster, based on the

concept of communication decoupling among protocols

through the use of letters, which are mainly associated to

packets and timers. The WASP architecture provides also an

abstraction level to the reference hardware/software platform,

thus permitting an easy portability of the code on multiple

platforms.

Let us observe that the works summarized above do not
present a complete architecture able to support the

development of next-generation applications but they only

introduce optimizations that aim to solve individual problems.

A more complete system, called IDRA architecture, is

proposed in [12, 13].It simplifies the development of new

network protocols by delegating common operation to the

system. The system is responsible for queue provisioning,

158 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2013

packet generation and packet interactions. More in detail, in
IDRA, protocols are not tasked with header creation or

manipulation but they make use of packet attributes to add

information to the packet. As a result, the protocol logic and

packet representation are decoupled. Furthermore, this

architecture uses a shared buffer to store outgoing and

incoming packets, so as to limit the total number of multiple

packets in different layers. The IDRA architecture also

provides mechanisms for supporting advanced network

requirements for next generation sensor application. In

particular, it supports energy efficiency requirements by

reducing the number of packet transmissions, enforces QoS by
managing different packet priorities and uses shared neighbour

table to support network mobility.

STarch differs from all the presented architectures for two

main aspects: (i) it is easily portable among different platforms

and system architectures, because it adopts a platform

abstraction layer; (ii) it simplifies the network configuration

process through the use of an automatic mechanism based on

the XML language.

III. SYSTEM DESIGN

STarch is a new framework for network protocol design and

programming. It replaces the traditional paradigm of

direct/coupled communication among application layer (APP),

network layer (NWK), Hardware Abstraction Layer (HAL),

and among protocols of a stack, by using a broker able to
guarantee an indirect/decoupled communication. This broker

is called Network Layer Manager (NLM) and it acts as a

central coordinator. It provides the developer with a set of

Application Programming Interfaces (APIs) able to simplify

the process of implementing and validating a new application

or protocol solution. Specifically, the NLM module manages

the common aspects of protocol design and implementation,

like packet handling, timer scheduling, inter-layer

communication and coordination, and adaptation to the host

platform. Details of these services are hidden to the

developer, who can focus mainly on the definition of the
protocol’s behaviour, rather than on its inner logic. Figure 1

shows the STarch block diagram, while more information

about the most important features of the proposed architecture

are given in the following.

A. Modularity

STarch allows interaction among different protocols without
that they have knowledge of identities of each other. In

STarch, each protocol is represented by a so-called Network

Entity (NENT),which identifies a category of protocols with

similar functionalities (e.g., reliable/unreliable transport,

address-/data-centric routing, tracking, time synchronization,

service discovery, etc.). Protocols of the same class can

replace each other without affecting the overall behaviour of

the stack. This simple but useful feature allows increasing the
modularity of the architecture to a very large extent.

Before starting their activities, protocols must register
themselves to the NLMby calling a specific API, declaring

their class identifier and the callback point (i.e., entry point)

through which they will receive messages from other entities.

The NLM registers such an information and replies to

protocols by sending them, through the associated callbacks,

an acknowledgement (ACK) letter without attachments. Once

received the ACK letter, each protocol is allowed to start

running. This feature could be useful to perform the

replacement of single protocols or of the entire stack at run-

time. A device management logic might decide to replace a
running protocol with a new one still not active. In this case,

the former must deregister itself by calling another NLM API.

The NLM first acknowledges the protocol’s request, secondly

removes the information associated to the old protocol. The

new protocol must register itself to the NLM with the already

mentioned procedure.

B. Cross-layer communication

STarch entities communicate with each other in a
cooperative way through a mail exchange service. STarch uses

a letter as data and information carrier, and the NLM can be

considered a postmaster that sorts and dispatches the stack’s

internal mail. Every entity can write letters directed to any

other entity, which will later receive, read and handle their

contents. This communication strategy allows to route data

and control information among protocols in a very arbitrary

way or, in other words, to change easily the protocol execution

order at run-time, based on the actual network management

needs. Let us observe that STarch does not charge a specific
module with this task. Every entity, in principle, may decide to

change the destination of its letters. The “path” followed by

letters and the way it might change at run-time is out of the

scope of this work. The described way of exchanging

information among NENTs makes the cross-layer

communication quite anonymous, since letters writers and

readers do not need to know exactly the identity of the

Fig. 1. STarch protocol stack architecture

BLASI et al.: IMPLEMENTATION AND VALIDATION OF A NEW PROTOCOL STACK ARCHITECTURE 159

protocol which requests or provides a service, but they only
need of an abstract view of it.

A delivery priority level is assigned to each letter. Before

being processed, letters are temporarily stored inside some

First In First Out (FIFO) queues, called mailboxes (MBOXs),

arranged according to their delivery priorities. The NLM

module manages the mailboxes, sorts the letters and

dispatches them, giving precedence to letters that are more

time critical than others. Let us observe that in such a way
STarch architecture is able to provide support for specific QoS

requirements.

Each letter may also have an attachment. Timers are usually

attached to letters. In this case, the writer and the reader likely

correspond to the same entity. Anyway, the developer can

define new letter types, with specific attachments. This is a

flexible and simple way to allow protocols to share complex
object by means of the mail exchange mechanism. More in

detail, the letter types are declared at compile-time and

currently they include: acknowledgement, packet, timer and

user, the latter meant for any other purpose. However, this list

can be extended based on actual needs. Of course, source and

destination entities must agree on the kind of letters they want

to exchange, according to the “communication protocol”

existing (or to be defined) between the two entities. All the

entities belonging to the same class must be able to prepare

and interpret the letter types defined for each of them. The

letter type is an attribute of the letter and is used by the letter’s

producer/consumer to interpret the letter’s attachment. The
letter is a carrier of many types of information (i.e.,

attachments). It is received by an entity through its registered

callback. Once received the letter, the entity can read the

letter’s type attribute and handle the letter accordingly. To

clarify the letter concept the sequence diagram of creation,

delivery and use of a packet letter is shown in Figure 2.

C. Platform virtualization

STarch provides an abstract view of the actual
hardware/software platform to applications and network

protocols, in order to make the code extremely portable on

heterogeneous devices. As shown in Figure 3, it brings a

STarch Operating System Abstraction Layer (OSAL). This

layer interacts with the HAL or the OS of the host device and

hides their features to the developer, enabling, in such a way, a

platform-independent programming. Consequently, a protocol

stack designed and developed on the STarch OSAL is

straightforwardly portable above different software/hardware

platforms. The porting effort is reduced to establish functional

links between corresponding APIs of the STarch abstraction
layer and of the actual underlying operating system.

D. Dynamic stack configuration

Besides the mailboxes, the NLM provides three shared

memory areas to guarantee asynchronous communication

among the network entities. One of them is called
Configuration Information Base (CIB) and it is mainly

intended to store protocol stack configuration settings

specified by the user in terms of attribute-value pairs. This

centralization of the configuration management allows to

significantly reduce the code redundancy. It also reduces the

memory occupation and allows to propagate a configuration

change to multiple protocols as soon as they request for an

update. Furthermore, separating configuration from protocol

logic enables consistent dynamic reconfiguration, without

Fig. 3. Virtualization of the software and hardware platform

Fig. 2. Sequence diagram of creation, delivery and use of a packet letter

160 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2013

changing the protocol implementation. This is possible if, for
instance, a commissioning network entity is invoked at run-

time to change some CIB parameter settings, and later requests

for a reset of the system. In such a case, the already registered

network entities should update their configuration status by

reading the latest values of the parameters of interest from the

CIB.

Every network entity can access to information contained in

the CIB area according to its privileges. In particular, every
CIB parameter can be written by a single network entity, said

the “owner” of the parameter itself, and read by a restricted set

of entities, based on a fixed security policy. Let us observe

that every CIB parameter is associated with a data type, which

is identified by a code that is known to all the entities. Based

on this code, every entity can read the right format of a CIB

parameter’s content/value. If a parameter is not present, a

proper error code is returned to the querying entity.

E. Network management

Following the specifications of standard models (e.g., the
ISO/OSI model), protocols cannot share with each other

information collected from the network, unless a number of

well-defined SAP primitives (e.g., request/confirm) are

available for this purpose. Addresses, routes, distances,

positions, statistics concerning other nodes in the network are

examples of information collected by different protocols

separately, often with high degree of redundancy, and waste of

dedicated resources (e.g., memory, processing, bandwidth). In

STarch, all network entities share with each other information

obtained from other nodes in the network, through the use of a
repository called Network Information Base (NIB). It is

actually a table, whose entries are associated to different

network members.

Entities can insert, delete and query such table by means of

a powerful NIB Query Language (NQL), very similar to the

SQL language. The NLM must check whether a network

entity is allowed to execute a query or not, based on its

privileges. Such an admission control is needed to protect NIB
information against security attacks. More in detail, the NQL

is based on query statements (i.e., select, insert, delete) and

clauses (i.e. what, where, order_by). The statements are used

to retrieve, add o remove information to/from the NIB. As

previously introduced, the NIB is seen as a list of records (i.e.,

rows of a table), each composed by a list of attributes (i.e.,

columns of a table). The statements rule the access to entire

NIB records, while the clauses are used to filter attributes and

records, and to sort records based on specific attributes. The

select statement includes all the clauses and returns a set of

records, which is a view of the NIB, filtering out all the NIB

attributes and records that are of no interest for the querying
entity. The insert statement allows adding a new record to the

NIB by specifying only a subset of attributes and making the

others assume a default value. Finally, the delete statement

allows removing a record from the NIB by specifying a

matching condition.

F. Simplifying network protocols

As previously mentioned, the STarch architecture simplifies

the design of a network protocol taking care of common

operations, such as packet creation and handling.

More in detail, the NLM provides a mechanism for
optimized packing that makes use of “packet attributes”,

which are an abstract representation of information contained

in the packet headers. Network entities may read and/or write

attributes of their interest. Moreover, the NLM takes care of

constructing outgoing packets and of parsing incoming ones.

Every packet attribute is characterized by: (i) a unique name

used as identifier, (ii) a type associated to the host memory

representation of the attribute value, (iii) a bit size of the

portion of the host representation that will be actually packed,
(iv) a bit offset for the alignment of the attribute in the packet,

and (v) a “More” flag indicating whether the attribute is

grouped with the following one in the packet to form a single-

byte or a multi-byte field.

A packet may optionally contain special attributes used to

transfer among different protocol layers additional information

about the packet itself, such as Received Signal Strength
Indication (RSSI), Link Quality Indication (LQI),

timestamp(s), statistics (e.g., number of re-transmissions),

transmitter and receiver addresses.

Furthermore, the NLM provides some shared buffers, called

Packet Pool (PKP) that allow to queue more than one

outgoing or incoming packet. Such buffers are organized in

different queues, characterized by a different priority level and

served according a priority model (i.e., the oldest packet in the
transmission/reception queue with the highest priority is

served first).

G. Support for heterogeneous networks

In heterogeneous environments, neighbouring devices might

use different communication technologies. To limit the

dependence of network protocols on a specific radio
technology, in STarch the radio management is entirely

delegated to a network entity, called Radio Manager (RMNG),

which is implemented by a MAC protocol or a wrapper of a

radio driver.

The RMNG entity was designed to decouple the higher

layer protocols from underlying radio technologies. For

example, a routing protocol could be used with different radio

technologies, without having direct knowledge of which radio
technology is currently used. The high layer protocol simply

uses network connections established by the actual link layer

protocol. Furthermore, the RMNG, if extended with the

needed logic, could switch between different network

interfaces, provided that the host device is an hardware

gateway with multiple network interfaces installed. The choice

of the right network device to use may be based on

opportunistic needs (e.g., use of the shortest link, use of the

largest bandwidth) or dictated by traffic flow (e.g., from

wireless sensor device to Internet).As a result, multiple

BLASI et al.: IMPLEMENTATION AND VALIDATION OF A NEW PROTOCOL STACK ARCHITECTURE 161

services can reside on the same node, each with one or more
associated communication interfaces.

H. Support for the Internet Standard IPv6

The STarch architecture provides an adaptation layer for the

Internet standard IPv6 [20], which is backed by a network

entity that redirects IPv6 packet letters to the underlying radio

manager and vice versa and, at the same time, allows bridging
IPv6 networks with other STarch-based proprietary networks.

More in general, when an application wishes to send data or

to be notified of incoming data through the STarch

architecture, it has to use a Network API (NAPI) that is

delegated to an entity, which will make the link between the

application and the network stack. Indeed, this is a transport

entity that allows communication among multiple
applications’ ports and can operate in two modes:

 Transmission mode: it gets the message from the source

application and splits it in multiple fragments if the

message is too long with respect to the Maximum

Transmission Unit (MTU) of the used radio interface;

then, each fragment is inserted into a packet that is, in its

turn, enveloped into a letter to be later sent to the NLM

for dispatching;

 Reception mode: the entity receives a letter for a

destination application, then extracts the packet from it

and, in particular, the message fragment; such a fragment
is reassembled with the other fragments received

previously and next from the same source application, in

order to restore the complete message that is finally

passed to the destination application’s callback.

Note that similar entities, which would adapt the STarch

architecture to work with any existing standard or legacy

solutions, can be easily developed.

I. Support to network configuration

Configuring a network may become very complex,

especially if the number of parameters used by applications,

protocols and system is high. To cope with this problem, the

STarch framework can be configured through an automatic

process that involves the use of the XML language.
Specifically, the developer has to create a system

configuration file named config.ini,encoded in XML

according to a formalized and well-defined data dictionary.

This configuration file can be written in two ways: via a text

editor (i.e., the programmer manually enters all the necessary

tags for the correct configuration of the file) or via a Graphical
User Interface (GUI). This GUI is implemented as a plugin for

the Eclipse Integrated Development Environment (IDE) [21]

and it aims to make the creation of the configuration file easier

and less time-consuming.

Once installed, the plug in allows the configuration of all

the information contained in the config.ini file without

worrying about the physical structure of the file itself (i.e., the

correct utilization of the XML tags according to the data

dictionary). In particular, the plugin provides a wizard that
assists the programmer in choosing the appropriate parameters

without taking care of the constraints to be respected for

editing, since these constraints are calculated by the

application and provided to the user through graphics widgets.

IV. IMPLEMENTATION DETAILS AND TEST ENVIRONMENT

In this section, details about the porting of the STarch

architecture on the Contiki OS are discussed, and, afterward,

the platform used to validate the proposed architecture and the

test settings are described.

A. Porting to the Contiki OS

As previously declared, STarch provides its own abstraction
layer on top of any platform-dependent operating system,

guaranteeing that STarch-based code can be easily ported to

different hardware and software platforms. When a module

needs to invoke a low level system service it simply calls the

associated STarch API. Therefore, porting STarch to the

Contiki OS has required only few and well-defined steps.

Contiki is a popular open-source operating system targeted
to small microcontroller architectures. As shown in the right

side of Figure 4, Contiki is characterized by a communication

stack organized in several layers, in which both protocol

solutions and radio transceiver features can be easily

configured. The lowest layer of the stack is the

NETSTACK_CONF_FRAMER. It is in charge of the data

packet format conversion before the transmission over the

physical channel. The upper layer is the
NETSTACK_CONF_RADIO. It directly manages the wireless

transceivers features through the appropriate device driver.

These two first levels can be considered the PHY layer of the

ISO/OSI model. The third layer of the Contiki stack is the

NETSTACK_CONF_RDC, which cannot be directly mapped

to the ISO/OSI model. It is just below the MAC layer,

identified as NETSTACK_CONF_MAC, and it is in charge of

managing the radio duty cycling to provide energy saving

capabilities. The last layer of the stack is the

NETSTACK_CONF_NETWORK providing the functionality of

the network layer of the ISO/OSI model.

Considering the above described communication stack

architecture, the STarch porting has been realized by acting on

the NETSTACK_CONF_RADIO and

theNETSTACK_CONF_RDC layers as shown in Figure

4.More in detail, in order to ensure a proper management of

the packets coming from the network, a simple RDC driver,

able to interrupt the packets flows in the Contiki OS and send

them toward the STarchOSAL, has been implemented. On the
contrary, the STarch abstraction layer can directly interface

with the RADIO driver to send a packet toward the network.

The use of the NETSTACK_CONF_RADIO macro, defined

in the Contiki OS, allows the abstraction from the actual radio

driver.

162 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2013

In order to integrate STarch into the Contiki system a new
Makefile (i.e., Makefile.STARCH), including all files needed

to make STarch properly run, has been developed. To not

modify substantially the structure of the Contiki OS, the new

Makefile has been stored in the project’s directory and

included in the project's Makefile. Furthermore, to guarantee

the correct working of the STarch architecture with all

platforms supported by the Contiki with the minimum effort,

all definitions related to STarch have been included in a new

project-conf.h file, which can be easily included in new

projects.

Another important aspect that has required particular
attention during the porting activity was the management of

the processes' execution flow. STarch can be run in both

single-task and multi-task operating modes. The choice of the

proper mode to be used depends on the features of the

operating system which STarch is executed over, since it could

not support the multiprogramming mode or could support it

only partially. Let us observe that Contiki supports multi-

threading by implementing it as a library that can be
optionally linked with programs that explicitly require it. This

feature is important whenever a lengthy computation is

performed, given that the event-driven kernel will monopolize

the CPU and will make the system unresponsive to external

events. However, the thread scheduling has to be planned and

designed by the programmer who decides its logic based on

timer expiration or on the execution of specific conditions.

This means that all threads must be declared in advance and

used together within the same process structure in order to

define a scheduling logic.

The discussed issues suggested us to consider the single-
task operating mode, to assure a proper working of STarch on

the Contiki OS.

Finally, the last step of the described porting activity has

involved the implementation of the APIs provided by the
STarch abstraction layer, which allows interfacing with the

underlying operating system. These APIs are essentially

related to packets transmission and reception, time and timers

management, memory management and the terminal activity.

C. Test settings and data collection scenario

As previously introduced, the performances of the STarch

architecture have been evaluated by means of extensive

simulation campaigns while an experimental campaign has

demonstrated the actual usability of the proposed architecture

on real embedded devices.

All simulations and tests have been performed considering a

simple Link State Routing (LSR) protocol, based on the

following rules:

 Each node sends periodically and in case of connectivity

changes an advertisement packet, containing its address, a

sequence number, the list of the last discovered

neighbours, and the number of hops traversed by the

packet itself (initially reset).

 When a node receives an advertisement packet, it checks

whether a copy of the packet, recognized by the same

sequence number, has been previously received, and, in

such a case, it discards the packet. Otherwise, the node

creates or updates an entry in the local Link State Table

(LST), containing the addresses of the node that originally

produced the message and of its actual neighbours.

Finally, the node increments the counter of the hops

traversed by the packet and rebroadcasts it to inform other

nodes of the included information.

 Once completed the LST initialization phase above, when

a node needs to send a data packet to a target destination,

it first establishes the shortest path in number of hops
towards the target based on the information stored in the

LST, then sends the packet to the next hop along the path

found. The packet will be relayed hop-by-hop until it is

received by the destination, which will reply with an

acknowledgement packet.

The experimental campaign (called STM3210_TEST in the

rest of the paper) has been carried out by using four

STM3210-EVAL Evaluation boards [22] of
STMicroelectronics, equipped with the SPIRIT1 Sub 1-GHz

transceiver [23] (Figure 5). The selected board is a complete

development platform for STMicroelectronic's ARM Cortex-

M3 core-based STM32F103ZET6 microcontroller, while

SPIRIT1 chip is a very low-power RF transceiver, intended for

RF wireless applications in the Sub 1-GHz band and air data-

rate programmable from 1 to 500 Kbps. The FreeRTOS

operating system was adopted. The test has been performed in

an indoor environment, positioning the four nodes at the

corners of a square with arbitrary side and numbering them

according to the clockwise direction. The maximum length of
a communication link is equal to the square side. According to

the implemented application, node 3 reads a text and sends the

read words to node 1, which writes them on a terminal. After

sending a word and before sending the next one, node 3 waits

for an acknowledgement from node 1. This process is repeated

until the transmission of the whole text is completed and then

it restarts endlessly.

The simulation campaigns (called WISMOTE_SIM in the
rest of the paper) have been carried out by using Cooja, the

Contiki network simulator. Cooja integrates MSPsim, a tool

that can emulate motes based on the MSP430 microcontroller.

Cooja/MSPsim provides cycle-accurate simulation of the

individual devices, as well as bit-level accurate simulation of

Fig. 4. STarch porting to the Contiki OS.

BLASI et al.: IMPLEMENTATION AND VALIDATION OF A NEW PROTOCOL STACK ARCHITECTURE 163

their radio transceivers. As a consequence, Cooja/MSPsim

allows running the exact same binaries in the simulator as on

actual hardware. Specifically, we considered the WiSMote

platform [24], which is equipped with an MSP430F5
microcontroller having 16 kB of RAM and 256 kB of flash

memory. The board integrates the CC2520 transceiver, a 2.4

GHz wireless transceiver compliant with the IEEE 802.15.4

standard. The same application developed for the test bed has

been used, while a simple network of two nodes has been

evaluated. In this case, node 1 (called sensor in the rest of the

paper) replies to node 2 (called sink) sending back, together

with the acknowledgements, also the text received. This

simple network allows to evaluate the STarch performance

minimizing the influence of the routing protocol. To better

appreciate the effectiveness of the proposed architecture, an
ideal channel, characterized by a packet error rate equal to

zero, has been simulated. Furthermore, to analyse the system

behavior with different levels of network load, five data rates

have been considered during the simulations: 1 packet per

second (high load), 1 packet every 15 seconds, 1 packet every

30 second (medium load), 1 packet every 45 seconds, and 1

packet per minute (a typical data rate used in sensor networks

[25]). For each packet rate, three different values of message

length, which match to packets sent using 1 fragment, 2

fragments, or 3 fragments, were considered. The main

simulation parameters are reported in Table I, while the results

of the performed analysis are discussed in the next section.

During the simulation campaigns, the following metrics

have been evaluated: (i) average fragment transmission delay

(i.e., the time interval between the creation of a letter,

containing the application message, and its transmission to the

radio driver); (ii) average fragment reception delay (i.e., the

time interval between the reception of a packet by the radio

driver and the end of its management by the recipient
protocol); (iii) average routing protocol delay (i.e., the time

interval between the delivery of a letter to the routing protocol

and the end of its processing); (iv) average reaction time to a

timer expiration (i.e., the time interval between the notification

of the expiration of a timer in the Contiki OS and the time

instant when the corresponding timer letter is processed from

STarch); (v) memory footprint (i.e., the memory footprint of

the whole architecture and of each components). The last
metric has been measured considering the following memory

sections: .text, including the functions of a program; .data,

which contains initialized global variables; .bss, which

contains uninitialized global variables; and .rodata, which

contains the constant global variables.

Finally, we observe that all simulations were carried out by

using the independent replications method and all results are

characterized by a 95% confidence interval with a 5%
maximum relative error.

V. RESULTS

In this section, main results obtained by both simulations
and experimental campaigns are separately reported.

A. System validation

Figure 6 shows the messages generated by nodes 3 and 1

during the STM3210_TEST.For each node, the first set of

messages is related to advertisement packets exchanged to

build the LSR table. Next, the node starts printing application

and routing messages associated with data packets and

acknowledgement packets, according to the node role (i.e.,

data source, forwarder, or data destination).The test bed has
demonstrated the actual functionality of the architecture and

the portability of the STarch-based protocol as a function of

devices characteristics (e.g., clock speed, memory) and of the

operating systems.

B. Performance analysis

The results of the WISMOTE_SIM tests are reported and
discussed in this sub-section.

Figure 7 shows the average delay for the transmission of a

packet or, in case of fragmentation, of a fragment, versus the

Fig. 5. STM3210-EVAL Evaluation board equipped with the
SPIRIT1 Sub 1-GHztransceiver.

TABLE I
SIMULATION PARAMETERS

Parameter Value

Network Topology Chain

Number of nodes 2

Data Rate 1 packet per second

1 packet every 15 seconds

1 packet every 30 seconds

1 packet every 45 seconds

1 packet per minute

Number of fragments 1, 2, 3

164 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2013

data rate for the sink and the sensor nodes. All measured
values are expressed in ms, while the used data rates are

reported in seconds, indicating the elapsed time between two

consecutive packets. The three used packet sizes are labelled

as PS with the indication of the number of fragments needed

to transmit a packet. Let us observe that all curves exhibit a

constant trend, which indicates that in all configurations the

measured delays are not affected by the data rate. On the

contrary, the transmission delay significantly increases when

the packet size increases. This behaviour is mainly due to

queuing delays of different fragments. Indeed, a message

fragmentation causes the creation of two or three letters that
are immediately dispatched to the routing protocol to be

handled. Obviously, the protocol, but in general the whole

architecture, can manage only a letter at a time, and the

queuing delay of different fragments significantly affects the

average transmission delay. Moreover, in the sink node

(Figure 7.a), the protocol cannot transmit a queued fragment

until it has received an acknowledgment from the sensor,

referred to the previous transmission. As consequence, each

fragment suffers from a different transmission delay. Although

the curves related to the two nodes show a similar trend,

however, the transmission of a fragment on the sensor node
requires a longer execution time than that measured on the

sink node. This result is due to the more complex activity of

the routing protocol on the sensor, which has to manage the

acknowledgements and, before transmitting, has to wait the

reception of a fragment from the sink.

The results of the average reception delay are reported in

Figure 8. Also in this case, the measured delays are not

influenced by the data rate, since all curves are characterized
by a constant trend. Moreover, Figure 8.a shows that the sink

reception delay significantly increases for higher values of

packet size. When a packet is received, a letter containing such

information is immediately sent to the NAPI. At the same

time, if a packet is composed of more than one fragment, a
letter is sent to the radio manager, in order to require the

transmission of the first queued fragment. In such a case, the

reception delay increases. A similar behaviour is not shown by

the sensor node (Figure 8.b) because it uses a different

procedure for packet transmission. Regardless of the number

of fragments that compose the message, after receiving a

fragment, the sensor node always transmits an

acknowledgment containing the application payload.

Furthermore, let us observe that the sensor node delays are

significantly greater than those of the sink. Upon receipt of a

fragment, in fact, the sensor node first requires the packet
transmission, sending a letter to the radio manager, and then

manages the received fragment. This produces a lengthening

of the packet delivery time.

Figure9 shows the protocol delay analysis in the sink and

the sensor nodes. Let us observe that all kinds of letters

managed by the routing protocol have been considered in this

analysis. Regarding the sink node (Figure 9.a), the protocol

delay slightly increases for higher data rates. In the analysed
scenario, in fact, the sink node periodically checks the status

of all routes, and when the timer associated with this check

expires a proper letter is created. Consequently, when the data

rate decreases also the number of application letters decreases,

on the contrary, the number of letters due to a timers

expiration remains constant. However, timer letters require

less processing time than data letters. Furthermore, when the

packet size increases also the protocol delay increases, since a

great number of data letters is produced. On the contrary, in

the sensor node (Figure 9.b), the protocol delay is not

influenced by the data rate and the packet size considered,
because this node does not manage timer letters. These results,

therefore, represent a more reliable estimate of the protocol

average execution times.

Fig. 6. Output messages collected for nodes 1 and 3 during the STM3210_TEST carried out by using four STM3210-EVAL Evaluation
boards running FreeRTOS.

BLASI et al.: IMPLEMENTATION AND VALIDATION OF A NEW PROTOCOL STACK ARCHITECTURE 165

 (a) (b)

Fig. 7. Average delays for the transmission of a fragment versus the data rate during the WISMOTE_TEST for: (a) the sink node, and (b)
the sensor node.

 (a) (b)

Fig. 8. Average delays for the reception of a fragment versus the data rate during the WISMOTE_TEST for: (a) the sink node, and (b) the
sensor node.

 (a) (b)

Fig. 9. Protocol delays versus the data rate during the WISMOTE_TEST for: (a) the sink node, and (b) the sensor node.

166 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2013

Although the implemented protocol and the considered
scenario significantly affect the obtained results, however, the

performed analysis allowed us to approximately estimate the

delay introduced by the Starch architecture. Specifically,

considering the sink node, a packet size equal to 1 fragment,

and the maximum data rate (i.e., 1 s), in order to reduce as

much as possible the influence of the routing protocol, the

STarch delay can be evaluated using the following equation:

 ()

 (1)

where represents the average transmission delay,

 represents the average reception delay, and

is the average delay introduced by the routing protocol. This

value is approximately equal to 1971,665 . The discussed

tests confirmed that acceptable values for delay-tolerant

applications, such as those developed for WSNs, are

guaranteed.

Another interesting performance metric is the reaction time
of the STarch architecture to the expiration of a timer. This

analysis involves only the sink node, since, as previously

described, the sensor node does not manage timers. The curves

in Figure 10clearly show that the measured delays are not

affected by the data rate and the packet size. It is important to

observe that the average reaction time to timer expiration is

about 540μs, a very low value for a WSN.

The memory footprint of the different architectural com-
ponents is shown in Table II. The whole architecture requires

about 16kB ROM and 8kB RAM memory, under the memory

limit of most sensor nodes. Furthermore, this larger initial

memory cost is compensated by the small size of the STarch

network protocol, which only requires about 7 kB of memory.

The memory requirements of the described components are

limited. This shows that these techniques can be used in most

typical sensor networks.

VI. CONCLUSIONS

One of the most exciting challenges of the modern digital

communication technology concerns the realization of the

Internet of Things vision, inside which innovative applications

could be developed. The most used networking protocols are

application-specific, platform-dependent, and are stacked
according to standard models; however, such protocol stacks

are very often characterized by high degrees of coupling and

redundancy. Alternative design approaches can be found in

literature and, basically, aim to remove redundancy among

protocols as much as possible isolating common information

and functionalities.

This paper has presented and evaluated STarch, a novel
integrated protocol architecture that shares goals of the

aforementioned approaches and, in addition, decouples

protocols from each other, from applications, and from the

TABLE II

MEMORY FOOTPRINT OF THE DIFFERENT ARCHITECTURAL COMPONENTS IN BYTES

Components .text .rodata .data .bss

NAPI 1988 0 0 2768

NLM 366 0 1 6

NIB 5832 0 0 0

CIB 498 0 0 0

PKP 3752 0 0 28

MAILBOX 988 0 0 22

NENT 192 0 0 6

TIMER 620 0 0 8

RADIO MANAGER 630 0 0 0

STARCH OSAL 696 0 1 20

CONFIG 0 0 858 4288

TOOL 498 0 0 0

PROTOCOL 7528 0 0 100

STARCH 24066

ROM RAM

16060 8006

PROTOCOL 7628

ROM RAM

7528 100

Fig. 10. Reaction time of the STarch architecture to the expiration
of a timer during the WISMOTE_TEST.

BLASI et al.: IMPLEMENTATION AND VALIDATION OF A NEW PROTOCOL STACK ARCHITECTURE 167

underlying SW/HW platform. STarch-based protocols are
easily portable, maintainable, and configurable. Particularly,

configuration is assisted by a powerful Eclipse-based GUI and

applies to both protocols and whole host system.

The actual feasibility of the proposed architecture has been

proved by using a test bed approach, while an extensive

simulation campaign has demonstrated its effectiveness.

Specifically, the analysis has shown that STarch is able to

introduce only low delays and to quickly react to a timer’s
expiration. Moreover, it was demonstrated that the memory

overhead of each components is small enough to be

implemented on resource constrained embedded devices.

A performance evaluation by using real devices, such as

STMicroelectronics’ or other chip vendors’ products, and the

design of important improvements, including integration of

different communication technologies (e.g., WSN and RFID)
represent a natural evolution of this work.

ACKNOWLEDGEMENTS

This work has been partly financed by the BAITAH Project
(Methodology and Instruments of Building Automation and

Information Technology for pervasive models of treatment

and Aids for domestic Healthcare), funded by the Italian

National Operating Program (PON) 2007/2013, Information

and Communication Technology (ICT) sector, with contract

number PON01_00980. Furthermore, the authors thank Dr.

Mirko Pizzaleo and Dr. Andrea Leo, who collaborated with

the IDA Lab group of the University of Salento, Lecce,

ITALY, for their support in the performance evaluation and
the Eclipse GUI plug-in implementation, respectively.

REFERENCES

 [1] L. Mainetti, L. Patrono, A. Vilei, Evolution of wireless

sensor networks towards the Internet of Things: A survey, in:

Software, Telecommunications and Computer Networks

(SoftCOM), 2011.

[2] D. Alessandrelli, L. Patrono, G. Pellerano, M. Petracca, M.

L. Stefanizzi, Implementation and validation of an energy-

efficient MAC scheduler for WSNs by a test bed approach, in:

Software, Telecommunications and Computer Networks

(SoftCOM), 2012.

[3] D. Alessandrelli, L. Mainetti, L. Patrono, G. Pellerano, M.

Petracca, M.L. Stefanizzi, “Performance Evaluation of an
Energy-Efficient MAC Scheduler by using a Test Bed

Approach”, Journal of Communication Software and Systems,

vol 9, no 1, 2013.

[4] L. Catarinucci, S. Guglielmi, L. Mainetti, V. Mighali, L.

Patrono, M. L. Stefanizzi, and L. Tarricone, “An Energy-

Efficient MAC Scheduler based on a Switched-Beam Antenna

for Wireless Sensor Networks”, Journal of Communication

Software and Systems, Vol. 9, No. 2, June 2013, pp. 117-127

[5] L. Catarinucci, S. Guglielmi, L. Patrono, and L. Tarricone,

"Switched-beam antenna for wireless sensor network nodes,"

Progress In Electromagnetics Research C, V ol. 39, 193-207,

2013.

[6] A. Dunkels, Full tcp/ip for 8-bit architectures, in: Proc. of
the First International Conference on Mobile Systems,

Applications, and Services (MobiSys), 2003.

[7] ZigBee Alliance, ZigBee Specification Document

053474r17.

[8] L. van Hoesel, T. Nieberg, J. Wu, P. Havinga, Prolonging

the lifetime of wireless sensor networks by cross-layer

interaction, in: Wireless Communications, IEEE, pp. 78–86,

2004.

[9] M. Sichitiu, Cross-layer scheduling for power efficiency in

wireless sensor networks, in: Proc. of the Twenty-third Annual

Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), 2004.

[10] A. Beach, M. Gartrell, S. Panichsakul, L. Chen, C. Ching,

R. Han, X-layer: An experimental implementation of a cross-

layer network protocol stack for wireless sensor networks,

Department of Computer Science, University of Colorado at

Boulder, Technical Report CU-CS-1051-08, 2008.

[11] S. Rotolo, D. Blasi, V. Cacace, L. Casone, "From

WLANs to ad hoc networks, a new challenge in wireless

communications: Peculiarities, issues, and opportunities", in

M. Ilyas (Ed.), Handbook of Wireless Local Area Networks:

Applications, Technology, Security and Standards, CRC Press,

2005
[12] E. De Poorter, E. Troubleyn, I. Moerman, P. Demeester,

IDRA: A flexible system architecture for next generation

wireless sensor networks, in: Journal of Wireless Networks,

vol. 17, no. 6, pp. 1423-1440, 2011.

[13] E. De Poorter, I. Moerman, P. Demeester, Enabling direct

connectivity between heterogeneous objects in the internet of

things through a network-service-oriented architecture, in:

EURASIP Journal on Wireless Communications and

Networking, 2011.

[14] Extensible Markup Language (XML) 1.1 Specification,

http://www.w3.org/TR/xml11/.
[15] A. Dunkels, B. Gronvall, and T. Voigt, Contiki a

lightweight and flexible operating system for tiny networked

sensors, in: Proc. of First IEEE Workshop on Embedded

Networked Sensors, Tampa, 2004.

[16] A. Dunkels, F. Osterlind, Z. He, An adaptive

communication architecture for wireless sensor networks, in:

Proc. of the 5th ACM Conference on Embedded Networked

Sensor Systems (SenSys), 2007.

[17] N. Finne, J. Eriksson, N. Tsiftes, A. Dunkels, T. Voigt,

Improving sensornet performance by separating system

configuration from system logic, in: Proceedings of the 7th

European conference on Wireless Sensor Networks, (EWSN),
pp. 194-209, 2010.

[18] K. K. Chang, D. Gay, Language support for interoperable

messaging in sensor networks, in: Proc. of the 2005 workshop

on Software and Compilers for Embedded Systems, 2005.

[19] The Wirelessly Accessible Sensor Populations (WASP)

project, http://www.wasp-project.org.

[20] Internet Protocol Version 6 (IPv6) Specification,

http://ipv6.net/RFC/rfc-2460-internet-protocol-version-6-ipv6-

specification.html.

[21] The Eclipse Foundation, www.eclipse.org/.

[22] STM3210-EVAL Evaluation Board User Manual,
http://www.st.com/internet/com/TECHNICAL_RESOURCES

168 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2013

http://www.wasp-project.org/
http://ipv6.net/RFC/rfc-2460-internet-protocol-version-6-ipv6-specification.html
http://ipv6.net/RFC/rfc-2460-internet-protocol-version-6-ipv6-specification.html

/TECHNICAL_LITERATURE/USER_MANUAL/CD001781
66.pdf

[23] SPIRIT1 Sub 1GHz transceiver User Manual,

http://www.st.com/internet/com/TECHNICAL_RESOURCES

/TECHNICAL_LITERATURE/DATASHEET/DM00047607.

pdf

[24] Wismote node: http://wismote.org/doku.php

[25] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P.

Levis. Collection tree protocol.In Proceedings of the

International Conference on Embedded Networked Sensor

Systems (ACM SenSys), Berkeley, CA, USA, 2009.

Danilo Blasi graduated summa cum laude in
Computer Engineering at the University of
Lecce in November 2001. Since January 2002,
he has been working in STMicroelectronics
(Lecce site) for the Advanced System
Technology (AST) Research & Innovation
group. His main activities include research and

development of protocols and software
architectures for wireless and wired digital

communications. His research interests are in the areas of Wireless
Sensor Networks, Low Power Radio and Networks, Auto Meter
Reading and Embedded Systems. He is author of scientific papers
about Cross-Layer Protocol Design, Routing and Medium Access
Control (MAC) in Wireless Sensor Networks, Synchronization in
Low Duty Cycle Networks.

Luca Mainetti is an associate professor of
software engineering and computer graphics at
the University of Salento. His research interests
include web design methodologies, notations
and tools, services oriented architectures and
IoT applications, and collaborative computer
graphics. He is a scientific coordinator of the

GSA Lab - Graphics and Software
Architectures Lab and IDA Lab -
IDentification Automation Lab at the

Department of Innovation Engineering, University of Salento. He is
the Rector’s delegate at the ICT.

Luigi Patrono received his MS in Computer
Engineering from University of Lecce, Lecce,
Italy, in 1999 and PhD in Innovative Materials
and Technologies for Satellite Networks from
ISUFI-University of Lecce, Lecce, Italy, in
2003. He is an Assistant Professor of Network
Design at the University of Salento, Lecce, Italy.
His research interests include RFID, EPCglobal,

Internet of Things, Wireless Sensor Networks,
and design and performance evaluation of protocols. He is Organizer
Chair of the international Symposium on RFID Technologies and
Internet of Things within the IEEE SoftCOM conference. He is
author of about 70 scientific papers published on international
journals and conferences and four chapters of books with
international diffusion.

Maria Laura Stefanizzi graduated cum laude

in Computer Engineering at University of
Salento (Italy) in April 2012. Since January
2009 she collaborates with IDA Lab -
IDentification Automation Laboratory at the
Department of Innovation Engineering,
University of Salento. Since July 2013 she is a
PhD student at University of Salento. Her
activity is focused on the design and validation

through test beds on real devices of innovative
applications and protocols aimed to reduce power consumption in
Wireless Sensor Networks. She is also involved in the study of new
solutions for the integration of RFID and WSN technologies.

BLASI et al.: IMPLEMENTATION AND VALIDATION OF A NEW PROTOCOL STACK ARCHITECTURE 169

