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Abstract—The recent growth in demand for modern ap-
plications combined with the shift to the Cloud computing
paradigm have led to the establishment of large-scale cloud data
centers. The increasing size of these infrastructures represents
a major challenge in terms of monitoring and management of
the system resources. Available solutions typically consider every
Virtual Machine (VM) as a black box each with independent
characteristics, and face scalability issues by reducing the number
of monitored resource samples, considering in most cases only
average CPU usage sampled at a coarse time granularity. We
claim that scalability issues can be addressed by leveraging the
similarity between VMs in terms of resource usage patterns.
In this paper we propose an automated methodology to cluster
VMs depending on the usage of multiple resources, both system-
and network-related, assuming no knowledge of the services
executed on them. This is an innovative methodology that exploits
the correlation between the resource usage to cluster together
similar VMs. We evaluate the methodology through a case
study with data coming from an enterprise datacenter, and
we show that high performance may be achieved in automatic
VMs clustering. Furthermore, we estimate the reduction in the
amount of data collected, thus showing that our proposal may
simplify the monitoring requirements and help administrators to
take decisions on the resource management of cloud computing
datacenters.

Index Terms—Cloud computing, VM Clustering, k-means,
Correlation analysis

I. I NTRODUCTION

CLOUD computing has recently emerged as a new
paradigm to provide computing services through large-

size data centers where customers may run their applications
in a virtualized environment. Modern customer applications
consist of different software components (e.g., the tiers of a
multi-tier Web application) with complex and heterogeneous
resource demand behavior. In a virtualized data center, each
physical server is enabled to host multiple independent virtual
machines (VMs), and each VM runs one software component
of a customer application.

Due to the rapid increase in size and complexity of these in-
frastructures, the processes of monitoring and managing cloud
data centers are becoming challenging tasks. The monitoring
of such infrastructures is likely to present scalability issues due
to the amount of data to collect and store when a large number
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of VMs are considered, each with several resources monitored
at high sampling frequency [1]. Also efficient management of
VMs in a data center (for example, through periodic consoli-
dation of VMs) do not scale well due to the large amount of
data to analyze [2]. The scalability issue is particularly difficult
to tackle because providers of Infrastructure as a Service
(IaaS) cloud data centers do not have direct knowledge of the
application logic inside a software component, and can only
track OS-level resource usage on each VM [3], [4]. Hence,
most monitoring and management strategies in cloud data
centers assume that each VM is a single object whose behavior
is independent from the other VMs of the cloud infrastructure.
To reduce the complexity of VM monitoring and management
problem, the typical approach in IaaS cloud is to reduce the
problem size. To this aim, available solutions may rely on
low sampling frequency of VM status or reduce the number
of resources that are taken into account, typically considering
only CPU- or memory-related information [5], [6], [7], [8], [9],
[10]. However, these approaches are likely to suffer important
drawbacks: on one hand, reducing the sampling frequency
leads to low reactivity to changes in demand; on the other
hand, limiting the monitoring to CPU or memory resources
may not be sufficient to capture changes in the behavior of
VMs running I/O bound or network bound applications.

We argue that the scalability of monitoring and management
tasks in cloud infrastructures may be improved by leveraging
the similarity between VM behaviors, considering VMs not
as single objects but as members of a class composed by
objects that are running the same software component (e.g.,
Web server or DBMS). In particular, we refer to the scenario of
the so-calledprivate cloud, where the virtualized infrastructure
is typically devoted to a reduced number of customers. When
a customer outsources part of his data center to this type of
cloud, the outsourcing tends to last for long-term periods, pos-
sibly in the order of months: customer VMs tend to not change
frequently the software component they are running and VMs
are acquired or released with relatively low frequency with
respect to public cloud scenarios [2], [3]. In this scenario, once
we have identified classes of similar VMs, we may select a few
representative VMs for each class and carry out monitoring
at a detailed level only on these representatives. Other VMs
can be monitored at a much coarser granularity level with the
goal to discover if their behavior is changing with respect to
the class they belong to. This coarse-grained approach can
easily reduce the amount of data collected by one order of
magnitude with respect to the fine-grained monitoring of every
single VM, improving the scalability of cloud monitoring and
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management.
The main contribution of this paper is the proposal of an

automated, non parametric methodology to cluster together
similar VMs in an IaaS cloud data center on the basis of
their resource usage. The proposed methodology exploits
the correlation between the usage of multiple resources to
determine which VMs are following the same behavioral
patterns. A main advantage of our methodology is that we
take into account multiple resources, differently from most of
the existing solutions that mainly consider CPU- or memory-
related information. We apply the proposed methodology to
a dataset coming from a real cloud environment with VMs
running Web servers and DBMS. We demonstrate that our
methodology can achieve an accuracy in clustering VMs that
is between 80% and 100% for every considered scenario, with
a reduction in the amount of collected data samples by a factor
of 15. Furthermore, we show that taking into account multiple
VM resources leads to better results than considering only
CPU or memory, as usually done in the state-of-the-art.

The remainder of this paper is organized as follows. Sec-
tion II discusses the related work. Section III describes the
proposed methodology for clustering similar VMs in a cloud
environment. Section IV presents the case study used to
evaluate our methodology, while Section V and describes the
results of our experiments. Section VI concludes the paper
with some final remarks.

II. RELATED WORK

The research activities related to the scalability issues in
cloud data centers concern two main topics that are strictly
correlated: resource management and infrastructure monitor-
ing. Our contribution is related to both areas: we support
advanced management solutions by providing a detailed vision
of the system status while reducing the amount of monitored
data; moreover, our methodology can easily be integrated in
most solutions for cloud datacenter monitoring to improve
their scalability.

Many existing studies propose resource management strate-
gies based on the usage of one or few resources compared
against thresholds. For example, the studies in [5] and [6]
propose solutions for consolidation of virtual machines based
on adaptive thresholds regarding the CPU utilization values.
Wood et al. [4] propose a reactive, rule-based approach for
virtual machine migration that defines threshold levels regard-
ing the usage of few specific physical server resources, such
as CPU-demand, memory allocation, and network bandwidth
usage. Kusicet al. [11] address the issue of virtual machine
consolidation through a sequential optimization approach; the
drawback is that the proposed model requires simulation-based
learning and the execution time grows very fast even with a
limited number of nodes. All these studies perform a per-node
analysis based on the usage of one or few resources; however,
these approaches are likely to suffer from scalability issues in
large scale distributed systems, such as IaaS cloud computing
data centers.

Few recent studies aim to reduce the dimensionality of
the resource management problem, such as [2], [12], [13].

The studies in [2], [12] exploit a statistical analysis based on
Singular Value Decomposition (SVD) to predict the workload
demand aggregated on different virtual machines to anticipate
overload conditions on physical servers and trigger virtual
machine migrations. Tanet al. [13] apply Principal Component
Analysis (PCA) to evaluate resource usage patterns across
different nodes. The proposal consists in placing on the same
physical server virtual machines with negatively correlated
resource patterns to reduce the usage variability on the servers.
All these studies have a different goal with respect to our
paper, because they address the specific problem of virtual
machine consolidation in cloud datacenters. Moreover, all
their solutions consider only one resource, that is the CPU
utilization of virtual machines, while we aim to support
management strategies that consider multiple resources, from
CPU to network and disks. An initial version of the proposed
methodology was presented in [14]. However, the current
paper is a clear step ahead with respect to the previous
study. Beside a more detailed theoretical definition of the
proposal, we provide a wider set of experimental analyses with
respect to [14]. In particular, we demonstrate the advantage
of considering multiple virtual machine metrics with respect
to the choice of limiting the monitoring to few widely used
metrics, such as CPU and memory, as done in existing
solutions for cloud data center management. Furthermore, we
discuss the scalability of the clustering step to demonstrate
that the proposed methodology can be applied to large-scale
data centers.

As regards the issue of monitoring large data centers, current
solutions can be divided into log aggregators and frameworks
for periodic collection of system status indicators. Among
log aggregators, often called also log collectors, the most
widespread solution is the Syslog daemon, with its recent
extension [15] that was explicitly designed to be used by cloud
entities or applications to log and trace activities occurring in
the cloud. Solutions such as Cacti1 and Munin 2 are more
oriented towards the periodic collection of data. Cacti is an
aggregator of data transferred through the SNMP protocol,
while Munin is a monitoring system based on a proprietary
local agent interacting with a central data collector. Both these
solutions are typically oriented to medium to small data centers
because of their centralized architecture that limits the overall
scalability of the data collection process.

Ganglia3 provides a significant advantage over the previous
solutions as it supports a hierarchical architecture of data
aggregators that can improve the scalability of data collec-
tion and monitoring process. As a result, Ganglia is widely
used to monitor large data centers [16], [17], even in cloud
infrastructures [18], by storing the behavior of nodes and
virtual machines by organizing the data in time series. Another
solution for scalable monitoring is proposed in [1], where
data analysis based on the map-reduce paradigm is distributed
over the levels of a hierarchical architecture to allow only
the most significant information to be processed at the root

1http://www.cacti.net/
2http://munin-monitoring.org/
3http://ganglia.sourceforge.net/
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Fig. 1. Methodology overview

nodes. However, all these solutions share the same limitation
of considering each monitored object (being it a VM or a
host) independent from the others. This approach fails to take
advantage from the similarities of objects sharing the same
behavior. On the other hand, a class-based monitoring system
may perform a fine-grained monitoring for only a subset of
objects that are representative of a class, while other members
of the same class can be monitored at a much more coarse-
grained level. We believe that integrating our solution into
existing hierarchical models for monitoring can significantly
improve the scalability of monitoring operations.

III. M ETHODOLOGY

In this section we describe the proposed methodology to
automatically cluster similar VMs in a cloud data center on the
basis of their resource usage information. For each customer
application, we aim to group together VMs which are running
the same software component (e.g., VMs belonging to the
same tier of a Web application), and are therefore showing
similar behaviors in term of resource usage.

We recall that our reference scenario is a private cloud
where we assume that the software components hosted on
each VM do not change for long periods of time (i.e., they
remain the same for months), and VMs are seldom acquired or
released. The process of clustering similar VMs and the related
collection of data about VM resource usage is carried out
periodically with a frequency that allows to cope with changes
in the VM behavior, for example once every several weeks.
Hence, the actual computational cost of the methodology is
not considered as critical, due to its low invocation frequency.

The proposed methodology consists of the following main
steps, that are outlined in Figure 1:

• Extraction of a quantitative model describing the VM
behavior;

• Clustering based on VM description to identify classes
of similar VMs.

Given a set ofN VMs, the first step of the methodol-
ogy aims at representing the behavior of each VMn, with
n ∈ [1, N ]. We consider that capturing the inter-dependencies
among the usage of different resources, such as CPU uti-
lization, network throughput or I/O rate, can describe the
VM behavior during a period of time. For example, in Web
servers network usage is typically is related to the CPU
utilization [19], while for DBMS CPU utilization tends to

change together with storage activity [20]. We consider each
VM as described by a set ofmetrics, where each metric
m ∈ [1,M ] represents a resource of the VM.

Let (Xn
1
,Xn

2
, . . . ,Xn

M ) be a set of time series, whereXn
m

is the time series of the resource usage samples associated to
the metricm of VM n. The inter-dependencies between the
metrics of a VMn are measured using correlation values, that
can be represented as elements of the correlation matrixS

n,
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We choose the Pearson product-moment correlation coeffi-

cient (PPMCC) to measure the degree of correlation between
pairs of metric time series, that is defined as:
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where X is the length of the metric time series (X = |Xn
m|,

∀m ∈ [1,M ], ∀n ∈ [1, N ]), while xn
m(i) and x̄n

m are the
i-th element and the average value of the time seriesX

n
m,

respectively.
The correlation matrixSn describing the behavior of the

VM n is given as input to the second step of the methodology,
that aims to group similar VMs into classes. Starting from
the matrixSn, we build afeature vector V

n that is fed into
a clustering algorithm. Clustering algorithms typically have
a computational complexity that grows with the size of the
feature vector, hence the performance of the clustering task
can be reduced by avoiding redundancies in theV

n vector.
To this aim, we exploit the symmetric nature of the matrix
S
n and the fact that the main diagonal is composed of “1” to

reduce the length ofVn. We create the feature vector using the
elements of the lower triangular sub-matrix: the feature vector
is defined asVn = (sn

2,1, s
n
3,1, s

n
3,2, . . . , s

n
M,1, . . . , s

n
M,M−1

).
Figure 2 provides an example of creation of the feature

vector from the correlation matrix. In the provided example
M = 4.

The feature vectorVn is thus used by the clustering
algorithm as the coordinate of VMn in the feature space. We
defineC as the vector resulting form the clustering operation.
Then-th element of vectorC, cn, is the number of the cluster
to which VM n is assigned. Many algorithms are available for
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Fig. 2. Creation of feature vector

clustering, starting from the simple and widespreadk-means
to more complex kernel-based solutions, up to clustering
based on spectral analysis [21], [22]. In this proposal of a
methodology to automatically cluster similar VMs, we adopt
one of the most popular solutions for clustering, that is the k-
means algorithm [21]. The k-means algorithm core is a loop
with two steps. The first step starts with a set of random
centroids and the set of VMs to cluster, each described as
a point in a multi-dimensional feature space (the coordinates
of a VM n in the feature space are represented by its feature
vectorVn). Each VM is assigned to the cluster of the centroid
that is closer to the VM position in the feature space. In the
second step, the centroids are updated so that the centroid
coordinates are the mean value of the coordinates of the VMs
belonging to the corresponding cluster. The loop ends when
the assignments of VMs to clusters no longer change.

It is worth to note that the k-means algorithm starts with
a random set of centroids. To ensure that the k-means result
is not affected by local minimums, we iterate the k-means
multiple times, then we compare the ratio between inter-cluster
distances (sum of squares of distances between elements
belonging to different clusters) and intra-cluster distances (sum
of squares of distances between elements of the same cluster).
Finally, we select the best solution across multiple k-means
runs as the solution that maximize inter-cluster distances and
minimize intra-cluster distances. The use of the popular k-
means clustering technique leaves unaddressed the problem
of automatically identify the number of clusters to be used to
classify the considered VMs. More advanced techniques, such
as techniques based on the Spectral Analysis, can be used
to this aim [23], but we leave the comparison of different
clustering algorithms as a future work.

Once the clustering is complete, we can select some rep-
resentative VMs for each class to the purpose of simplifying
the monitoring task. Clustering algorithms such as k-means
provide as additional output the coordinates of the centroids
for each identified class. In our scenario, the representative
VMs can be selected as the VMs closest to the centroids. The
choice to consider more than one representative for each class
is due to the possibility that a selected class representative
changes its behavior with respect to the class it belongs to.
When more than one representative is used, quorum-based
techniques can be exploited to identify a misbehaving VM

within the list of representatives, as suggested in the case of
byzantine fault tolerance [24].

IV. CASE STUDY

To evaluate the results of the proposed methodology, we
consider a case study based on a dataset coming from an
enterprise datacenter supporting one customer Web-based ap-
plication deployed according to a multi-tier architecture. The
data center is composed of 10 nodes on a Blade-based system
and exploits virtualization to support the Web application. The
nodes host 110 VMs that are divided between Web servers and
back-end servers (that are DBMS).

We collect detailed data about the resource usage of every
VM for different periods of time, ranging from 5 to 180 days.
The samples are collected with a frequency of 5 minutes.
For each VM we consider 11 metrics describing the usage of
different resources (such as CPU, memory, disk, and network).
The complete list of the metrics is provided in Table I along
with a short description.

TABLE I
V IRTUAL MACHINE METRICS

Metric Description
X1 SysCallRate Rate of system calls [req/sec]
X2 CPU CPU utilization [%]
X3 DiskAvl Available disk space [%]
X4 CacheMiss Cache miss [%]
X5 Memory Physical memory utilization [%]
X6 UserMem User-space memory utilization [%]
X7 SysMem System-space memory utilization [%]
X8 PgOutRate Rate of memory pages swap-out

[pages/sec]
X9 InPktRate Rate of network incoming packets

[pkts/sec]
X10 OutPktRate Rate of network outgoing packets

[pkts/sec]
X11 ActiveProc Number of active processes

It is worth to note that, to collect data about 11 VM
metrics with a frequency of 1 sample every 5 minutes, we
need to manage a volume of data in the order of3.1 × 103

samples per day per VM. Considering a data center hosting
110 VMs, the total amount of data is in the order of3.5×105

samples per day. After the clustering, we need to continue
monitoring every 5 minutes only a few representatives per
class, while the remaining VMs can be monitored with a
coarse time granularity, for example of 1 sample every few
hours. Assuming to select 3 representatives for each of the 2
classes, the amount of data to collect after clustering is reduced
to 1.9× 104 samples per day for the class representatives; for
the remaining 104 VMs, assuming to collect 1 sample every 6
hours for VM, the data collected are reduced to4.5 × 103

samples per day. From this example we observe that our
proposal may reduce the amount of data collected by nearly
a factor of 15, from3.5× 105 to 2.35× 104.

V. EXPERIMENTAL RESULTS

Let us now describe the application of the proposed method-
ology to the considered case study. The methodology has been
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implemented using popular technologies for data management
and analysis. Specifically, we use the R language4 for the sta-
tistical analysis functions, Python5 for the task of reading and
writing data, and as a wrapper for the R core. Finally, we use
Bourne shell6 to invoke the main steps of the methodology.
These choices ensure that our proposal can be easily deployed
directly in currently available cloud infrastructures.

For each considered VM of the data set, we compute the cor-
relation between each pair of measured metrics. As discussed
in Section III, the resulting correlation matrix is used to build
a feature vector, which describes the VM behavior and is given
as input to the subsequent VM clustering step. As the k-means
algorithm starts each run with a set of randomly-generated
cluster centroids, we run the final clustering103 times, then
we select the best solutionC as described in Section III.
Finally, we compare the output of the clustering step with the
ground truth represented by the correct classification of VMs
(we consider that Web servers and DBMS servers are divided
into two different clusters) to evaluate the performance of the
methodology. Specifically, we aim to evaluate how many VMs
are correctly identified as Web and DBMS servers. To this
purpose, we consider the clusteringpurity [25], that is one
of the most popular measures for clustering evaluation. The
clustering purity is obtained by comparing the output of the
clustering algorithmC with the vectorC∗, which represents
the correct clustering solution. Purity is thus defined as:

purity =
|{cn : cn = cn∗, ∀n ∈ [1, N ]}|

|C|

where|{cn : cn = cn∗, ∀n ∈ [1, N ]}| is the number of VMs
correctly clustered and|C| = N is the number of VMs.

In our experiments, we evaluate the purity of the clustering
as a function of the length of the time series expressing
the metric measurements. Furthermore, we provide an insight
on the computational costs of the proposed methodology for
varying number of VMs and considered metrics.

A. Analysis for different time series length

The histogram in Figure 3 presents the clustering purity as
a function of the time series length. We show that, given a
very long time series, the clustering achieves perfect results,
meaning that every Web server and every DBMS is correctly
identified. On the other hand, the purity significantly decreases
as we reduce the amount of data used to create the correlation
matrix. In particular, when the time series is below 20 days,
the purity is below 0.7, reaching 0.65 for a time series of
only 5 days. From this first analysis, we observe that the
straightforward application of the methodology is likely to
provide poor results when short time series of measurements
are available. However, the capability of the methodology
to achieve acceptable performance for short time series is
particularly important for our scenario because it allows us
to reduce the period of time during which we need a fine-
grained monitoring of the VM resources. This motivates a

4R project home page: http://www.r-project.org/
5Python home page: http://www.python.org/
6Bourne shell home page: http://www.gnu.org/software/bash/

more in-depth analysis to understand how the methodology
performance can be improved for short time series of data.
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Fig. 3. Clustering purity for different time series length

B. Filtering of idle periods

Analyzing the reasons for the poor performance with time
series shorter than 20 days, we observe that some VMs present
a bimodal behavior, showing periods where the VM is mostly
idle mixed with periods where the VM is heavily utilized.
When we consider short intervals (e.g., 5 days), we notice
that some time series are composed almost exclusively by idle
periods. This is the reason for the poor performance of the
methodology: during the idle periods, the correlation between
the metrics describing the VM behavior is significantly re-
duced, thus leading to wrong clustering. To avoid this effect,
we consider a different approach, where we filter the time
series in order to extract a sequence of samples with no idle
periods in between. In Figure 4, we compare the results of our
filtered data against the time series of the same length used
previously.
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Fig. 4. Impact of idle data filtering on clustering purity

The histograms of Figure 4 clearly show the benefit derived
from the filtering of data. The clustering purity is increased
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by 14% for every considered time series length. This results
is important because it shows that applying filtering to the re-
source measurements can increase the purity of the clustering
up to values higher than 0.8 even for the shortest considered
time series.

C. Impact of metric reduction

We now aim to evaluate the impact on the methodology
performance of a reduction in the number of the metrics
considered in the description of VM behavior. The main reason
to perform this analysis is the comparison with common
state-of-the-art approaches for data center monitoring and
management [5], [6], [7], [8], which tend to consider only
few VM resources, typically CPU and memory. Specifically,
we evaluate if the metrics that are typically used in these
approaches are sufficient for our methodology to perform an
accurate clustering of VMs. We should also consider that
the choice to reduce the number of metrics fed into the
clustering algorithm could provide a twofold benefit: first,
it reduces the amount of information that is necessary to
collect before applying the methodology; second, it reduces
the computational cost of the clustering operation as it reduces
the size of the feature vectors|Vn| given as input to the final
clustering step.

In this experiment, we compare the clustering purity when
different sets of metrics are used to generate the feature vectors
for the clustering step. We compare the proposed methodology,
where all the 11 metrics are considered, with two alternatives:
the2 Metrics case, where only CPU and memory (X2 andX5

metrics in Table I, respectively) are considered as in state-of-
the-art approaches, and the4 Metrics case, where we include
also two network-related metrics measuring the rate of input
and output packets (X2, X5, X9, X10 in Table I). Figure 5
shows, for different time series lengths, the purity achievable
when considering every metric (All Metrics), only CPU and
memory (2 Metrics), and four metrics related to CPU, memory,
and network (4 Metrics). On the right side of the figure, we
report the results for the filtered time series, labeled as X-F,
where X represents the time series length expressed in number
of days.

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 30 40 60 120 180 5-F 10-F 15-F

C
lu

st
er

in
g 

P
ur

ity

Time series length [days]

All metrics
4 Metrics
2 Metrics

Fig. 5. Clustering purity for different sets of metrics

The histograms in Figure 5 show that reducing the amount
of metrics considered by the clustering is not a viable option
for VM clustering. Using only four metrics leads to a per-
formance degradation up to 25.6% and 17.6% for unfiltered
and filtered time series, respectively. Considering the case
where only two metrics are taken into account, the clustering
performance is even worse, especially because the penalty
in the achieved purity is more evident for the shortest time
series, with a decrease up to 21.5% and 33.8% for unfiltered
and filtered time series, respectively. Furthermore, when only
CPU and memory are considered the application of filtering
techniques to short metric time series does not lead to any
improvement of the clustering performance with respect to
the unfiltered case. This result confirms our claim that for
clustering VMs on the basis of similar behaviors we need
to consider multiple metrics, differently from common ap-
proaches for data center monitoring and management, where
only CPU and memory are typically considered.

D. Evaluation of methodology computational cost

As reducing the number of considered metrics is not a viable
option for VMs clustering, we aim to evaluate the computa-
tional cost of the proposed methodology as the number of VMs
grows in order to investigate the scalability of our approach.
To this purpose, we measure the execution times of the two
steps of the methodology on an Intel Xeon 2GHz node.

We observe that the time required for the first step of the
methodology, which basically computes the correlation matrix
describing the VM behavior, always remains in the order of
few seconds: it reaches 3 seconds for time series of 180 days
and 11 metrics, which is the most expensive case from the
computational point of view for this step. As regards the
second step of the methodology, we should consider that the
computational cost of the clustering phase depends on two
elements: the number of considered metrics, which determines
the length of the feature vectors given in input to the clustering
algorithm, and the number of VMs to cluster. Figure 6 shows
the execution times of the clustering step as a function of the
number of metrics and of VMs to cluster, considering filtered
metric time series of 15 days. In particular, we consider a
number of metrics ranging from 2 to 11 and a number of
VMs increasing from 10 to 110.

The graph shows a linear growth of the time required for
clustering as the number of VMs increases, while the growth of
clustering time as a function of the number of metrics is super-
linear. This result is consistent with the theoretic computational
complexity of the k-means algorithm [26], which is in the
orderO(ICNV ), whereI is the number of iteration of the
clustering,C is the number of clusters,N is the number
of VMs, andV is the length of the feature vectors used to
describe each VM. The length of the feature vectorV has
a quadratic dependence from the number of metricsM , thus
explaining the super-linear growth of the clustering time with
respect toM .

We also evaluate the purity achieved for varying metric and
VM number. We observe that the purity is mostly unaffected
by the number of VMs to cluster, ranging from0.83 to 0.85
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when all the metrics are considered. On the other hand, purity
is highly affected by the the number of considered metrics,
as discussed in Section V-C, with values ranging from 0.84
for the whole set of metrics to 0.57 for the case of only two
metrics. The proposed analysis of computational costs proves
that our methodology for clustering VMs on the basis of their
resource usage is scalable and does not pose performance issue
for the applicability even in the case of large data centers.

VI. CONCLUSIONS AND FUTURE WORK

Modern data centers supporting Infrastructure as a Service
cloud present major challenges in terms of scalability issues
for the monitoring and management of the system resources.
In this paper we propose a methodology for automatically
clustering VMs into classes sharing similar behavior with
the aim to improve the scalability of data center monitoring
and management. To capture the VM behavior, the proposed
methodology exploits the correlation among the usage of
multiple resources, ranging from CPU to storage and network.
The application of the proposed methodology to a real data
center hosting multi-tier Web applications shows that the
purity of VMs clustering ranges between 100% and 80% for
every considered scenario and can reduce the amount of data
collected by a factor of 15.

This study is just a first step towards the definition of
a general methodology for the automated classification of
VMs in cloud data centers. As a future work we plan to
apply our methodology to a more complex scenario where
the data center hosts not only two classes of VMs but several
different applications. In this scenario, the methodology will
be extended to automatically determine the number of classes
to identify during the clustering phase. Furthermore, we intend
to investigate the use of alternative techniques to determine the
similarity of VMs behavior.
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