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Abstract—Internet architecture is facing at least three major
challenges. First, it is running out of IPv4 addresses. IPv6 offers
a long-term solution to the problem by offering a vast amount of
addresses but is neither supported widely by networking software
nor has been deployed widely in different networks. Second,
end-to-end connectivity is broken by the introduction of NATs,
originally invented to circumvent the IPv4 address depletion.
Third, the Internet architecture lacks a mechanism that supports
end-host mobility and multihoming in a coherent way between
IPv4 and IPv6 networks.

We argue that an identifier-locator split can solve these three
problems based on our experimentation with the Host Identity
Protocol. The split separates upper layer identifiers from lower
network layer identifiers, thus enabling network-location and IP-
version independent applications.

Our contribution consists of recommendations to the present
HIP standards to utilize cross-family mobility more efficiently
based on our implementation experiences. To the best of our
knowledge we are also the first ones to show a performance
evaluation of HIP-based cross-family handovers.

I. INTRODUCTION

While IPv6 address space is drastically larger than for IPv4,
IPv6 has not experienced a wide-scale deployment yet. A “flag
day” is not practically feasible and therefore the protocols
have a co-exist for a long time. The concurrent use of both
addressing families causes problems for both network software
and management due to non-uniform addressing. Existing
legacy software is hard-coded to use IPv4 addresses and some
of it can never be updated to support IPv6 due to its proprietary
nature. The fact that IPv4 address space is almost exhausted
may enforce new networks to employ only IPv6 adddresses.
As a consequence, proprietary network software may have
trouble to access the Internet in the future.

End-to-end communication between two hosts is not guar-
anteed anymore even with protocols specifically designed for
traversing NATs. To make things even more complicated, end-
host mobility arises as a new requirement for the Internet.
Users are used to staying continuously in contact with each
other using cellular phones and may also want the same
with other portable devices. Users may want to benefit from
access technologies, such as WLAN and 3G, available on
phones and other devices. Multiaccess is desirable for users,
for example, to reduce monetary costs, to assess benefits from
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device proximity, or to obtain a faster network connection.
Even though cellular networks support mobility transparently,
the same does not apply globally to WLAN-based mobility.

In the current Internet, an IP address both identifies and
locates a host. However, this binding breaks when the address
of the host changes. This is a problem both for relocating
the mobile host and for maintaining long-term transport layer
connections, which break upon address changes.

The identifier-locator split decouples the host identifier from
its topological location. The new host identifier is present
at the transport and upper layers to provide applications a
fixed identifier independent of network location. The identifier-
locator split introduces a layer between the transport and the
network layers, and translates the identifiers dynamically into
routable addresses and vice versa.

The concept of the Host Identity Protocol (HIP) [1], [2]
is based on identity-locator split. It provides security, global
end-host mobility, multihoming, NAT traversal, and Ren-
dezvous/Relay services. The HIP specification [3] describes
end-host mobility and multihoming but leaves handovers
across IP families for further study. In this paper, we describe
HIP-based cross-family handovers based on our implementa-
tion experimentation and performance evaluation. Compared
to previous work [4], [5], [6], we focus on Linux rather than
the BSD networking stack.

We proceed as follows in the rest of paper. In Section II, we
describe HIP base exchange and mobility management as well
as summarize the related work. In Section III, we outline the
shortcomings in current HIP mobility specifications, propose
a simple solution and share our experience in implementing
cross-family handovers with Linux networking stack. We eval-
uate performance of intra-family and cross-family handovers
for TCP flows in Section IV. Section V concludes the paper
with a summary of our contributions.

II. BACKGROUND

Host Identity Protocol (HIP) [1], [7] introduces a cryp-
tographic namespace based on public-private key pairs. An
identifier in the namespace is the public key of a public-private
key that the end-host creates for itself. This identifier is called
Host Identifier (HI).

The protocol employs two fixed-length representations of
HIs because varying length identifiers are inconvenient in
networking APIs for existing legacy stacks and protocol header
encodings [8]. The first representation type is Host Identity
Tag (HIT). It has the same size as an IPv6 address. The HIT
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is generated by hashing the HI and concatenating it with an
ORCHID prefix (2001:10::/28) [9]. The second representation
type is Local Scope Identifier (LSI) that is the size of an IPv4
address to support legacy applications. LSIs are valid only
within the local host due to high collision probability of two
hosts choosing the same LSI.

To use HITs and LSIs, an application uses the existing
system resolver to resolve names to HITs and IP addresses
using host files, DNS [10] or Distributed Hash Table [11].
When the application uses a HIT or a LSI to establish new
outgoing communications, IPsec layer intercepts the packet
and ask HIP layer to trigger base exchange (BEX) to set up
symmetric keys for the IPsec tunnel.

HIP can be deployed in two ways, non-opportunistic and
opportunistic. In non-opportunistic way HIP needs infrastruc-
ture to map names to the identifiers and identifiers to routable
IP addresses (locators). HIP specifies DNS extensions [10] for
this purpose and a service using the OpenDHT [11] for home
users who cannot publish their identifiers on DNS servers. In
the opportunistic mode, the Initiator of the communications
makes a leap of faith and tries to initiate communication
solely using a locator without knowing Responder’s identifier
beforehand [12].

A. Base Exchange

HIP Base EXchange (BEX) [1] is a secure Diffie-Hellman
exchange that authenticates the end-hosts to each other using
their public keys, and negotiates algorithms and symmetric
keys for IPsec ESP [13]. The BEX is protected against replay
attacks and authenticated with public-key signatures.

In HIP terminology, the client-side is referred as Initiator
and the server-side as Responder. The BEX consists of four
messages (Figure 1 illustrates a base exchange). First, the
Initiator starts the base exchange with an I1 packet (step 1
in Fig. 1). Upon receiving of the I1, the responder selects a
precomputed R1 containing a computational puzzle (step 2 in
Fig. 1). Second, the Responder replies with its public key and
Diffie-Hellman key material in an R1 (step 3 in Fig. 1). After
receiving of the R1, the Initiator checks the validity of the
packet and solves the computation puzzle in the received R1
(steps 4 and 5 in Fig. 1). Third, the Initiator responds with
an I2 packet that contains its public key and Diffie-Hellman
key material (step 6 and 7 in Fig. 1). Fourth, the Responder
concludes the BEX with an R2 packet if the solution in the
received I2 control packet was correct (step 8, 9, and 10 in
Fig. 1. After this, the HIP state (HIP association) can transition
to ESTABLISHED state on both sides. The end-hosts have
agreed on SPI numbers and symmetric keys for IPsec ESP.
Based on the exchanged keying material, the end-hosts create
IPsec security associations (steps 11 and 12 in Fig. 1).

After the BEX is completed successfully and both end-hosts
have reached ESTABLISHED state, the two end-hosts can
commence to send upper-layer traffic to each other over the
encrypted ESP tunnel. From here on, state created during the
BEX is called a HIP Association (HA).

After the BEX, the end-hosts lose their roles as Initiator
and Responder because there is no need for such separation.

8) Check sig

Initiator

1) I1

3) R1: puzzle, D−H, key, sig

5) Solve puzzle
4) Check sig

9) Check solution

11) Compute D−H

10) R2: sig

and create SA

Responder

12) Create SA

2) Select precomputed R1

7) Compute D−H

6) I2: solution, D−H, key, sig

Fig. 1. HIP Base Exchange.

Now, the end-hosts can process mobility related packets which
requires a different kind of state handling as discussed in the
next section.

B. Mobility Management

This section summarizes HIP-based mobility as described
in RFC5206 [3]. We use Mobile IP terminology [14], [15]
for denoting two communicating end-hosts, i.e., Mobile Node
is a moving node and Correspondent Node is an immobile
node. It should be noticed that the terminology can a bit
misleading because HIP architecture allows both hosts to
move simultaneously [16]. We use the HIP state machine
terminology [1], [3] extensively here. We also refer to routable
IP addresses as locators.

The core idea in HIP-based mobility is that when a mobile
node detects a change in its locators, it sends its complete
new set of locators to all of its correspondent nodes. A
correspondent node receives the new locator set and verifies
each address in the set for reachability by sending an UPDATE
packet with a random nonce (echo request) to the mobile
node. The mobile node responds with a packet containing
the same nonce (echo response). This procedure allows the
correspondent node to securely verify that the mobile node is
in the location it claims to be. This procedure is also referred
as the return routability test. It should be noticed that there
are no separate return routability tests for addresses used in
the BEX because the BEX itself acts as an implicit return
routability test.

In HIP-based mobility, a locator pair has ACTIVE, DEP-
RECATED and UNVERIFIED states. Fig. 2 illustrates HIP-
based mobility from the view point of locator pair state. For
simplicity, retransmissions and optional negotiation of new D-
H key material are excluded from the figure.

When the mobile node moves (in step 1, Figure 2), its
locators change and it builds a LOCATOR parameter that
contains the new locator set. The mobile node can exclude
some locators from the LOCATOR parameter according to its
local policies. For example, mobile node might not advertise
expensive links for all correspondent nodes, or it might exclude
some locators for privacy reasons. The corresponding node
transitions the state of locator to DEPRECATED when the
mobile node excludes the particular locator from its locator
set (not shown in Figure 2). In step 2, the mobile node sends
an initial UPDATE with the LOCATOR parameter that lists

2 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 6, NO. 1, MARCH 2010



8) ESP

to all received locators

MN CNs

1) Loses or obtains
an address

2) UPDATE: LOCATOR

5) Build E_RS

6) UPDATE: E_RS

7) Check E_RS against

sent E_RQ for this 

locator and if correct

mark locator as ACTIVE
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4) UPDATE: E_RQ

Fig. 2. Return routability tests and locator state.

the new locator set which the mobile node publishes to all of
its correspondent nodes.

Now, the correspondent node receives the UPDATE packet
and validates the packet by verifying packet checksum, cor-
rectness of the signature, sequence number and comparison of
SPI number with existing SAs (step 3 in Figure 2). Then, the
correspondent node processes the LOCATOR parameter from
the UPDATE packet.

The correspondent node marks all received locators as
UNVERIFIED and deprecates existing locators excluded from
the new locator set (not shown in Figure 2). Next, the
correspondent node builds an UPDATE packet containing an
ECHO_REQUEST parameter (E_RQ in Figure 2) containing
a random nonce value and sends it to mobile node’s locator
to be tested for reachability (step 4). The correspondent node
repeats this for all of the locators contained in the locator set
of the mobile node.

In step 5, the mobile node receives the packet and echoes
the same nonce in an ECHO_RESPONSE parameter to the
correspondent node in step 6. The correspondent node receives
the UPDATE packet and validates its integrity and nonce in
step 7. The correspondent node transitions now the state of the
peer locator to ACTIVE. If the mobile node failed to respond
within a certain time, the correspondent node would deprecate
the locator and remove the locator from its peer locator list.

It should be noticed that locators can be present already in
the base exchange. When a locator has a so called preferred
bit set, the sender of the locator enforces the recipient to use a
specific locator for HIP-related communications. For example,
this can be used to employ load balancing for HIP.

C. Related Work

In Mobile IP [14], [17], each node has a home address that
identifies the node independently of its location. When the
mobile is not located in its home address, the mobile node
informs its Home Agent (HA) on its current address (Care-of-
Address). Datagrams destined to the mobile node are tunneled
to its current address through its home agent. MIPv6 includes
an optimization that allows two end-hosts of different families
to route MIPv6-related traffic directly between them without
such triangular routing through the home agent. IPsec and
MOBIKE [18] [19] can be used to protect Mobile IP traffic.

The MOBIKE protocol offers mobility functionality similar
as in HIP. For example, the LOCATOR is similar to AD-
DITIONAL_*_ADDRESS (where * is IPV4 or IPV6) and
the return routability test is similar as in HIP. The MOBIKE
standards allow the mobile node to send additional addresses
of different family than those currently in use [20].

A MIPv4 extension [21] introduces dual stack mobility by
tunneling IPv6 over IPv4. This approach needs dual stack HA
and triangular routing to offer movement between IPv4 and
dual stack networks. Cross-family handovers, where nodes
move from IPv4 network to IPv6 networks or vice versa, is
left somewhat unclear in the specification.

Teredo is an IPv6-over-IPv4 tunneling protocol that includes
a mechanism to avoid triangular routing [22]. Teredo employs
UDP encapsulation and encodes additional information into
the IPv6 addresses. Teredo defines a dedicated IPv6 prefix
(2001:0::/32) for the tunnel which can be used by any IPv6-
capable networking software.

SHIM6 [23] is a layer 3 multihoming protocol that offers
locator agility for the transport protocols. SHIM6 has multiple
similarities with HIP. For example, the protocol encodings are
identical and the initial handshake are similar. At the time of
writing SHIM6 did not have specification for the usage of
IPv4. In our opinion, our work with cross-family handovers
is beneficial also for the SHIM6, when the usage of IPv4 is
standardized for SHIM6.

Jokela et al. [24] first discussed about cross-family han-
dovers in HIP but showed no performance or implementation
evaluation. Their primary environment was FreeBSD, while
we have implemented cross-family handovers for the Linux
networking stack. Furthermore, we specifically focus on the
fault tolerance aspects of handovers rather than load balancing.

III. CROSS-FAMILY IPV4/IPV6 HANDOVERS

A. Scope of HIP Handovers

In this paper, a handover refers to a change in the locator
set of an end-host. When the locator set changes, the end-host
can perform a handover procedure to sustain HIP and upper
layer connectivity. A vertical handover describes end-host
movement between different link-layer access technologies,
such as WLAN and UMTS, and a horizontal handover refers
to movement within the same type of access technology de-
vices. HIP can support both vertical and horizontal handovers
because it operates above link layer. The focus of this paper
is on end-to-end handovers even though HIP facilitates also
end-to-middle operation using a HIP proxy [25].

In a Make-Before-Break (MBB) handover an end-host ob-
tains a new locator before it loses its current address. In a
Break-Before-Make (BBM) handover, the end-host loses its
current address before it obtains a new address. The latter
results in a gap in connectivity during which the end-host is
not reachable, which further throttles existing connections at
the transport layer.

B. Cross-Family Handovers

HIP specifications [1], [3] offer a possibility to include
LOCATOR parameters in the R1 and I2 packets. However,
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these two documents explain only the load balancing case with
the preferred bit set. When a host sets the preferred locator, its
peer is forced to switch to it immediately. We argue that the
preferred bit complicates handling of alternative locators and
a host should prefer sending its locators in the base exchange
with all preferred bits unset.

When a host receives locators with all preferred bits unset,
they should be considered as alternative addresses for the peer.
The host does not have to use these locators immediately,
but can use them for the purposes of fault tolerance or load
balancing. This aids also cross-family handovers because then
two communicating hosts know all the available addresses of
each other.

At the Responder side, the LOCATOR parameter could be
placed into the R2 packet instead of the R1. The LOCATOR in
the R2 packet facilitates mobile devices to serve as Responders
better. For instance, a mobile node could disable an expensive
link until the base exchange completes. Also, this is beneficial
for a mobile node employing precreated pools of R1 packets.
As the R1 signature covers the Responder’s IP address, it does
not have to recreate its pools upon address changes.

Using the LOCATOR parameter in the base exchange
benefits also HIP NAT traversal [26] which forbids preferred
bits in NATted environments and assumes the LOCATOR to be
placed in the R2 packet. De la Oliva et al. [27] also proposed a
scheme for sending all the locators early in the communication
in order to improve fault tolerance.

C. Peer Locator Learning

A host can delay or decline altogether to advertise its
additional locators to its peers to e.g. avoid exposing of
sensitive topology information. Alternatively, the end-host can
even be unaware of some its locators in NATted environments
[26] where the peers of the end-host observe the address of
a NAT middlebox and not the actual end-host address. In
either case, a correspondent node should be able to inform
about its additional locators after the base exchange without
sending additional locators. As an example, let us consider
that two hosts have established a base exchange over IPv6
without exchanging additional locators. Then, one of the hosts
becomes mobile and moves to an IPv4-only network. The
mobile node informs its correspondent node about its new
location with an UPDATE. Now, the correspondent node can
choose to break connectivity for privacy reasons or send an
echo request from its previously unadvertised IPv4 address.

The use of unadvertized addresses is not defined in the
HIP mobility specification [3]. To achieve better flexibility,
we propose that correspondent node should be able to send
echo requests from previously unadvertised addresses. Also,
the mobile node should reply to them with echo responses.
We refer this as peer locator learning.

As a second example of scenario, NAT middleboxes alter
source addresses of UDP encapsulated HIP packets and the
end-host sending the packets may be unaware of this. As a
consequence, the recipient learns a new address of the origi-
nating host that was not advertised in the included LOCATOR
parameter.

Peer locator learning is further depicted in Figure 3. In step
1, the MN changes its attachment point to the network and
obtains one IPv4 address and one IPv6 address. In step 2 MN
sends the new locator set to its CN. Upon receiving the locator
set, the CN starts the return routability tests and sends one echo
request to the IPv4 address and one echo request to the IPv6
address. When the MN receives the echo request from its IPv4
address, it checks the locator lists it has for the active CNs.
The MN notices that the locator is already known and sends an
echo response to the CN (see Fig. 3 step 3). Upon receiving the
echo request from its IPv6 locator, the MN checks its locator
lists for the active CNs and does not find the used locator
(see Fig. 3 step 4). Finally, MN adds this locator to the list
and starts connectivity tests for the locator, and sends an echo
response to the CN (step 5 in Fig. 3).

Peer locator learning is also beneficial in cases such as
simultaneous end-host mobility. In this case both end-hosts
move simultaneously and lose connectivity due to the fact that
the end-hosts do not know where to send the UPDATE control
packet. This is generally solved with third party rendezvous
service as described by Hobaya et al. [16].

In their paper, Hobaya et al. also describe a problem
where the simultaneous UPDATE procedures of the end-hosts
are interleaved and renders the security associations in an
asymmetric state. Hobaya et al. provide a solution for this
problem by enforcing UPDATE retransmissions. In their use
scenarios, only one of the end-hosts is able to send ESP traffic
to the other but not vice versa because the other end-host
mistakenly cleared its retransmission buffers. In contrast, with
peer locator learning, the end-host unable to the send ESP
data can find a new locator from the IP header of the received
UPDATE control packet. After the end-host has discovered the
new address, it could trigger the return routability tests and, as
a result, both of the nodes could continue communicating. We
believe that our peer locator learning technique would result
in faster handovers than UPDATE retransmission as proposed
by Hobaya et al.

D. Teredo Experiments

We wanted to validate that our implementation works in
the presence of NATs with Teredo. In general, basic Teredo-
based connectivity was successful in our experimentation. We
discovered some problems as well, for example, when the
mobile node moved into an IPv6-only network and could not
derive a Teredo address in the absence of an IPv4 address.
Another problem was that the mobile node sent an UPDATE
packet to the Teredo address of the correspondent node, but the
local router could not route the non-routable Teredo address.
In order to work, this case would have required a Teredo relay
in the network of the mobile node or a global IPv6 address
for the corresponding node.

Miredo, the Teredo implementation for Linux, decreased
the throughput due to the tunneling overhead and unoptimized
implementation. Especially in make-before-break handovers, it
took 30 seconds at the maximum for the Miredo software to
notice a mobility event that required changing the topology-
dependent Teredo address. HIP daemon reacted instantly by
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Fig. 3. Peer locator learning example case, where the end-hosts exchange no LOCATORs in the BEX and the MN learns the IPv6 address of its CN from
the return routability tests

sending an UPDATE packet advertising the old but, unfor-
tunately, still invalid Teredo address. As a summary, there is
room for performance improvements in the Miredo implemen-
tation.

E. Implementation of Cross-Family Handovers

This section discusses some of the issues we faced when
implementing cross-family handovers with HIP. We chose the
HIP for Linux (HIPL) implementation [28] as our experimen-
tation tool. Most of the changes involved only the UPDATE
packet parameters. Only minor changes were required in the
processing of R1 and I2 packets.

To make cross-family handovers possible, we implemented
a new function to uniformly build LOCATOR parameters
containing all the locators of the local host. Modifications also
included introducing of LOCATOR parameter to R1 and I2
control packets.

The challenges we faced ranged from trivial to more com-
plicated. A trivial problem was that base exchanges with
locators triggered return routability tests before the state was
ESTABLISHED on both sides. As a solution, we had to delay
the triggering of address verifications (ECHO_REQUESTS) to
avoid the state machine to reject the early return routability
tests. A trickier problem originated from the sockets API that
has separate raw sockets for IPv4 and IPv6. The HIP software
needs the raw sockets are needed for sending and receiving
of HIP control packets. We experienced a problem where one
of the sockets included a base exchange packet and the other
an UPDATE packet. We had to change the implementation
to handle the packets in the correct order. This was just an
optimization to the handovers because the problem could also
be solved by just dropping the UPDATE packet and relying
on retransmissions of the mobile node.

Performance measurements described in the Section IV
revealed features in HIPL that were too aggressive in their

behavior and did not conform to the specifications.
First, the MN triggered the first UPDATE control packet

immediately after obtaining a new address. This resulted in an
ICMP message informing the MN that the CN is unreachable
because the network interface was not fully initialized. As a
result from the destination unreachable error, the implementa-
tion queued the UPDATE control packet to the retransmission
queue for ten seconds. It would have been beneficial to start
with a low interval for the retransmission and increase it
exponentially as described in the specification [1]. This is also
discussed by Shütz et al. [29].

Second, solely relying to the address notifications from
the kernel, i.e. netlink events, as the only indication for a
handover, and, reacting too aggressively to the events, resulted
in excess UPDATE control packets. This situation is depicted
in Figure 4. For example, in a case where the MN has
two addresses, reacting instantly on netlink messages would
unecessarily result in multiple UPDATE control packets. When
the interface goes down, the addresses are deleted one by one
and this results in two UPDATE control packets. One contains
a LOCATOR parameter with one locator (see Fig. 4 step 1)
and the second contains zero addresses (see Fig. 4 step 2),
for which there is no guarantees that it can be event sent.
As a response to this, the CN tests at least the origin of the
UPDATE packet for return routability. When the CN obtains
the new attachment point and its interfaces are brought up, the
kernel informs about the new addresses (two in the example),
the kernel informs about the addresses one at a time that will
result in two more UPDATE control packets (see Fig. 4 steps
3 and 4). The CN will unoptimally trigger at least three more
return routability tests despite that the address used to send
the previous control packet (UPDATE) would not have to be
tested again.

To sum up, the previous case leads to MN unoptimally
sending three update packets to the CN which triggers four
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Fig. 4. Results of triggering the handover too fast after a change in the addresses on an interface.

return routability tests. However, it would suffice for the MN
to send a single UPDATE control packet and the CN to trigger
return routability tests for the addresses found in the locator
set contained in the UPDATE packet. As a straw-man solution
for this, we delayed the handover so that all the consequtive
netlink events could be handled as a single event. However,
even this is not the most optimal solution because it increases
the latency of the handover in overall, while in some cases,
such as the second case described in this section reacting to
the netlink messages decreases the handover latency. Further,
triggering of handovers should be triggered also monitoring of
the end-to-end connectivity as we describe later in this section.

Figure 5 depicts the growth of the TCP sequence number
during a BBM handover. The base exchange is concluded at
time T1. MN loses network connectivity at T2 and regains it
at T3. At point of time T4 the interfaces are fully operational
and MN triggers the HIP update procedure. We observed that,
after the update procedure at T4, there is some extra latency
before the MN sent the first IPSec ESP packet at T5.

This latency varied so that it may even out the difference in
the overall latency presented in Section IV in Tables I and II.
This conforms to the findings of Shütz et al. [29] where
they found a similar period of inactivity after a period of
disconnectivity. According to them, TCP waits for the current
retransmission timeout to expire while the new address is
obtained or the connectivity is otherwise restored before TCP
tries to retransmit. Shütz et al. [29] suggest an improvement to
this situation. Their solution also tries to minimize the period
of inactivity by introducing a more aggressive way to enforce
the retransmissions after an end-host receives or sends the last
echo response in the update procedure. In our opinion, this
feature is a welcome improvement to decrease the handover
latency.

To improve the chances that transport layer survives connec-

tivity loss automatically, we implemented a heartbeat probe.
The heartbeat is used to monitor the connectivity between the
hosts. The heartbeat is essentially an ICMPv6 messages inside
the ESP tunnel between two end-hosts. As a naive approxima-
tion, the implementation triggers the update procedure after n
consecutive heartbeats are lost. Care has to be taken to avoid
choosing a too long interval for the heartbeat to avoid TCP
aborting the connection. Also, intermediary hosts, such as NAT
boxes, may time out an idle ESP tunnel when the heartbeat
interval is too long.

TimeT1 T2 T3 T4 T5

Sequence #

Fig. 5. Sequence number generation during a BBM handover.

For the heartbeats to work, the end-host need to discover
more than one address of its peer. An advantage in using
ICMPv6 packets to implement the heartbeat is the fact that
the heartbeat mechanism must be supported only on the end-
host using the heartbeat. The end-host on the other side of the
tunnel does not have to trigger heartbeats at all. It merely has
to support replying to ICMPv6 messages inside the tunnel.

The implementation currently sends the heartbeat on regular
intervals. It could be optimized to send only when the IPsec
tunnel is idle. However, sending heartbeats all the time and
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gathering the monitoring results from them is a better choice
for multihoming cases as explained by Gurtov et al. [30].

IV. PERFORMANCE MEASUREMENTS

In this section, we show the performance of cross-family
handovers based on our implementation. To avoid issues
with TCP timeouts documented in detail elsewhere [29], we
primarily measured UDP throughput.

We conducted the measurements on two identical laptops
(Intel Core 2, 2 GHz CPU). We concentrated on the processing
cost by minimizing the network latency (RTT 0.484 ± 0.143
ms), and therefore the laptops were connected via single
Gigabit router to each other. Both machines were running
Ubuntu Jaunty Jackalope Linux with 2.6.28 kernel and HIPL
release 1.0.3.

We triggered handovers using ip command from ip-tools
package that allows manipulation of the network interfaces.
In the test cases the CN sent UDP packets continuously to the
MN. We used Wireshark to capture the traffic at the MN and
to analyze the gathered data. The handover was measured to
begin from MN sending of the first UPDATE control packet
with LOCATOR parameter (step 2 in Figure 2) and to cease
when the MN received the first ESP packet on the new address
(step 8 in Figure 2).

Tables I and II show that cross-family Make Before Break
(MBB) and Break Before Make (BBM) handovers tend to last
8 milliseconds longer than handovers where the family remains
unchanged.

TABLE I
DURATIONS OF INTRA-FAMILY HANDOVERS.

Direction Duration, ms
MBB IPv4 to IPv4 53± 12
MBB IPv6 to IPv6 56± 6
BBM IPv4 to IPv4 41± 12
BBM IPv6 to IPv6 40± 6

Total average 47± 10

TABLE II
DURATIONS OF CROSS-FAMILY HANDOVERS.

Direction Duration, ms
MBB IPv4 to IPv6 56± 6
MBB IPv6 to IPv4 53± 16
BBM IPv4 to IPv6 56± 8
BBM IPv6 to IPv4 54± 11

Total average 55± 11

We observed a delay of 10 ms (±1) from MN sending
the UPDATE control packet with LOCATOR parameter and
receiving the UPDATE control packet with ECHO_REQUEST
(steps 2 - 4 in Figure 2). Handling of the ECHO_REQUEST
and creation of the related SAs took 19 ms (±5) in intra-family
handovers and 40 ms (±8) in cross-family handovers (step
5 in Figure 2) at the MN. The delay between MN sending
the ECHO_RESPONSE and receiving the first ESP packet
(steps 6-8 in Figure 2) was 6 ms (±2). Most of the processing
time was spent in processing of the UPDATE control packet
with ECHO_REQUEST parameter as Pääkkönen et al. [31]

have also observed. We suspect that the processing time was
doubled in cross-family handovers due to unoptimized code.

In Figures 6 and 7, we depict the difference of moving from
IPv4 to IPv4 and from IPv4 to IPv6 in the BBM handover case.
The mobile node changes its network point of attachment and
obtains a new locator (see Fig. 6 step 1 and Fig. 7 step 1).
The major difference is the use of ARP messaging in IPv4
(see Fig. 6 steps 2 and 4) versus ICMPv6 neighbor discovery
(see Fig. 7 step 2) in IPv6.

Operationally, ARP and ICMPv6 neighbor discovery do not
differ much. In ARP, a end-host broadcasts a “Who has”
message to the network. The message contains the target
IP address. The end-host possessing the address responds
informing that the queried IP address is located at the link-
local address of the end-host. In IPv6 neighbor discovery, the
end-host first announces to the nearest router that it listens
to IPv6 multicasts and excludes its own address from the
multicasts it wants to receive. This way the IPv6 router
discovers the presence of multicast listeners on its directly
attached links [32]. Then, the end-host broadcasts a neighbor
solicitation message asking who has the target IPv6 address.
The end-host possessing the IPv6 address answers with a
neighbor advertisement containing the link-local address of
the end-host.

In intra-family case with IPv4, the peer locator was discov-
ered after the UPDATE procedure (see Fig. 6 step 3). Intra-
family handover with IPv6 or cross-family handover towards
IPv6 did not incur neighbor discovery after the UPDATE
procedure (see Fig. 7 step 3). We observed that in cross-family
handovers from IPv4 to IPv6, the interface kept broadcasting
ARP queries on the previously used IPv4 addresses while MN
did not have a working IPv4 address anymore. In our tests,
this behavior resulted in circa five messages (see Fig. 7 step
4), after which the ESP traffic started flowing again (see Fig. 7
step 5).

After the handover, TCP had to retransmit some of the data
because some of it was received out-of-order. In overall, the
amount of TCP retransmits did not differ in intra-family or
cross-family handovers. The similar amounts of retransmitted
TCP segments, in the handovers, can be also explained. TCP
handles the retransmissions inside the ESP tunnel. TCP is
not affected by the change of the address family, i.e., TCP
is connected to a HIT and the handover is transparent to TCP.

We observed the Credit Based Authorization (CBA, see [3]
Section 3.3.1) operational in some intra-family cases. CBA
allows ESP traffic to commence before the completion of
return routability tests. We noticed that the CBA was too
aggressive and resulted in ICMP reroute messages. We also
performed the same tests with UDP which did not show any
significant difference in the amount of lost packets.

V. CONCLUSIONS AND FUTURE WORK

Cross-family handovers can be used as an IPv6 transition
mechanism now that the IPv4 address space is almost depleted.
In this paper, we have shown three key contributions. 1) We
described a shortcoming in current HIP mobility specifications
preventing cross-family handovers and suggested a simple
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Fig. 6. An intra-family Break Before Make handover from IPv4 to IPv4 with ARP traffic before and after the handover.
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Fig. 7. Cross-family Break Before Make handover from IPv4 to IPv6 with the ICMPv6 neighbor discovery traffic and with ARP messages for the lost IPv4
connectivity.

solution to it. 2) Our performance evaluation on our imple-
mentation indicates that HIP-based cross-family handovers
perform as well as intra-family handovers. 3) Our approach
is compatible with NATted networks because it can make use
of Teredo-based end-to-end tunnels.

As future work we intend to research solutions for triggering
the handovers and find an optimal solution for the triggers. As
a result of our findings, the HIPL implementation has a new
mobility architecture which we plan to measure and evaluate
further.
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