18 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 6, NO. 1, MARCH 2010

Mapping SDL Specification Fundamentals to Core
SDL Ontology

Marina Bagi¢ Babac and Marijan Kunstié

Abstract—This paper gives a contribution in the efforts of
Semantic web ontology development. We have developed the
core ontology for Specification and Description Language (SDL),
an object-oriented, formal language defined by the International
Telecommunications Union - Telecommunications Standardiza-
tion Sector (ITU-T) as recommendation Z.100. The language is
intended for the specification of complex, event-driven, real-time,
and interactive applications involving many concurrent activities
that communicate using discrete signals.

Using SDL formal model for system specification we bridge the
gap between ideas in our minds and the actual implementation
of the system. Being visually appealing SDL provides us with
a simple tool for communication either between the software
developers or between non-experts without advanced engineering
skills.

In this paper we propose the ontology for the basic SDL system
and process elements. We also propose a formal framework of
SDL Markup Language as a medium for translating SDL model
to SDL ontology.

Index Terms—Telecommunications Process Specification, Spec-
ification and Description Language (SDL), SDL Ontology, SDL
Markup Language.

I. INTRODUCTION

Telecommunications companies are mostly focused on the
activities that create added values to the services for their
customers. Therefore, the business process modeling has be-
come a major focus of attention in business analysis and
information systems engineering. Process models can be used
for analysis, design, simulation and automated execution of
business processes. There are various software tools for model-
ing, simulating and execution of business processes. Also, dif-
ferent process modeling languages have been developed, e.g.
Business Modeling Language, Event-driven Process Chains,
IDEF3, Specification and Description Language, Role-Activity
Diagram, Task Structures, Unified Modeling Language, etc.

The motivation for this paper lies in the authors belief that
a semantically well-defined formal model for the specification
of telecommunications services is a good starting point in
the process of developing a telecommunications software.
Specifications are easily defined via process languages such
as process algebra or another (graphical or not, formal or
informal) languages or frameworks which rely on Finite
State Machine model. These are, but not limited to, CCS,

Manuscript received November 11, 2009; and revised January 15, 2010.

This work was carried out within research project 036-0362027-1640
”Knowledge-based network and service management”, supported by the
Ministry of Science, Education and Sports of the Republic of Croatia.

Authors are with the Faculty of Electrical Engineering and Computing,
University of Zagreb, ({marina.bagic, marijan kunstic} @fer.hr).

Original scientific paper

CSP, UML, different dialects of Petri nets (coloured, timed,
object-oriented), etc. We have chosen SDL, Specification and
Description Language for a few reasons. First of all, it is
a standardized language by the International Telecommuni-
cations Union - Telecommunications Standardization Sector
(ITU-T) as Z.100 recommendation and is defined for the
specification and description of telecommunications services
and systems which are of our particular interest. Then, it has
both graphical and textual notation enabling the non-experts
in the engineering and software development to easily follow
the workflow of a telecommunications processes.

Furthermore, we find SDL suitable not only for the software
specification and design phase, but also for the simulation
and testing of implemented system. As it relies on finite
state automata, we find it easily translated to process algebra
languages which have a strong support for model checking.

Inspired with the idea of Semantic Web [14] and triggered
by Petri net ontology development [8], we have come to
the idea of SDL ontology development. As the Semantic
Web is the Web of data that is understandable by computers,
we have proposed SDL ontology concept, but also the idea
how to use this ontology without advanced knowledge of
either the Semantic Web or the other techniques besides SDL
language. We have proposed a formal framework of SDL
Markup Language (SDL-ML) as a medium for translating
SDL model to SDL ontology. Its basic elements are introduced
as well as parts of .sdl XML-based file for SDL-ML system
specification.

Since SDL ontology has not been defined so far, we
relate our paper to those developing ontologies with similar
purposes, like the one in [8], where Petri net ontology was
developed. Petri nets are yet another formal and specification
language with wide range of usage. We have developed our
SDL ontology with the similar development steps, e.g. starting
from UML model through OWL mapping to comparison of
XML-based languages for Petri nets or SDL models. Another
related work is mostly concerned with Semantic Web [3], [5],
[14] and SDL [1], [2], [10]. The basic intention of the paper
is to draw attention to “translating” formal methods into the
languages for the Semantic web.

The reason for choosing SDL over UML (which is currently
more widely accepted) is that SDL has more formal and
stronger syntax and semantics. SDL is a formal language,
while UML is not so strict. Stronger requirements on syntax
and semantics provide us with tools for model checking and
other verifications tools and methods.

The paper is divided into three sections, the first one

1845-6421/10/8190@2010 CCIS

FESB
Typewritten Text
 Original scientific paper

BABAC AND KUNSTIC: MAPPING SDL SPECIFICATION FUNDAMENTALS TO CORE SDL ONTOLOGY 19

describing SDL and its major characteristics, then the section
describing SDL ontology with UML and OWL, and third,
the idea of SDL ontology translation to OWL. In the end we
provide the SDL example of Web services.

II. SPECIFICATION AND DESCRIPTION LANGUAGE
MODELING

Specification and Description Language (SDL) is a graphi-
cal specification language standardized by ITU (International
Telecommunication Union). SDL, defined in Z.100, has been
evolving since the first recommendation in 1980. Every fourth
year an updated revision of the language standard has been
adopted. In 1992 Object Oriented features were included in
SDL. The standard from 1996, called SDL-96, introduced
only minor updates. The current standard is SDL-2000, and
it introduces a number of new features, including exception
handling, a new data model, and composite states [19].

Although SDL is widely used in the telecommunications
field, it is not designed specifically for describing telecom-
munications services. Rather SDL is a general purpose spec-
ification language for communication systems and embedded
systems. The graphical notation, the formal semantics, and
object-oriented concepts makes SDL a powerful and versatile
language both for systems specification and their implemen-
tation [19].

The purpose of recommending Specification and Descrip-
tion Language (SDL) was to provide a language for unambigu-
ous specification and description of the behaviour of telecom-
munication systems [10]. The specifications and descriptions
using SDL are intended to be formal in the sense that it is
possible to analyze and interpret them unambiguously. The
terms specification and description are used with the following
meaning [10]:

1) a specification of a system is the description of its

required behaviour;

2) a description of a system is the description of its actual

behaviour; that is, its implementation.

The SDL language supports two equivalent notations. In
addition to the graphical notation (SDL-GR), the textual
notation (SDL-PR) is standardized. The textual notation SDL-
PR uses the textual syntax only. The graphical notation SDL-
GR not only has graphical components, but also some textual
parts that are identical with the textual representation SDL-PR.
This is because some specifications, such as the specification
of data and signals, are more naturally specified textually [1].

The basis for description of behaviour in SDL is com-
municating extended finite state machines, represented by
processes. A process consists of a number of states and a
number of transitions connecting the states. Communication
between processes is done by signal exchange. Signals can be
exchanged between two processes in a system or between a
process and the environment of the system. The remote proce-
dure and remote variable paradigms for information exchange
between entities in an SDL system are also supported.

A. SDL Characteristics

SDL is a design and implementation language dedicated to
advanced technical systems (i.e., real-time systems, distributed

systems, and generic event-driven systems where parallel ac-
tivities and communication are involved). Typical application
areas are high- and low-level telecom systems, aerospace
systems, and distributed or highly complex mission-critical
systems.

SDL has a set of specialized characteristics that distin-

guishes it from other technologies [17]:

« standard - SDL is a nonproprietary internationally stan-
dardized language (ITU-T standard Z.100).

o formal - SDL is a formal language ensuring precision,
consistency, and clarity in the design that is crucial for
mission-critical applications (e.g., most technical sys-
tems).

« graphical and symbol-based SDL is a graphical and
symbol-based language providing clarity and ease of use.
An SDL design is both an implementation and its own
documentation.

o object-oriented (OO) - SDL is a fully OO language
supporting encapsulation, polymorphism, and dynamic
binding. Moreover, SDL extends the traditional data-
oriented OO class concept by customizing it for technical
applications and introducing OO concepts for active
objects (e.g. systems, blocks, and state machines).

« highly testable - SDL has a high degree of testability
as a result of its formalism for parallelism, interfaces,
communication, and time. The quality and speed im-
provements are dramatic compared to traditional informal
design techniques.

« portable, scalable, and open; SDL implementations
are independent of cross compilers, operating systems,
processors, interprocess communication mechanisms, and
distribution methods. A single SDL implementation can
be used for many different target architectures and con-
figurations.

« highly reusable - SDL provides a high degree of reuse.
Because of visual clarity, testability, OO concepts, clear
interfaces, and abstraction mechanisms, SDL design has
a much higher degree of reusability than any other type
of design or implementation.

« efficient - The formalism and the level of abstraction that
is provided by SDL make it possible to apply sophisti-
cated optimization techniques for cross-compilation.

B. SDL Architecture

The system description in SDL is divided into two parts;
structural and behavioral. Structural part refers to describing
system as a black box with interaction to the environment.
It contains blocks or agents which contain processes. So, the
SDL hierarchy is given as system - block - process sequence
which enable the developers to develop the system in top-
down manner instead of more exhausting bottom-up approach
(Figure 1).

A system specification, in a broad sense, is the specification
of both the behaviour and a set of general parameters of the
system. However, SDL is intended to specify the behavioral
aspects of a system; the general parameters describing prop-
erties like capacity and weight have to be described using
different technique [16].

20 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 6, NO. 1, MARCH 2010

‘ hlock

systetn

h bhlock

Fig. 1. SDL Architecture

1) System: The overall design is called the system and
everything that is outside the system is called the environment.
There is no specific graphical representation for the system but
the block representation can be used if needed.

The corresponding textual notation for the system is given
as follows;

system <system name>;
<system declarations>
<type in system specification>
<block interaction>
endsystem[<system name>];

TABLE I
SDL: SYSTEM TEXTUAL NOTATION

2) Blocks: A block (or an agent) is an element in the system
structure. There are two kinds of agents: blocks (meaning that
a block can contain block) and processes. A system is the
outermost block. A block is a structuring element that does
not imply any physical implementation on the target. A block
can be further decomposed in blocks and so on allowing to
handle large systems. A block symbol is a solid rectangle with
its name in it.

When the SDL system is decomposed down to the simplest
block, the way the block fulfils its functionality is described
with processes. A lowest level block can be composed of one
or several processes. To avoid having blocks with only one
process it is allowed to mix together blocks and processes at
the same level e.g. in the same block. A process symbol is a
rectangle with cut corners with its name in it.

Here is the textual notation for the block;

block <block name>;
<block declarations>
<type in lock specification>
<process interaction>
<channel to route connections>
endblock[<block name>];

TABLE II
SDL: BLOCK TEXTUAL NOTATION

proces -

proces

proces

3) Process: A process is basically the code that will be
executed. It is a finite state machine based task and has an
implicit message queue to receive messages. It is possible to
have several instances of the same process running indepen-
dently. The number of instances present when the system starts
and the maximum number of instances are declared between
parenthesis after the name of the process. The full syntax in
the process symbol is given in Table III.

process <process name>>;
<process declaration>
<type in process specification>
<process body>

[endprocess[<process name>];]

TABLE III
SDL: PROCESS TEXTUAL NOTATION

Each SDL process is composed of a numerous states, even
extended states (variable-based) for the prevention of state
space explosion. Textual notation for the state is given in Table
Iv.

state <signal name>;
input <signal name>
[<transition>]
nextstate <state name>
[endstate[<state name>];]

TABLE IV
SDL: STATE TEXTUAL NOTATION

C. SDL Communication

Every process instance has its own input message queue to
receive the messages listed in the channels, which normally
acts on a First In First Out (FIFO) basis. Any signal arriving
at the process and belonging to its so-called complete valid
input signal set is put into the input queue (Figure 2). In fact
the complete valid input signal set defines those signals that
the process is prepared to accept and it is not allowed for any
other signals to be sent to the process. For an output to contain
a signal that is delivered to the process, the signal must be

BABAC AND KUNSTIC: MAPPING SDL SPECIFICATION FUNDAMENTALS TO CORE SDL ONTOLOGY 21

Stgnal a mitiates
transihonto 5 2

d is discarded

852

Signal a wmitiates
transition to a next state

Fig. 3. SDL Input Queue for the Signals [2]

Signal
Signal routes and channels

Process

‘o

Signal routes
and channels

Process

Input queue

Process

Fig. 2. SDL Communication between Processes [2]

mentioned on the communication paths leading to the process,
or in an input of the process. This is because the complete valid
input signal set is derived from this information. Processes in
the environment are required to behave also as SDL processes,
so the environment also only outputs signals that a process can
receive [2].

A process description is based on an extended finite state
machine. A process state determines which behavior the

X4

process will have when receiving a specific stimulation. A
transition is the code between two states. The process can be
hanging on its message queue or a semaphore or running e.g.
executing code.

Signals can be received in the input queue at any time,
regardless of whether the process is in a state or interpreting
a transition. When a state is entered or while a process is in
a state and receives a signal, the input queue is examined to
see if there are any signals that are not saved for that state. If
there are only signals that are saved for that state in the input
queue, nothing happens and the process remains in the state.

If in a given state the input queue is not empty and there are
signals for that state that are not saved, the first such signal
(in FIFO order) is removed from the queue (it is consumed),
and initiates a transition. If the transition simply leads back to
the same state with no other action, the signal is effectively
discarded. Figure 3 shows an example. Discarding a signal is
such a common case that there is a short-hand for this.

Let us consider the process of figure 3 in state S1. The input
queue contains the signals of type a, d, a, and b, in the that
order. The signals of type a and d can initiate a transition.
A signal of type a is first in the input queue. It is removed
from the queue, and the process performs the transition to state
S2. Now the signal of type d is first in the queue. Since the
transition for d leads directly back to S2 with no action, it is
effectively discarded. The next signal is of type a, which can
initiate a transition from state S2 to some other state [2].

Timers also generate signals in the process input queue. If

22 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 6, NO. 1, MARCH 2010

S

:

Y

b
d)
s

)

N
©
N

e

Fig. 4. SDL Process Example

timer T is activated to the expiration time x, at time X a signal
of type T is put into the input queue of the process. If at time
x the input queue already contained signals of type a, b and c,
these will stay in the input queue before signal T. Any signals
that arrive after time x (such as the signals of type d and c)
are placed after the signal of type T. But the timers are, at
this moment, not in the scope of this paper and they will be
considered as the element for extending core SDL ontology.
More precisely, timers are here treated as any other signal
within the process.

SDL processes run concurrently; depending on the target
hardware the behavior might be slightly different. But mes-
sages and semaphores are there to handle process synchro-
nization so the final behavior should be independent

Note that in a state diagram the previous statement is always
connected to the symbol upper frame and the next statement
is connected to the lower frame or on the side.

D. SDL Case Study: Web Services Description

Here, we explain a case study on Web service modeling by
SDL. We model the problem from [7] where Web services
are developed using Tropos methodology and in [6] where
process algebra was used for describing and reasoning on Web
services. This case-study lies in the field of public welfare,
extracted from a larger domain analysis concerning the local
government of Trentino (Italy). The problem is defined as
follows.

[AskInfo [Request, Sanitary [Done]
: s one
[Accepatance, Provinfo] | Agency
Refusal] [PaymentPublicFee]
Bank
[req]
r
[RecMoneyPossT,
RecMoneyPossM]
[ProvT, c
Provi] oop [PaymeniT,
PaymentM]
Fig. 5. Sanitary Agency System Specification

A software system aims at supporting elderly citizens in
receiving sanitary assistance from the public administration.
This problem involves several actors. The main actors and
goals of the domain are: the Citizen that aims at being
assisted; the Sanitary agency which aims at providing a fair
assistance to the citizens; the Transportsinc which provides
transportation services; the MealsInc which delivers meals at
home; and the Bank which handles the government’s finances.
The dependencies and expectations that exist among these
actors are, for instance, the citizen depends on the sanitary
agency for being assisted, etc.

In terms of Web services this service is seen as a “’client” of
the other services involved in the choreography and we want
these other services to be compatible with it. Intuitively, this
means that this set of services has to match the behaviour of
the client [6].

block Coop
)
[ProvT]
[Req] TransCoop
[PaymentT] [RecMoneyPossT]
-
)
[ProvM]
[Req] MealCoop
[PaymentM] [RecMoneyPossM]
-

Fig. 6. Sanitary Agency System Specification

The whole system is composed of services involved when
elderly people apply for a sanitary assistance: the sanitary
agency satisfying requests, the transportation service, the meal
delivery, the bank managing funds. We start with a view
of all the processes involved in this system as well as the
synchronizations between these entities.

The service is to be worked out as a citizen behaviour. A
citizen posts a request, exchanges information with the agency,
waits for a response, and if accepted receives a service and
pays fees. This behaviour we model with signals from the
environment to sanitary agency where the citizen is seen as the
environment. So, this is the starting point in the development
of SDL system for this Web service. SDL system is perceived
as a black box at the highest level of abstraction in specifying
system’s behaviour.

We model graphically the system as a box containing
others boxes which are the building blocks for the system.
From the outside, i.e. environment, the system is seen a
black box with the set of input and output signals. These
signals are then distributed through the system’s blocks via
channels. We call these blocks Sanitary Agency, Bank and
Coop (Figure 5). We specify the signals on different channels,
e.g. askInfo,accepatance,refusal as signals on bidirec-
tional channel connecting block Sanitary Agency with the
environment, in the direction from Sanitary Agency to the

BABAC AND KUNSTIC: MAPPING SDL SPECIFICATION FUNDAMENTALS TO CORE SDL ONTOLOGY 23

environment. Signals request, provinfo are specified on the
same channel but in the opposite direction.

Let us notice here that compared to the specification of the
same problem in [6], where Process Algebra is used, we do
not have signal “doubling”. The channel’s direction specifies
which are the entities receiving and which are sending the
signal, while in Process Algebra there is a necessity to write
the signal twice; once for the sending and once for the

receiving.
(o)
request
askInfo >
wait@
> provinfo
,
refusal > acceptance>
paymentPuincFee>
> done
idle
Fig. 7. Sanitary Agency Process Specification

Once the system is specified the next step is to go into more
detail at the block level. According to SDL standard each block
contains at least one block or process. For our Web service
we have Sanitary Agency process inside the Sanitary Agency
block. The same is for the Bank block which holds one Bank
process. Of course, these two differ in input and output signals
that are now described using routes among processes. Our
Coop block contains two processes, TransCoop and MealCoop
as we make difference between these two services.

After the blocks are specified, we enter the major phase of
specifying the processes. We describe the process behaviour

with a set of input and output signals and a set of states. These
are the sufficient concepts for building our SDL ontology. At
this level of development we do not need the complex data
structures carried within the signals or time measurement as
it is merely the signal.

The sanitary agency manages requests submitted by elderly
citizens. First, it asks some information to the citizen who has
posted the request. Depending on that, it sends either a refusal
and waits for a new request, or the request is accepted. In the
latter case, a synchronization is performed with the cooperative
controller (it controls in some way both cooperatives) to order
the delivery of concrete (transportation or meal) services.
Then, the agency pays some public fees to the bank and
waits from the bank component for a signal indicating that
the transaction is completed. All these signals are specified in
Figure 7 with the symbols for input and output signals and
state symbol.

Then, we introduce the behaviour of the cooperative. The
transportation (resp. meal) cooperative provides its service,
warns the bank to start the payment, and waits for the reception
of its fees. A controller, called Coop, receives a notification
of the agency and launches one of the possible services. Since
these two services exhibit the same behaviour, we only give
one figure for this process specification (Figure 8).

req

provT >

recMoneyPoss1>

wait

paymentT

Transport Cooperative Process Specification

Fig. 8.

III. SDL ONTOLOGY CORE DEVELOPMENT

In this section we give an overview of the approach for
developing core SDL ontology. By core ontology we refer to
the basic concepts of SDL system modeling, i.e. SDL process
modeling with bare symbols for states and transitions between
them. The advanced features of SDL including timers, data
structures, etc. can be derived once the basic concepts were
agreed upon.

24 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 6, NO. 1, MARCH 2010

1 System

1.* +alemenis
Channel 1.* 1 Block .
toBlock 1
1.* 1
fromBlack
T ModelElement
1
1.* -elaments
Route 1. 11 Process
toProcess -—
1
1.+ fromProcess 1
+refarence Nade 0. tolNoda Arc
0.* fromMode
1
1 NodeReference State Signal

TT

StateReference

Fig. 9. SDL model ontology - UML hierarchy of core SDL concepts

Before we let the technology speak for itself, let us recall
that the basic intention of this paper is to build the ontology
for SDL model specification. By this we mean that we try
to express the relations among SDL constructs. The ontology
can be expressed and depicted in various modeling techniques
and by different tools. However, the meaning of the relations
among concepts should remain the same. Basic concepts of
SDL are explained in previous section. These are the system,
the block and the process and their detailed respective struc-
tures and relations among them and their structural elements.

The relations are what it is really about! Semantic Web
is about relations. As the search engines today do not “un-
derstand” the relations among different notions, we need a
better Web - a Semantic Web which will put each notion into
context and provide us with better information once we need
it. Therefore, the main issue here it put things into their proper
context, i.e. define the relations among the concepts.

A. UML Ontology Representation

We start with the UML representation of the ontology and
then we translate it to OWL language using Protégé Tool [15].

SignalReference

In order to use UML notation we follow the generally adopted
convention:

o Each real concept is described by UML class notation.

« Each synthetic concept is depicted as abstract UML class.

« Relations are described by UML associations (as well as
aggregation and composition).

o Inheritance is depicted as standard UML inheritance
relation , i.e. generalization and specialization.

Translating UML model to Protégé Ontology maps as follows
[18];

o Each UML class is represented by one Protégé class of
the same name, and with the same role (i.e., abstract or
not abstract).

o These Protégé classes are arranged in an inheritance
hierarchy as represented in the UML model (UML allows
for multiple inheritance). Since Protégé does not support
concepts such as “interfaces”, all UML interfaces are
handled as classes.

o Each attribute of a UML class is represented by an object
property of a suitable type. The new object property

BABAC AND KUNSTIC: MAPPING SDL SPECIFICATION FUNDAMENTALS TO CORE SDL ONTOLOGY

will have the name of the attribute, unless this name is
already taken by a different object property (from another
UML class) with a different type. In this case, the object
property will be renamed to the format <attributeName>
@ <className>, which ensures unique object property
names.

o The new Protégé object properties get their multiplicity
(allows multiple values or not) and the min and max
cardinalities from the UML model.

o During UML export, primitive object properties (e.g., int,
string and symbol) are converted to simple attributes that
are attached to all UML classes where the object property
is used. Non-primitive (instance) object properties are
translated into UML associations, whereby inverse slots
are used to create bidirectional associations.

e Metaclasses are recognized by means of the
<<metaclass>> stereotype for classes.

Also, there are some known limitation not solved so far;

« Instances are not exported.

o« UML associations of a higher order (e.g., ternary rela-
tionships) have not been tested yet.

« Overloaded object properties are not recognized.

e All classes from the UML model are derived from
standard class, i.e. there is no support for other built-in
metaclasses yet.

We have used the approach similar to [8] (development
of Petri net ontology) where the authors started with root
element called ModelElement because the UML metamodel
uses the same name for its root class and this element is the
parent for all elements. However, SDL and Petri nets have
a slight difference in modeling hierarchy. While Petri net’s
module is yet another Petri net, and it is just a reference
to it, SDL hierarchy contains another kinds of elements. For
instance, block reference may refer to another block, but it
may also refer to a process specification. Therefore, it is
a little complicated to has only one parent element for the
whole SDL net and we distinguish hierarchy elements, i.e.
system contains blocks, block contains processes, etc. We
describe these relationships via OWL object properties using
their domains and ranges.

Our idea of the core SDL ontology is given by Figure 9.

Each SDL model consists of exactly one system. Each
system contains at least one block and each block contains
at least one process. Both of these statements are depicted
in the Figures 10 and 11 where the first one states that the
concept of system is related to the concept of Block via
the attribute hasBlock, where we additionally specify the
multiplicity indicating the minimum number of these relations
for each object of System or Block type.

Similarly, we define the properties for Channel and Route
entities, fromChannel and toChannel, fromRoute and
toRoute (Figures 12 and 13).

Our SDL ontology from Protégé tool is given in Figures 14
and 15.

All these translation steps are explained in more detail in the
Table VII, but for full understanding of this table we suggest
to read the next section. Strong SDL syntax and semantics

«ontClass»
System

«domain»

«objectProperty»
hasBlock

«range»

«ontClass»
Block

Fig. 10. System Specification for SDL ontology

«ontClass»
Block

«domain»

«objectProperty»
hasProcess

«range»

«ontClass»
Process

Fig. 11. Block Specification for SDL ontology

«ontClass»
Channel

«domain»

«objectProperty»
fromChannel

«rangey «range»

«ontClass»
System

«ontClass»
Block

Fig. 12. Property fromChannel Specification for SDL ontology

25

26 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 6, NO. 1, MARCH 2010

SDL.owl (http:/fwww.semanticweb.orgfontologies/2009/9/SDL.owl) - [C:\Documents and Settings\Korisnik\ontologies\SDL\SDL. owl]

File Edit Ortologies Reasoner Tools Refactor Tabs Miew Window Help

< | > |® SDL 0wl (hittpi: v semanticival org/ortalogiss 2008801 owli -} i] ‘ |

[Active Ortelogy | Entties | Classes | Object Propeies | Data Froperties | Indivicuals | OWLYiz | DL Guery |

Position
'RelativePosition
'AbsolutePosition
@ Route
@ channel
¥ @ GraphicalFeature
*- @ NameDescriptor
ock
ModelElement
“Node
v~ NodeReference
-1 SignalReference
'StateReference
@ stateNode
@ signalNode
)Are
@Process
@ system

b &

Show: (vl this[v] disjoirts¥] named sukisuperclasses
Found 3 uses of SignalReferen
- SignalReference
Class(SignalReference)
@ signalReference subClassOf NodeReference
@ SignalReference subClassOf reference only (SignalMode
or SignalReference)

¥NodeReference
@reference only (SignalNode or SignalReference)

Inferred ananymous superelasses
©name exactly 1 Thing
@ position exactly 1 Thing

- WeyalueName

Fig. 14. SDL Ontology Hierarchy in Protégé
«ontClass»
Arc
«range» w
«range»
«objectProperty» «objectProperty» «objectProperty»
fromNode toNOde multiplicity
«dom‘aix «domain»
«ontClass»
Node
Fig. 13. Arc Specification for SDL ontology

provide us with a mechanism for writing unambiguous docu-
ments. Even more, SDL textual notation give us the idea of
extending SDL notation for its XML support. Once translated
to XML document, SDL file could be very easily used for
different application and could be easily transported between
various platforms. Its textual notation almost corresponds to
XML one.

B. SDL Ontology for Sanitary Web Service

Once we have specified the SDL ontology with its core
concepts, we easily provide the examples, i.e. how to use it
for the system specification in terms of Semantic Web.

As both SDL and its OWL ontology are object-oriented lan-
guages, we search for the corresponding objects in both. This
way SDL objects are mapped to OWL objects or individuals
(Individual is another name for Instance in ontology termi-
nology). So, each SDL system is mapped to OWL system,
each SDL block is mapped to OWL block, each SDL signal is
mapped to OWL signal. But, when it comes to relations, things
get a little more complicated. As the relations in OWL are
described via properties, and there are no explicit properties
in SDL, we translate SDL hierarchy and its structural elements
to corresponding OWL entities and their properties.

More specifically, using Protégé it becomes natural to build
the system from the specified ontology with a few mouse
clicks in the Individuals tab of the tool.

For the system of Sanitary Web Service that we specified in
previous chapters, we have the SanitarySystem individual
of class System with hasBlocks property with the range
of three Blocks, then SanitaryAgency individual of class
Block with hasProcess property with the range of one
Process, Bank individual of class Block with hasProcess
property with the range of one Process, Coop individual
of class Block with hasProcess property with the range of
two Processes. The same procedure is applied to the rest

BABAC AND KUNSTIC: MAPPING SDL SPECIFICATION FUNDAMENTALS TO CORE SDL ONTOLOGY 27

SDL.owl (http:/fwww.semanticweb.org/ontologies/2009/9/SDL.owl) - [C:\Documents and Settings\Korisnik\ontologies\SDL\SDL. owl]

File Edt Ortologies Reasoner Tools Refactor Tabs Miews Window Help

<a| | [@ SOLowl thitpoitwww semanticweb oraiortologies 200SBISEL o)

- &l |

"Active Ortalogy | Enfties. | Classes | Object Fropeties | Data Praperties. | Indivichials | OWLViz | DL Guery

..... myalueName Show: [w] this[v] disjints
..... mreference Found 4 uses of fromiode
=multiplicity v @aArc
®positen | | @arc subClassOf fromMode exactly 1 Node
----- ==name
-~ mutoNode v mfromNode
=fromNode Object property{framiode)
®shasProcess | | . m=fromMode domain Node
""" ==hasBlock msfromiode range Arc
--mfromChannel
mifromRoute
- ®hasName
----- mhasReference
""" iasSigrial I Functions! Dams
-~ ®=hasState
- mstoChannel | Inverse functional ©Node
""" ==toRoute || Transtive
Ranges (intersection)
I Symmetric -
SArc
[ssymmetric
|| Reflexive Equivalent objest properties
I rrefiexive
Frop
Fig. 15. Object Properties of SDL Ontology in Protégé

of the system. Each state must be specified as individual of
State class and each signal must be specified as individual
of Signal class, as well as their properties. For instance, we
have idleState and waitState individuals for specification of
Transport Cooperative states with their respective properties,
then Req, ProvT, etc. as Signal individuals for the same
process. Also, all existing channels and routes must become
specified with their properties.
For more details on this we suggest [15] to reader.

IV. SDL MARKUP LANGUAGE

As we have defined the SDL Ontology, we are triggered to
impose it to the both SDL and non-SDL users. Our intention
is to save their time and energy in the process of using
it. Therefore, we believe that a step toward the automated
translation from SDL specification to SDL Ontology should
be developed. In this paper we outline this idea by introducing
the fundamentals for SDL. Markup Language (SDL-ML).

Although this combination (doubled “language” within the
name) might sound a little peculiar at first, it actually has a
quite logical explanation. As we find SDL a good language for
the specification of telecommunications systems as well as the
others systems and processes, we believe it would be useful to
create a markup language to support SDL for communication
with another systems not supporting SDL. As the markup
language is actually the description language about things
of general meaning, SDL-ML is meant to be the language

about the language. The markup language to describe another
description language.

SDL-ML is meant to be a SDL interchange format that
is independent of specific tools and platforms. Moreover, the
interchange format needs to support extensions of SDL. Since
this is our first proposal of this language, we shall leave
the liberties to change or add some of the elements or their
attributes in future. However, this main set of element should
retain its semantics. On the other hand, the main problem
for automating the process of conversion of SDL or SDL-
ML to OWL lies in the hierarchy structure of the both. In
SDL (or SDL-ML) the hierarchy exists among the elements
in the sense of their structure, i.e. a system holds the blocks,
blocks hold another blocks or processes, etc. This is well
explained by UML composition relation because the block
does not exist without its system, or the process does not
exist without its block and system. However, OWL hierarchy
is given by inheritance concept, so the verbatim conversion
is not possible. In the table VII we give an overview of the
elements translation.

A. SDL-ML Elements

We naturally use SDL-PR textual notation for the syntax of
SDL-ML. We chose the ”zmlins : sdl” as the namespace for
our .sdl XML file.

Element < sdl : system > defines the system element
which is the root element for the whole specification, i.e. all

28 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 6, NO. 1, MARCH 2010

<sdl:system name="SanitarySystem”>
<sdl:block name="SanitaryAgency”>
<sdl:process name="SanitaryAgency”>
<sdl:state name="Idle”>
<sdl:iinput>Request</input>
< sdl:output>Askinfo</output>
<sdl:nextstate >waitInfo</nextstate >
< /sdl:state>
<sdl:state name="waitInfo”>
<sdl:input>Provinfo</input>
<sdl:output>Refusal</output>
<sdl:nextstate>Idle</nextstate >
<sdl:output>Acceptance </output>
<sdl:output>Ref</output>
<sdl:output>PaymentPublicFee</output>
<sdl:nextstate >waitDone</nextstate >
< /sdl:state>
<sdl:state>>waitDone</nextstate >
<sdl:input>Done</input>
<sdl:nextstate>Idle</nextstate >
< /sdl:state>
< /sdl:process>
</sdl:block>
<sdl:block name="Coop”>
<sdl:process name="TransCoop”>
<sdl:state name="idle”>
<sdl:iinput>Reqg</input>
<sdl:output>ProvT</output>
<sdl:output>RecMoneyPossT</output>
<sdl:nextstate >wait</nextstate >
<sdl:state>
<sdl:state name="wait">
<sdl:iinput>PaymentT </input>
<sdl:nextstate>idle</nextstate >
<sdl:state>
</sdl:process>
<sdl:process name="MealCoop”>
<sdl:state name="idle”>
<sdl:input>Req</input>
<sdl:output>ProvM</output>
<sdl:output>RecMoneyPossM</output>
<sdl:nextstate >wait</nextstate >
<sdl:state>
<sdl:state name="wait">
<sdl:input>PaymentM</input>
<sdl:nextstate >idle</nextstate >
<sdl:state>
</sdl:process>
</sdl:block>
<sdl:block name="Bank”>
</sdl:block>
</sdl:system>

TABLE V
SDL-ML CODE FOR BLOCKS AND PROCESSES SPECIFICATION OF
SANITARY WEB SERVICE

other elements are nested into this one. It has the attribute
“name”.

Element < sdl : block > defines the block element which
contains processes. This element is the parent element of the
process elements. It has the “name” attribute.

Element < sdl : process > defines the process element
which contains states and signals. This element is the parent
element of the set of state and signal elements. It has the
“name” attribute.

Element < sdl : state > defines the state element. This
element contains < ¢nput > and < output > signal elements
and the < nextstate > element. It has the “name” attribute.
Also, its elements are nested, i.e. ’nextstate” is nested into

“output”, and “output” is nested into “input”’ element. We
introduced it because of multiplicity of elements. The process
can have two “output” elements and each one may refer to
another “nextstate” or may be followed by another “output”
element. So, we build hierarchy of these elements to preserve
their order as it is not default feature of XML elements.

Element < sdl : signal > defines the signal element. It has
the “name” attribute.

Element < sdl : channel > defines channel to connect
block elements within the system. It has the “name” attribute.
It also holds nested elements < from >, < to > and <
with > to specify the elements that it is connected to.

Element < sdl : route > defines route to connect pro-
cess elements within the specified block. It has the “name”
attribute. It also holds nested elements < from >, < to >
and < with > to specify the elements that it is connected to.

B. SDL-ML Case Study: Sanitary Web Service

Here we put some of the .sdl XML file for the specification
of Sanitary Web Service that we specified in previous chapters.
We have divided it into two parts to make it easier to read. But
the second part with channel and routes is to be put directly
into the first part to make a whole. The first part in Table V
specifies some of the system’s blocks and processes, while the
other one in Table VI focuses on communication between the
blocks and processes.

V. CONCLUSION

In this paper we have given our contribution to the efforts of
Semantic Web development in the sense of introduction of new
ontology for concurrent and distributed systems specification.
Particularly, we have chosen Specification and Description
Language, a ITU-T standard Z.100 for specifying and de-
scribing telecommunications process, as our starting point is
the formalism for a telecommunications service specification.
We have developed the ontology for SDL system and process
specification. The ontology was developed using UML and
OWL languages. UML has been used as a graphical notation
for the ontology specification, which was then translated to
Protégé tool to obtain OWL file. We have given the example
of Web service specification to express our efforts.

Besides the SDL Ontology we have suggested the devel-
opment of SDL Markup Language. The idea is to find the
mechanism of mapping SDL to OWL directly. We proposed
the SDL-ML elements and also provided the example of Web
service specification via SDL-ML.

Our future work naturally follows as the extending the core
SDL ontology towards the time and modeling concepts. Such
an extension will provide us with the fully equipment for
Semantic Web reasoning of SDL models.

Another direction of future research is to make the process
of SDL to OWL translation automated after bridging the gap
between the inconsistencies of the two. XML technologies are
only one way of doing this, using SDL-ML that we proposed.
Exploring the other solutions could also contribute the future
research.

<sdl:channel name="Ch-SA-Env”">
<sdl:from>env<sdl:from>
<sdl:to>SanitaryAgency<sdl:ito>
<sdl:with>Request<sdl:with>
<sdl:with>ProvInfo<sdl:with>
<sdl:from>SanitaryAgency <sdl:from>
<sdl:to>env<sdl:to>
<sdl:with>AskInfo<sdl:with>
<sdl:with>Acceptance <sdl:with>
<sdl:with>Refusal<sdl:with>
< /sdl:channel>
<sdl:channel name="Ch-SA-Bank”>
<sdl:from>SanitaryAgency <sdl:from>
<sdl:to>Bank<sdl:to>
<sdl:with>PaymentPublicFee <sdl:with>
<sdl:from>Bank<sdl:from>
<sdl:to>SanitaryAgency<sdl:to>
<sdl:with>Done<sdl:with>
< /sdl:channel>
<sdl:channel name="Ch-Bank-Coop”>
<sdl:from>Bank<sdl:from>
<sdl:to>Coop<sdl:to>
<sdl:with>PaymentT <sdl:with>
<sdl:with>PaymentM<sdl:with>
<sdl:from>Coop<sdl:from>
<sdl:to>Bank<sdl:to>
<sdl:with>RecMoneyPossT <sdl:with>
<sdl:with>RecMoneyPossM < sdl:with>
< /sdl:channel>
<sdl:channel name="Ch-SA-Coop”>
<sdl:from>SanitaryAgency <sdl:from>
<sdl:to>Coop<sdl:to>
<sdl:with>Reqg<sdl:with>
< /sdl:channel>
<sdl:channel name="Ch-Coop-Env”>
<sdl:from>Coop<sdl:from>
<sdl:ito>Env<sdl:to>
<sdl:with>provT <sdl:with>
<sdl:with>provM<sdl:with>
< /sdl:channel>
<sdl:route>
<sdl:route name="Rt-TC-Env">
<sdl:from>env<sdl:from>
<sdl:to>TransCoop<sdl:to>
<sdl:with>Reqg<sdl:with>
<sdl:from>TransCoop<sdl:from>
<sdl:to>env<sdl:to>
<sdl:with>ProvT<sdl:with>
< /sdl:route>
<sdl:route>
<sdl:route name="Rt-TC-Bank”>
<sdl:from>Bank<sdl:from>
<sdl:to>TransCoop<sdl:to>
<sdl:with>PaymentT <sdl:with>
<sdl:from>TransCoop<sdl:from>
<sdl:to>Bank<sdl:to>
<sdl:with>RecMonexPossT < sdl:with>
< /sdl:route>

TABLE VI

SDL-ML CODE FOR CHANNELS AND ROUTES SPECIFICATION OF

SANITARY WEB SERVICE

BABAC AND KUNSTIC: MAPPING SDL SPECIFICATION FUNDAMENTALS TO CORE SDL ONTOLOGY 29

REFERENCES

[1] J. Ellsberger, D. Hogrefe, A. Sarma, SDL: Formal Object-Oriented
Language for Communicating Systems, Prentice Hall PTR, 1997.

[2] H. Belina, Tutorial on SDL-88, http://www.sdl-forum.org/sd188tutorial/,
2007 SDL Forum Society, 1997.

[3] C. Walton, Agency and the Semantic Web, Oxford University Press,
October 2006., ISBN 0199292485.

[4] G. Antoniou and F. Van Harmelen, A semantic web primer. Second
edition. Cambridge, MA: The MIT Press, 2008. xxi, 264 pp. ISBN: 978-
0-262-01242-3.

[S] P. Mika, Social Networks and the Semantic Web, Series: Semantic Web
and Beyond , Vol. 5, X1V, 234 p. 74 illus., Hardcover, 2007. ISBN: 978-
0-387-71000-6

[6] G. Salan, L. Bordeaux, M. Schaerf, Describing and Reasoning on Web
Services using Process Algebra, International Journal of Business Process
Integration and Management 2006 - Vol. 1, No.2 pp. 116 - 128, 2006.

[7] M. Pistore, M. Roveri, P. Busetta Requirements-Driven Verification of
Web Services, 1st International Workshop on Web Services and Formal
Methods (WS-FM), 2004.

[8] D. Gasevi¢, and V. DevedZzié, Petri net Ontology, Knowledge-Based
Systems, Elsevier, Vol. 19, Issue 4, Aug. 2006, pp. 220-234

[9] D. Gasevié, Petri net Ontology, PhD dissertation (in Serbian), Department
of Information Systems and Technologies, FON School of Business
Administration, University of Belgrade, Jul. 2004.

[10] ITU-T Z.100, Telecommunication standardization sector of ITU, Series
ZSERIES Z: Languages and General Software Aspects for Telecommu-
nications Systems, Formal description techniques (FDT) Specification
and Description Language (SDL), Aug. 2002.

[11] Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About
Knowledge The MIT Press, Cambridge Massachusetts, London England,
2003.

[12] M. R. A. Huth, M.D. Ryan, Logic in Computer Science: Modelling
and reasoning about systems, Cambridge University Press, Cambridge,
England, UK, 2000.

[13] N. Shadbolt, T. Berners-Lee, W. Hall, The Semantic Web Revisited, IEEE
Intelligent Systems 21(3), pp. 96-101, 2006.

[14] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, Scientific
American Magazine, May 2001.

[15] M. Horridge, A Practical Guide To Building OWL Ontologies Using
Protégé 4 and CO-ODE Tools, Edition 1.2, University of Manchester,
2009.

[16] SDL-RT, http://www.sdl-rt.org/standard/V2.2/html/SDL-RT.htm, Oct.
2009.

[17] IEC, http://www.iec.org/online/tutorials/sdl/index.asp, Oct. 2009.

[18] Protégé, http://protege.cim3.net/cgi-bin/wiki.pl?UMLBackendMapping,
Oct. 2009.

[19] Cinderella SDL, http://www.cinderella.dk/, Oct. 2009.

Marina Bagi¢ Babac works as a research assistant at the University of
Zagreb, Faculty of Electrical Engineering and Computing, Department of
Telecommunications, where she took her degrees B.Sc, M.Sc. and Ph.D. in
2001, 2004 and 2009, respectively. Her specific field of research are formal
methods for specification and verification of telecommunications systems. She
is a member of IEEE Communications Society.

Marijan Kunsti¢ works as a Professor at the University of Zagreb, Faculty of
Electrical Engineering and Computing, Department of Telecommunications,
where he took his degrees B.Sc, M.Sc. and Ph.D. in 1966, 1971 and
1980, respectively. His specific field of research are formalisms and network
management of telecommunications systems. He is a member of IEEE
Communications Society.

30

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 6, NO. 1, MARCH 2010

SDL-ML ELEMENTS

OWL ELEMENTS

System
<sdl : system name="name”>

</sdl:system>

Class System

hasName € [System, Literal]
hasSignal € [System, Signal]
hasBlock € [System, Block]
hasChannel € [System, Channel]

Block
<sdl : block name="name”>

</sdl:block>

Class Block

hasName € [Block, Literal]
hasSignal € [Block, Signal]
hasBlock € [Pro, Block]
hasRoute € [Channel, Route]

Process
<sdl : process name="name” >

</sdl:process>

Class Process

hasName € [Process, Literal]
hasSignal € [Process, Signal]
hasState € [Pro, Process]

Channel
<sdl : channel name="name”>
<from> </from>
<to> </to>
<with> </with>
</sdl:channel>

Class Channel

hasName € [Channel, Literal]
fromChannel € [Channel, Block]
toChannel € [Block, Channel]
withSignal € [Channel, Signal]

Route
<sdl : route name="name” >
<from> </from>
<to> </to>
<with> </with>
</sdl:route>

Class Route

hasName € [Route, Literal]
fromRoute € [Route, Process]
toRoute € [Process, Route]
withSignal € [Route, Signal]

Signal

<sdl : signal name="name” type="incoming/outgoing” >
<sdl:presignal> </sdl:presignal>
<sdl:nextsignal> </sdl:nextsignal>
<sdl:prestate> </sdl:prestate>
<sdl:nextstate> </sdl:nextstate>

</sdl : signal>

Class Signal

hasName € [Signal, Literal]
previousSignal € [Signal, Signal]
nextSignal € [Signal, Signal]
previousState € [Signal, Signal]
nextState € [Signal, Signal]

State

<sdl:state name="name”>
<sdlinput> </sdl:input>
<sdl:output> </sdl:output>
<sdl:nextstate> </sdl:nextstate>

</sdl:state>

Class State

hasName € [Signal, Literal]
hasInputSignal € [State, Signal]
hasOutputSignal € [State, Signal]
hasNextState € [State, State]

TABLE VII

MAPPING SDL-ML TO OWL

