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 Abstract—The convergence speed of an asynchronous 
point-to-point version of the push-sum algorithm in sensor 
networks is investigated both through numerical 
simulations and theoretical arguments. The main 
contribution of the paper consists in studying the 
application of such algorithm in realistic scenarios, 
represented by non fully-meshed networks. Simulations 
show that, in this case, convergence may be strongly 
dependent on the adopted share factor, whose value 
should be optimized as a function of the connectivity level 
of the network. Optimum shares are derived for some 
common topologies, like the ring and the random 
geometric graph. The effect of possible link failures is also 
investigated. 

 
Index Terms—Sensor networks, averaging algorithms, push-

sum algorithm, share factors. 
 

I. INTRODUCTION 

There is a wealth of past and recent literature devoted to the 
analysis and performance evaluation of protocols for sensor 
networks. Among them, a special place is assigned to simple 
uncentralized protocols for distributed information processing 
over networks. The class of gossip algorithms, in particular, 
permits to compute sums, averages, random samples, 
quantiles, and other aggregate functions, starting from an 
ensemble of initial sensed values [1]-[4]. Focusing on the 
averaging problem, that is the object of this paper, N sensors 
form the nodes of a graph whose edges correspond to reliable 
communication links. Each node is initially given a scalar 
value (which could correspond to some sensor measurement, 
like temperature) and, through a suitable message-passing 
algorithm, all nodes can compute the average of all N initial 
values in a possibly short time. 

The most attractive features of gossip-based networks are 
their simplicity and scalability. Each sensor node, in fact, 
sends a fixed number of messages (in many cases only one 
message), and this number is independent of the network size. 
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On the other hand, provided that effective communication 
among nodes is achieved through suitable protocols, a 
fundamental aspect of gossip algorithms concerns 
convergence to the average. This topic has been discussed 
extensively in previous literature. Most of published papers, 
however, are focused on theoretical issues and system 
modeling, while the literature is much less rich in regard to 
performance evaluation and parameters optimization. 

In [5], Kempe et al. proposed a gossip algorithm named 
push-sum. This protocol, that will be reminded in Section II, 
can be managed either in a synchronous or in an asynchronous 
way. In the latter case, that we prefer because of its simplicity, 
following its own clock, a node forwards a share of its values, 
properly defined, to one of its neighbors randomly selected, 
while keeping the remaining part. The neighbor of a node is 
linked to it by an edge in the graph. Intuitively, the amount of 
the share reflects on the convergence speed of the averaging 
algorithm, and an optimization problem arises. Actually, in the 
case of fully-meshed networks, where each node can reach 
any other node in a single hop, the choice to assume a share 
factor equal to 1/2 seems qualitatively acceptable on the basis 
of symmetry considerations. However, if the network is non 
fully-meshed, that is the more frequent case in practice, 
simulations show that the optimal shares can be no longer 
equal to 1/2, and the convergence speed may be significantly 
faster by assuming a different value. 

At the best of our knowledge, in spite of its practical 
importance, the problem of choosing the optimal share factor 
has not been faced extensively in previous literature; in [5], 
for example, the authors limited to say that the choice of 
shares may be deterministic or randomized, and may or may 
not depend on the time. In other papers, instead, the 
optimization effort looked at other targets, like to optimize the 
neighbor selection probabilities [6] or the probability of gossip 
[7]. These targets have similarities with the share factors 
optimization, but are not of interest in the present context. In 
our analysis, in particular, we will assume undirected 
unweighted graphs, where each node, if selected for 
transmission, contacts one of its neighbors with the same 
probability. Moreover, in absence of link failures, the gossip 
probability is unitary, which means that, if chosen, a node 
certainly transmits. 

More involved protocols could be most suited for other 
contexts, as communication networks [8] or decentralized 
reputation systems [9]. 

As mentioned above, the first evidence of the convergence 
time dependence on the share factors is given by simulations. 
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So, we will discuss simulation results referred to some typical 
network topologies, like the ring and the random geometric 
graph. Plots of optimum share factors will be given, as a 
function of the nodal degree or maximum coverage radius.  

A more ambitious task is to derive the optimum shares 
through a theoretical analysis. Although to face the problem in 
a very general way is very difficult, a useful, though simple, 
analytical tool is given by the potential function. In [5] the 
potential function was studied by assuming the synchronous 
version of the push-sum algorithm and used to demonstrate 
the convergence of the algorithm in the case of fully-meshed 
networks.  

Another contribution of our work will be to extend such 
approach to the asynchronous case and, mostly important, to 
non fully-meshed networks. In the latter case, we will show 
that even establishing convergence of the algorithm is not 
possible “a priori”. On the other hand, at least in some cases, a 
rough approximation of the average potential function 
behavior permits to make previsions on the expected optimum 
share factors. 

Finally, a sensor network can be obviously subjected to link 
failures. When this occurs, the network connectivity changes 
and the optimum share factor should be recalculated. If this is 
not possible, because of the absence of information over the 
failed links and the limited processing capability of the nodes, 
a negative effect is expected on the convergence speed. Some 
numerical examples in this sense will be reported, yielding the 
conclusion that link failures do not influence significantly the 
choice of optimal share factors. 

The remainder of the paper is organized as follows. In 
Section II, after having recalled some definitions, we will 
focus on simulated results, thus proving the role of the share 
factors for some relevant topologies. Section III will be 
devoted to the theoretical analysis, that is mainly based on an 
original adaptation of the well-known concept of potential 
function. In Section IV we will provide some examples of the 
effect of link failures. Finally, Section V will conclude the 
paper. 

 

II. SHARE FACTORS IN THE PUSH-SUM ALGORITHM 

Let us denote by x(k) = [x1(k), x2(k), …, xN(k)]T, where T 
stays for “transposed”, the vector of the estimates after k clock 
ticks. In particular, x(0) contains the initial sensed values. The 
target of the averaging algorithm is to disseminate, in the 
shortest possible time, throughout the nodes of the network, a 

reliable measure of the average value ave 1
(0)

N
ii

x x N
=

= ∑ , 

to be used for control or rescue purposes, for example. 

 
A. Push-sum algorithm 
 

The push-sum protocol proceeds as follows. At the i-th 
node, with i = 1, 2, …, N, two quantities are stored and 
updated following interaction with the other nodes: they are 
named si(k) and wi(k), respectively. 

These quantities satisfy the following mass conservation 
properties, for any k: 

ave
1 1 1

( ) (0)      ,      ( ) .
N N N

i i i
i i i

s k x Nx w k N
= = =

= = =∑ ∑ ∑  (1) 

It should be noted that xave does not change with k; it 
represents the initial condition, and the goal of the sensor 
network is to make this information available at all nodes, in 
the shortest possible time. This is also related with the concept 
of “convergence speed”, that measures the latency by which 
this goal is achieved with satisfactory approximation. In 
practice, the goal to know exactly xave can be reached, in 
general, only after a very long (ideally infinite) time. 
However, to know xave with an acceptable error is possible 
after a limited time. In the following of this subsection, a 
definition of error will be given (see Eq. (3)); the convergence 
speed measures the time required for having an acceptably 
small error: the shorter this time, the faster the convergence 
speed. 

When the protocol starts, that is, once having acquired the 
sensed values, we have si(0) = xi(0) and wi(0) = 1, i∀ . 
Afterwards, if the clock of the i-th node ticks at the k-th time 
instant (let us remind that transmission is asynchronous in the 
considered system) it selects randomly one of its neighbors, 
say j, and sends to it a fraction (1 − α) of its parameters, while 
it retains the remaining fraction α. As a consequence, the 
parameters at nodes i and j are modified as follows: 

( ) ( 1), ( ) ( 1),
( ) ( 1) (1 ) ( 1),

( ) ( 1) (1 ) ( 1).

i i i i

j j i

j j i

s k s k w k w k
s k s k s k

w k w k w k

= α − = α −

= − + − α −

= − + − α −

 (2) 

The parameters at all the other nodes remain unchanged. This 
way, conditions (1) are certainly satisfied. A new estimate at 
the interacted nodes is then obtained as xm(k) = sm(k)/wm(k), 
with m = i, j. In this algorithm, the number of clock ticks is 
equal to the number of transmissions. It should be noted, 
however, that this is not true for other gossip algorithms [6]. 

In [5], where, besides point-to-point communications, also 
broadcast transmissions were considered, a more general 
mechanism was applied, where the share factor can be 
different for any node and even variable with time. However, 
this model seems too involved for practical applications. So, 
we prefer to consider a single and constant α, whose value 
should be optimized in order to achieve the fastest 
convergence speed.  

The efficiency of the averaging algorithm can be measured 
by the error: 

e(k) = ||x(k) – xave1||/||x(0)||, (3) 

where ||x|| denotes the l2 norm of x and 1 is the vector of all 
ones. The algorithm converges if a value of k exists, say k*, 
such that e(k > k*) becomes arbitrarily small [10]. The 
convergence of the push-sum protocol was already verified in 

10 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 5, NO. 1, MARCH 2009



[5]. We will rediscuss the subject in Section III, after having 
reminded the definition of potential function. 
 
B. The considered topologies 
 

For explicative purposes, in this paper we consider two 
kinds of topologies: one regular, the ring, and one irregular, 
the random geometric graph. In the ring topology the nodes 
are equally spaced along a unit circle and each node is linked 
to d other nodes. d is called nodal degree and its value 
determines the connectivity level of the network. In the 
random geometric graph, instead, the nodes are randomly 
distributed in a unit square, according with a 2D homogeneous 
Poisson point process. The considered topologies are very 
different, and it is known that the ring topology may offer 
rather poor performance. On the other hand, it has the 
advantage of a constant nodal degree, that can be useful for 
the analysis purposes (see Section III). On the contrary, noting 
by r the maximum coverage radius, that is the maximum 
distance at which a node can transmit reliably, for the random 
geometric graph, even assuming that all nodes have the same 
r, the nodal degree is usually not unique. Moreover, for each 
value of r, the connectivity level can change from graph to 
graph. So, an average nodal degree, 〈d〉, is required. Two 
examples of these topologies are shown in Fig. 1 for N = 16, d 
= 4, and N = 50, r = 0.4, respectively. An example of 〈d〉, 
obtained by averaging over 100 random geometric graphs for 
each value of r, is shown in Fig. 2. 
 

    
       (a)    (b) 

Figure 1. Examples of the considered network topologies: (a) ring 
with N = 16 and d = 4; (b) random geometric graph with N = 50 and r 
= 0.4. 
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Figure 2. Average value of d as a function of r, computed over 100 

random geometric graphs with N = 50. 
C. Share factors optimization 
 

In this subsection, the sensitivity of the convergence speed 
on the share factor and the consequent optimization issue will 

be faced through simulations. In our view, a simulation 
consists in assigning the initial sensed value at each node, 
according with a Gaussian distribution (other rules can be 
obviously adopted), in selecting randomly the transmitter node 
(TX), according with a uniform distribution and, then, in 
selecting randomly the destination node (RX) among the 
ensemble the TX can reach. After that, interaction between the 
two selected nodes is simulated by updating their stored 
values. When the link between each couple of nodes is 
present, we assume that their communication is reliable, and 
neglect lower protocols issues, as collisions and 
retransmissions. This is because our interest is in a simulation 
tool that allows fair comparison among different algorithms. 
In implementing such procedure, all simulations have been 
performed through “ad hoc” software programs written in 
Matlab and C++ language. As mentioned, this choice has been 
driven by the fact that our analysis is limited to the 
performance of averaging algorithms, and does not consider 
some issues typical of lower protocols. For this reason, we are 
able to adopt very simple software programs, without the need 
to resort to more complex network simulators. 

The value of α in (2) has an impact on the convergence 
speed. Actually, in the case of fully-meshed networks, where 
each node is able to reach any other node in a single hop (this 
case is rather unrealistic but can be usefully adopted as a 
benchmark [11]) α ≈ 0.5 can be considered a good choice. 
This is confirmed, through an example, in Fig. 3, that refers to 
the same node distribution shown in Fig. 1(b) but where each 
node is linked to any other node (fully-meshed network). In 
practice, starting from α = 0.1, the convergence speed 
increases for increasing α, up to 0.5, and then decreases again 
for α > 0.5. We conclude that, for this example, α = 0.5 
provides the best result. 

On the contrary, the optimum value is usually different for 
reduced network connectivity. An example is shown in Fig. 4, 
for a ring topology with N = 49 and d = 12, and in Fig. 5, for a 
random geometric graph with N = 50 and r = 0.4 (the same 
network as in Fig. 1(b)). Other values of d and r could be 
considered: for example, d = 4, as in Fig. 1(a). In general, 
smaller values of these parameters cause reduced connectivity, 
so that convergence is slower. Qualitative considerations, 
however, remain basically the same. 

The curves in Figs. 3-5 have been obtained by using the 
software simulator outlined above. In these cases, for each 
value of α, a single simulation has been considered. The goal 
of these figures, in fact, is to introduce the problem, while 
generalization able to take into account the statistical nature of 
the quantities involved will be introduced afterwards. The 
experiment consists in choosing randomly the sequence of 
TX/RX nodes (one for each clock tick), and in updating the 
error (3) and the local values (2), as a consequence of their 
interaction. 

From Fig. 4, we see that the optimum share factor, for the 
considered ring topology with non fully-meshed network, is α 
= 0.2, and a significant amount of time can be saved by 
adopting this optimum value in place of α = 0.5: as an 
example, e(k) = 10−5 requires 8352 transmissions in the case of 
α = 0.5 and “only” 5991 transmissions in the case of α = 0.2 
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(that is, a reduction of about 28% in the convergence time). 
The gap is even more evident with α > 0.5. Similarly, in Fig. 
5, the optimum α value is 0.24; e(k) = 10−6, for example, 
requires 5866 transmissions with α = 0.5 and “only” 4175 
transmissions with α = 0.24 (that is, a reduction of about 29% 
in the convergence time). 
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Figure 3. Simulated error for a fully-meshed random geometric 

graph with N = 50, assuming different values of α. 
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Figure 4. Simulated error for a ring topology with N = 49 and d = 

12, assuming different values of α. 
 
Obviously, to consider a specific simulation gives an idea 

of the framework, but it is substantially meaningless because 
of the random nature of the quantities involved. More 
significantly, from a statistical viewpoint, we can repeat the 
simulations R times (with R sufficiently high), finding, at any 
attempt, an optimum value opt

mα , with m = 1, …, R, and then 

computing an average optimum share factor as: 

opt opt
1

1 R
m

mR
=

α = α∑ . (4) 

The procedure can be applied for any value of the nodal 
degree d (or the maximum coverage radius r). Some results 
are shown in Table I. They have been obtained by averaging 
the results of 200 simulations for any value of d and r. In the 
case of the random geometric graph, only values of r ≥ 0.3 

have been considered since, for r = 0.2, as an example, the 
network is no longer connected. 
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Figure 5. Simulated error for a random geometric graph with N = 

50 and r = 0.4, assuming different values of α. 

TABLE I 

SIMULATED optα  FOR THE RING NETWORK WITH N = 49 AND THE 

RANDOM GEOMETRIC GRAPH WTH N = 50 BY CONSIDERING DIFFERENT 

CONNECTIVITY LEVELS. 
 

Ring Random geometric graph 

d optα  r optα  

2 0.29313 0.3 0.2193 
6 0.23139 0.4 0.26856 
8 0.2202 0.5 0.35428 

12 0.22408 0.6 0.43463 
16 0.26697 0.7 0.46254 
20 0.31667 0.8 0.47164 
24 0.37214 0.9 0.46965 
28 0.41522 1 0.47672 
34 0.45667 1.1 0.47731 
48 0.47945 1.2 0.471 

  1.3 0.47244 
  1.4 0.47289 
  1.5 0.48184 

 
On the other hand, (4) provides an average value, while the 

optimum share for a specific simulation may be more or less 
different, with a probability that depends on the dispersion 
around the mean. 

As an example, from Table I we derive that the average 
optimum share for the case of d = 12 is opt 12

0.224
d =

α ≈  

while for the simulation in Fig. 4 the optimum was α = 0.2. 
On the other hand, assuming opt 12d =

α  in place of the 

actual optimum value implies that e(k) = 10−6 would have been 
reached after 7516 transmissions with a limited penalty of less 
than 2.2% with respect to the optimum value, that is 7356 (see 
Fig. 4). 

In general, the reliability of the average value (4) depends 
on the dispersion of αopt around the mean. This is shown in 
Fig. 6, for the ring with N = 49, by considering two values of 
d, and in Fig. 7, for the random geometric graph with N = 50 
and two values of r. 

More specifically, the statistical analysis permits us to 
obtain the normalized standard deviation (nsd), defined as 
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( )2
opt opt opt/nsd = α − α α , that is reported in Table 

II. We see that, except for the case of very low connectivity, 
the nsd is rather small; so, we can conclude that most 
networks require an optα  that is not significantly different 

from the average value. 
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              (a)        (b) 

Figure 6. Dispersion around the mean of the simulated αopt for the 
ring network with N = 49 nodes: (a) d = 12; (b) d = 48 (fully-
meshed). 
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Figure 7. Dispersion around the mean of the simulated αopt for the 
random geometric graph with N = 50 nodes: (a) r = 0.4; (b) r = 1.5 
(fully-meshed). 

 
 

III. THEORETICAL ANALYSIS 

Besides the simulation work described in the previous 
section, a theoretical approach has been developed, based on 
the well known concept of “potential function”. 

Let us consider a network of N nodes described by a 
connected graph G(V, E), where V is the vertex set containing 
the nodes and E is the edge set. Given a distribution of values 

1 2[ , ,..., ]TNv v v=v , where vi is the value of node i, the 
potential Φ of the graph can be defined, in general, as follows: 

( )2 2
ave avei

i V
v v v

∈

Φ = − = −∑v 1 . (5) 

where vave is the average value over the whole network. 
Evidently, Φ is a measurement of the variance of the value 
distribution. Note that Φ = 0 if and only if avev=v 1 . In the 
following we will denote by Φ(k) the potential function after 
the k-th clock tick (Φ(0) is the initial value).  

 

 
TABLE II 

SIMULATED NSD FOR THE RING NETWORK WITH N = 49 AND THE 
RANDOM GEOMETRIC GRAPH WTH N = 50 BY CONSIDERING DIFFERENT 

CONNECTIVITY LEVELS. 
 

Ring Random geometric graph 
d nsd r nsd 
2 0.25551 0.3 0.15276 
6 0.19318 0.4 0.07522 
8 0.18211 0.5 0.05165 

12 0.13477 0.6 0.04257 
16 0.06892 0.7 0.05902 
20 0.07137 0.8 0.03986 
24 0.05294 0.9 0.03449 
28 0.04287 1 0.04216 
34 0.04949 1.1 0.04735 
48 0.03546 1.2 0.04416 

  1.3 0.04572 
  1.4 0.05329 
  1.5 0.04441 

Definition (5) could be applied, in principle, directly to the 
vector of the estimates x(k), this way obtaining, apart from the 
normalization by x(0), the square of the error e(k) as defined 
in (3). For the push-sum algorithm, however, a slightly more 
complex expression is more favorable and it is described next. 

In order to define the potential function for the push-sum 
algorithm, let us consider a vector vi(k) (that does not contain 
any measured quantity, but is only introduced for analysis 
purposes), whose components, vij(k), are such that:  

1
( ) ( ) (0)

N

i ij j
j

s k v k x
=

= ∑ . (6) 

The following condition is satisfied: 

1
( ) ( )

N

i ij
j

w k v k
=

= ∑ . (7) 

It is clear that, if vi(k) is nearly proportional to the all-one 
vector, then xi(k) = si(k)/wi(k) is close to the true average. 

The potential function for the push-sum algorithm is 
defined as follows [5]: 

2

1 1

( )
( ) ( )

N N
i

ij
i j

w k
k v k

N
= =

⎡ ⎤Φ = −⎢ ⎥⎣ ⎦
∑∑ . (8)  

So, in the limit case of all nodes perfectly aware of the true 
average, the potential function is null. Based on this evidence, 
evaluation of the mean potential function, for any k, should 
permit to estimate the convergence speed of the algorithm.  

More precisely, assuming that, at instant k, node l is 
selected as the transmitter and node m as the receiver, the 
following difference between the potential functions at time 
instant k – 1 and k can be easily derived: 

2

1

1

( 1)
( 1) ( ) 2 (1 ) ( 1)

( 1) ( 1)
2(1 ) ( 1) ( 1) .

N
l

lj
j

N
l m

lj mj
j

w k
k k v k

N

w k w k
v k v k

N N

=

=

−⎡ ⎤δΦ = Φ − − Φ = α − α − −⎢ ⎥⎣ ⎦

− −⎡ ⎤ ⎡ ⎤− − α − − ⋅ − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑

∑
 

 (9) 
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For simplifying the notation, in the following we will omit to 
indicate that the quantities at the right hand side are computed 
at the time instant k – 1. 

We wish to compute the average of (9) over the possible 
choices of the transmitting and receiving nodes. Let us 
consider the case of a ring network, where all nodes are 
characterized by the same degree d. Taking into account that 
both the choices of transmitter and receiver are made 
following a uniform law, the former on the ensemble of the N 
nodes in the network, and the latter, for each transmitter, on 
the ensemble of the d nodes it is linked to, also having in mind 
definition (8), we find: 

2

1 1

1 1

2 (1 ) 2(1 )

2(1 )   
l

N N
l

lj
j l

N N
l m

lj mj
j l m C

w
v

N dN N

w w
v v

dN N N

= =

= = ∈

α − α − α ⎛ ⎞δΦ = Φ + −⎜ ⎟
⎝ ⎠

− α ⎛ ⎞⎛ ⎞− − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑∑

∑∑ ∑
 (10) 

where Φ = Φ(k – 1), and Cl is the subgroup of nodes that 
includes node l and the nodes it is linked to. It is easy to see 
that, in the case of a fully-meshed network, when Cl is the 
entire network and d = N – 1, the last term at the right side of 
(10) is null because of the mass conservation properties (1). In 
the case of a non fully-meshed network, that is d < N – 1, it 
represents instead an additional contribution that, in general, 
could be not simple to determine. However, some elaboration 
is possible by reminding the definition of Laplacian matrix of 
a graph [12]. 

The Laplacian matrix Q(G) of the graph ( )G V E,  is an N×N 
matrix whose elements are defined as follows: 

 

if 
1 if  and ( , )

0 otherwise

i

ij

d i j
Q i j i j E

=⎧
⎪= − ≠ ∈⎨
⎪
⎩

 (11) 

where di represents the nodal degree of node i. In the case of a 
ring topology, we have di = d for any i. The Laplacian matrix 
can be also written as Q = Δ − A, where Δ is the diagonal 
matrix with elements Δii = di, and A is the adjacency matrix of 
the considered graph. The eigenvalues of Q are called the 
Laplacian eigenvalues. They are all real and non negative, and 
satisfy the condition: 0 = λ1 ≤ λ2 ≤ … ≤ λN. The second 
smallest eigenvalue, λ2, is also known as the algebraic 
connectivity, and it is particularly important.  λ2 is equal to 
zero only if G is disconnected. Other properties of matrix Q 
and its eigenvalues can be found in the literature (see [13], for 
example). 

Let yij = vij – wi / N, i = 1, …, N, be the components of a 
vector yj. Through simple algebra, using (8) and (11), Eq. (10) 
can be rewritten as follows: 

2

1

2(1 ) 2(1 ) N
T

j j
jN dN
=

− α − α
δΦ = − Φ + ∑y Qy . (12) 

Let us define another vector z = (y1
T, y2

T, ..., yN
T)T having 

N2 components; it is evident that zTz = Φ. Moreover, let us 
consider a block matrix L, with size N2×N2, having N 
repetitions of Q along the main diagonal and all the other 
blocks equal to the null matrix. Also L can be interpreted as a 
Laplacian matrix, whose eigenvalues coincide with those of 
Q, but each appears with multiplicity N. 

Using these further definitions, Eq. (12) can be rewritten as:  

2

2

2(1 ) 2(1 )

2(1 ) 2(1 )   RQ

T

TN dN

N dN

⎡ ⎤− α − α
δΦ = − + Φ⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤− α − α

= − + Φ⎢ ⎥
⎢ ⎥⎣ ⎦

z Lz
z z  (13) 

having denoted by RQ = zTLz / zTz the so-called Rayleigh 
quotient. By applying the Courant-Fischer Minimax Theorem 
[14] it is possible to say that: 

2 RQ Nλ ≤ ≤ λ  (14) 

and, consequently: 

22(1 ) 2(1 )(1 ) (1 ) N
N d N d

λλ− α δΦ − α ⎡ ⎤⎡ ⎤− − α + ≤ ≤ − − α +⎢ ⎥⎢ ⎥ Φ⎣ ⎦ ⎣ ⎦
.  

 (15) 

In practice, the above analysis permits us to find a lower 
bound (lb) and an upper bound (ub) for the mean variation of 
the potential function conditioned on a starting value Φ. If the 
network is fully-meshed, we have lb = ub, as all eigenvalues, 
except λ1 = 0, are coincident. In this case, the value of 

/Φ Φδ  is maximized assuming α = αopt = (N − 2)/(2(N − 1)) 

≈ 0.5 [11]. To have a maximum /δΦ Φ  seems a good 
criterion to make convergence as much faster as possible, and, 
in fact, simulations confirm that α ≈ 0.5 is the best choice for 
fully-meshed network. Additionally, for any α < 1, 

/ 0δΦ Φ > , and this result can be used to demonstrate 
convergence of the algorithm. 

For non fully-meshed networks, instead, lb and ub show 
behaviors like those in Fig. 8 for the case of the ring network 
with N = 49. The values of the nodal degree considered are: d 
= 2, 6, 8, 12, 16, 20, 24, 28, 34, 48. From the figure we see 
that lb becomes lower and lower when reducing d, while ub 
has an opposite behavior. Fig. 8 (a), in particular, shows that 
convergence of the algorithm cannot be established just on the 
basis of the lb on /δΦ Φ : for d < N – 1, in fact, there is a 

large range of α’s where / 0δΦ Φ < . On the other hand, 
Fig. 8 (b) shows that reasoning on the ub would be too 
optimistic, since it provides / 0δΦ Φ >  everywhere, and 
even greater and greater for decreasing d. 

Based on these preliminary results, it is evident that an in 
depth analysis should weight the contributions of λ2 and λN 
and, even more important, should take into account the role of 
the other eigenvalues, λi, with i ∈ [3, N – 1]. 
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Figure 8. (a) Lower and (b) upper bounds for 〈δΦ/Φ〉 in a ring 
network with N = 49 nodes. 
 
 

With the goal to develop further the theoretical analysis, a 
first, though coarse, approximation can consist in considering 
the average of the eigenvalues. An example of the estimate of 
αopt computed this way is shown in Fig. 9 for the random 
geometric graph with N = 50, where the nodes are located as 
in Fig. 10; in this case, in Eq. (10) (and in the following ones) 
1/d has been replaced by 1/ id . The figure shows how 
theory can predict the need to reduce the optimum share factor 
for decreasing d , but the approximations used do not permit 
a satisfactory agreement between the numerical values. The 
difference between the theoretical and the simulated results, 
particularly for small d , can be ascribed to some limits in 
the analytical approach. In (10), in fact, the subgroup Cl is 
unconstrained, and the missing links, when the network is non 
fully-meshed, can be found everywhere in the network. On the 
contrary, when reduced connectivity is due to the limited 
maximum coverage radius, the subgroup Cl is constrained and 
this introduces an effect that is not easy to capture by means of 
a formula. To confirm such statement, in Section IV, the 
comparison will be repeated by assuming that missing links 
due to failures are randomly distributed; and, in that case, we 
will show that the agreement between the theoretical curve 
and the simulated results can be better. 
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Figure 9. αopt as a function of the average nodal degree for the 

random geometric graph with N = 50 nodes: simulated average vs. 
analytical estimate. 
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Figure 10. Example of random geometric graph for a network with 

N = 50. 
 

Similar considerations hold for the ring topology. Starting 
from (13) and maximizing /Φ Φδ  we find (remind that d is 
constant for the ring): 

opt
RQ1
2d

α = − . (16) 

In this case, it can be numerically proved that the average of 
the eigenvalues is almost equal to d. So, the approximate 
optimum share factor is αopt ≈ 0.5. Actually, as shown in Fig. 
11, the actual optimum value, derived through simulations, 
can be significantly smaller, particularly for small d. It also 
shows a minimum, at d = 8 in the considered set of values. 
Even d = 2 is acceptable in the figure as, thanks to its 
structure, the ring network remains connected. Also in this 
case, the difference between the theory and the simulated 
results is due to the assumption of constrained links, that is 
even more evident for the ring topology. By removing this 
hypothesis, which means to distribute uniformly the missing 
links, that is a reasonable hypothesis in the case of link 
failures, the agreement between (16) and the simulated results 
becomes much better.  
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Figure 11. αopt as a function of the nodal degree for the ring 

topology with N = 49 nodes: simulated average vs. analytical 
estimate. 

IV. THE EFFECT OF FAILURES 

When averaging algorithms, like the considered push-sum 
protocol, are adopted in actual wireless sensor networks, the 
presence of obstacles or other kinds of radio impairments, as 
noise and multipath, could prevent some links from being 
used, due their poor quality in terms of signal-to-noise ratio. 
In such cases, at least in principle, the network should update 
the choice of the share factors in order to recover optimal 
efficiency even in presence of link failures. 

However, updating of the share factors could be quite 
unpractical to implement. Furthermore, the network could be 
unaware of the number of link failures occurred; so the value 
of its connectivity degree could not be available for 
calculating the optimal value of the share factor in the 
unexpected scenario. 

Under these circumstances, it is reasonable to assume that 
the network will continue to adopt the optimal share factor 
found for the case without failures. On the other hand, it can 
be interesting to estimate the performance loss (if any) that 
results from the adoption of the non optimal value. 

Let us consider a fully-meshed random geometric graph; for 
it, as discussed before, the optimal share, in absence of 
failures, is about 0.5. Let us suppose that, because of failures, 
at the beginning of the node interaction, a fraction x of its 
links, randomly distributed, is missing. While in absence of 
failures the network connectivity is N – 1, in the new situation 
the average value of d becomes: 

( )( )1 1d N x= − − . (17) 

Fig. 12 shows the values of d , calculated through (17), as 
a function of x, for different choices of N. 

If we focus on the curve for N = 50 (i.e., the same 
considered in the numerical examples of the previous 
sections), we can notice that, for a fraction of link failures ≤ 
0.5, the average nodal degree is still ≥ 25 and, from Fig. 9, we 
conclude that this implies opt 0.35α ≥ . With similar 

arguments, we can derive that, when the fraction of link 
failures is ≤ 0.3, it is opt 0.43α ≥ . 

Based on this simple analysis, we can guess that, except 
when the percentage of link failures with respect to the total 
number of possible links is very high, the presence of 
obstacles or other impairments in a wireless sensor network 
based on the push-sum algorithm scarcely affects the choice of 
the optimal share factor. On the other hand, when link failures 
occur, the gossip probability becomes smaller than 1, because 
a node could waste its communication attempt when trying to 
exploit a failed link. 

So, a negative effect on the convergence time is expected, 
in terms quite similar to those observed in [15] for another 
version of the gossip algorithm. Our analysis shows that such 
a penalty cannot be compensated through a different choice of 
the share factor. 
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Figure 12. Average value of d for a fully-meshed network in 

presence of a link failure rate x, for different values of N. 
 

The above considerations do not prevent us to estimate the 
optimum share factors in presence of link failures for some 
specific nodes configuration, like that depicted in Fig. 10. This 
is shown in Fig. 13, where the theoretical curve derived 
through the approach in Section III is also reported, for the 
sake of comparison. Fig. 13 is interesting as it demonstrates 
that the agreement between the analytical approach and the 
simulated results improves when the missing links are 
distributed uniformly, which is the hypothesis adopted for 
simulating link failures. This is because uniform distribution 
fits well the assumptions implicit in Eq. (10). On the contrary, 
when reduced connectivity is due to a limited maximum 
coverage radius, a larger difference is expected, that in fact 
has been confirmed in Section III. 

For the sake of completeness, in Fig. 14 we have reported 
some values of optimum share factors found for a ring 
network with N = 49 in presence of link failures. Because of 
the random distribution of failures, the nodal degree is no 
longer constant for the ring too, and an average value must be 
determined. Similarly to Fig. 13, we see that, when missing 
links are randomly distributed, there is a better 
correspondence between theoretical expectations and 
simulations results. 
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Figure 13. αopt as a function of the average nodal degree for the 

random geometric graph with N = 50 nodes in the presence of link 
failures: simulated average vs. analytical estimate. 
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Figure 14. αopt as a function of the average nodal degree for the 

ring network with N = 49 nodes in the presence of link failures: 
simulated average vs. analytical estimate. 

 

V. CONCLUSIONS 

The role of the share factor in the push-sum algorithm has 
been investigated through simulations and theoretical 
arguments. Simulations have confirmed that the adoption of 
an optimal share factor, depending on the network 
configuration and connectivity level, can improve 
significantly the convergence speed. Because of the statistical 
nature of the quantities involved, results have also been given 
in terms of mean values and standard deviations. We have also 
shown that the optimal share factor is not significantly 
influenced by the possible appearance of link failures, at least 
when the original network has a high connectivity level and 
the percentage of link failures is not too large. 

We have also discussed a first approach, based on the 
concept of potential function, for a theoretical derivation of 
the optimal shares. Actually, the possibility to compute 
analytically the optimum values is very attractive but, at 

present, only qualitative and approximate information is 
achievable through simple mathematical arguments. In 
general, the analytical approach is suitable to describe 
situations where missing links are uniformly distributed, that 
is a realistic assumption in the case of random link failures. 
On the contrary, at least in the current version, it is not able to 
describe efficiently the constraint induced on links by a 
limited maximum coverage radius. Improving approximation 
can consist in overcoming such limitation, as well as in 
finding a better way for weighting the contributions of 
different eigenvalues of the Laplacian matrix for the 
considered graph. This further topic could be the subject of 
future work. 
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