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Abstract—This paper focuses on non-data aided estimation
of the symbol rate and detecting the data symbols in linearly
modulated signals. A blind oversampling-based signal detector
under the circumstance of unknown symbol period is proposed.
First, the symbol rate is estimated using the Expectation Max-
imization (EM) algorithm. However, within the framework of
EM algorithm, it is difficult to obtain a closed form for the log-
likelihood function and the density function. Therefore, these two
functions are approximated in this paper by using the Particle
Filter (PF) technique. In addition, a symbol rate estimator that
exploits the cyclic correlation information is proposed as an
initialization estimator for the EM algorithm. Second, the blind
data symbol detector based on the PF algorithm is designed.
Since the signal is oversampled at the receiver side, a delayed
multi-sampling PF detector is proposed to manage the inter-
symbol interference caused by oversampling, and to improve
the demodulation performance of the data symbols. In the PF
algorithm, the hybrid importance function is used to generate
both data samples and channel model coefficients, and the
Mixture Kalman Filter (MKF) algorithm is used to marginalize
out the fading channel coefficients.

Index Terms—Symbol rate estimation, Data symbol detection,
Particle Filter, Cyclostationarity, Expectation Maximization

I. INTRODUCTION

Recently, non-cooperative communication systems have at-
tracted a lot of attention. Especially for military and civilian
applications, many researchers have focused on developing
efficient means for electronic interception and identification
of RF signals such as automatic modulation classification
(AMC) algorithms [1], [2], [8], [11], [16]. For this class of
applications, notice that before or after identifying the modu-
lation parameters, estimation of unknown channel parameters
represents a major challenge for the successful deployment of
AMC systems.

One of the key parameters required for the successful de-
modulation and decoding of unknown RF linearly modulated
signals is that of symbol-rate estimation. After modulation
classification, the demodulation step requires accurate sym-
bol rate estimation [13]. Several approaches for symbol-rate
estimation have been recently proposed in the literature. A
symbol-rate estimator which uses the wavelet transform is
suggested in [13]. However, in reference [13], this algorithm
is based on the assumption that the transmitted signal has an

S. Park, E. Serpedin, and K. Qaraqe are with the Texas A & M University,
College Station, TX 77843-3128, USA.

This work was supported in part by grants from QNRF-NPRP and QTel.

invariant instantaneous amplitude during each symbol period.
This implies that a rectangular pulse shaping filter is used at
the transmitter. However, the majority of practical communica-
tion systems do not employ a rectangular transmit pulse since
it requires a large bandwidth. A more general cyclic correlation
(CC) based symbol-rate estimator was proposed in [6] and
[12] for arbitrary linearly modulated signals. Even though
the CC-based symbol-rate estimator [6] is very powerful for
AMC applications since no prior information is required, the
performance of the estimator should be improved for efficient
demodulation of data symbols and channel tracking.

In addition to symbol-rate estimation, data symbols should
be also blindly detected. In many real-world applications,
narrowband mobile communication channels are generally
modeled as frequency flat Rayleigh fading channels. To esti-
mate the symbol rate, oversampling is used at the receiver side.
However, oversampling causes inter-symbol interference (ISI)
in the received signal. Therefore, numerous contributions have
been reported in the literature for signal detection and channel
estimation in the presence of ISI effects. Most of these works
rely on techniques such as the maximum likelihood sequence
estimation (MLSE) [17], [18]. Since these optimal solutions
are based on the Viterbi algorithm and require an additional
channel estimation step based on the Kalman Filter (KF) for
each possible sequence, they entail huge decision delays and
high computational complexity. Moreover, in the conventional
MLSE, the metrics of trellis branches are evaluated based
on the delayed channel parameter estimates which are then
updated according to the detected data. Since the data symbol
detection is based on delayed estimates of the channel, this
method is not suitable for fast fading channels.

To reduce the complexity of MLSE, suboptimal detectors
were proposed such as the per-survival sequence detector [14],
[15]. This class of suboptimal detectors is more appropriate for
fast fading channels since it avoids delayed channel estimates.
However, it has a number of drawbacks. First, it still requires
a huge computational complexity since it detects the data
symbols based on trellis decoding. Second, it requires a
separate channel estimator, which further requires preamble
symbols to track the channel.

Recently, novel sequential Monte Carlo algorithms, which
jointly estimate the channel and detect the data symbols, have
been suggested in [7] and [9]. Without compromising the
system model, they approximate the optimal solution using
sequential Monte Carlo techniques. However, the assumption
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of known model coefficients is required. In practice, the model
coefficients should be estimated in advance. To obtain accurate
estimates, a large number of training data is required. Using a
blind Particle Filter (PF) detector, Huang et al. [3] suggested
an improved algorithm. In [3], the proposed algorithm employs
a novel resampling algorithm to prevent the error floors caused
by the modeling errors. However, this detector cannot be
adopted when the symbol-rate is unknown since the symbol
rate estimation generally requires oversampling of the received
signal. In addition, the proposed resampling algorithm presents
increased computational complexity. Therefore, this algorithm
is not suitable for efficient demodulation of data symbols in
AMC.

This paper proposes a blind oversampling-based signal
detector under the circumstance of unknown symbol period.
It consists of two parts: a symbol rate estimator and a symbol
detector. The symbol rate is estimated using a combination be-
tween a cyclic correlation based approach and the Expectation
Maximization (EM) algorithm, a framework which requires
oversampling or fractionally sampling (sampling faster than
the symbol rate). To reduce the computational complexity,
the EM algorithm is simplified by using a Particle Filter
(PF) algorithm. Data symbols are detected by using the same
PF algorithm based on the oversampled received signal. The
oversampling of the received signal improves the performance
of data-symbol detectors. In addition, the proposed scheme
only requires general resampling steps, which are much sim-
pler than the novel resampling steps proposed in [3]. The PF
algorithm employs also a modified hybrid importance function
[4] and the Mixture Kalman Filter (MKF) algorithm [9] to
reduce its computational complexity. An AR(2) process is used
to model the fading channel, and both the AR coefficients
and channel coefficients are estimated. Finally, two resampling
techniques are adopted and compared in terms of their demod-
ulation performance of data symbols.

The rest of this paper is organized as follows. Dynamic
state-space models are proposed in Section I to capture the
propagation channel. A novel blind symbol-rate estimator and
a data-symbol detector are introduced in Sections III and IV,
respectively. In Section V, simulation results are provided
to illustrate the performance of the proposed algorithm for
efficient demodulation of BPSK modulated signals in Rayleigh
fading. Finally, conclusions are mentioned in Section VI.

II. DYNAMIC SIGNAL MODEL

We consider the problem of blind (or non-data aided) detec-
tion of data symbols assuming a wireless channel environment
modeled in terms of a Rayleigh flat fading channel. The
Rayleigh flat fading channel is modeled using Jakes’ model.
Because it is not feasible to directly apply Jakes’ model into
dynamic state-space models, alternatively, an AR process is
used to approximate Jakes’ model [5]. The AR(2) process is
modeled as

ht = −a1ht−1 − a2ht−2 + vt, (1)

where ht denotes the fading channel coefficient, a1 and a2

are the AR model coefficients, and vt is normally distributed
noise with zero mean and σ2

v variance [19]. Based on the
assumption of unit power fading process, the noise variance
σ2

v can be expressed as

σ2
v =

(1− a2)((1 + a2)2 − a2
1)

(1 + a2)
. (2)

Herein, we only consider linearly modulated signals. We
assume M-ary PSK modulated signals, and that a square-root
raised cosine filter is used as a shaping filter.

In many references, e.g., [3], [9], the dynamic state-space
model of one sample per symbol period was adopted. Based
on the known symbol period, the received data signal is
sampled at every symbol period. Such an approach not only
prevents inter-symbol interference (ISI) but also reduces the
computational complexity of resulting decoding algorithms.
However, it cannot be adopted when the symbol rate is
unknown since the symbol rate estimation generally requires
oversampling of the received signal. Therefore, we suggest
employing an alternative state-space dynamic model to capture
the effects of oversampling.

To estimate the symbol period T , it is necessary to over-
sample the received signal. If we assume that the sampling
period is sufficiently small relative to the symbol period,
e.g., Ts << T , where T and Ts denote the symbol period
and the sampling period, respectively, a dynamic state-space
channel model can be constructed assuming multiple samples
per symbol period. Herein, the dynamic state-space model is
depicted by the following set of equations:

state equations : at = at−1,

ht = Atht−1 + vt,

observation equation : yt = gThtst + et, (3)

where ht = [ht, ht−1]T, at = [at,1, at,2]T, vt = [vt, 0]T,
g = [1, 0]T, and

A =
[ −at,1 −at,2

1 0

]
, (4)

st =
L−1∑

l=0

bb t
α c−lpt,l, (5)

where L denotes the number of past symbols that are corre-
lated with the tth sample, pt,l denotes the pulse shaping filter
tap, bγc denotes the largest integer less than or equal to γ, and
α = T/Ts. The fading channel taps are represented by ht, and
the AR model coefficients are denoted by at,1 and at,2. The
process noise vt is assumed to be normally distributed with
zero mean and σ2

v variance. In the observation equation, yt

denotes the received signal, bt stands for data symbol, and
et stands for an additive Gaussian noise (AWGN) with zero
mean and σ2 variance. Since the channel is assumed to be
stationary, the AR coefficients at,1 and at,2 are considered as
static parameters [3].

The Particle Filter algorithm is next developed to blindly
detect the data symbols based on the proposed dynamic state-
space model.
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III. BLIND SYMBOL DETECTION

As mentioned above, due to oversampling, inter-symbol
interference is present. To exploit efficiently the information
contained in the received signal and to cope with the resulting
inter-symbol interference, a delayed version of the PF algo-
rithm is adopted herein.

First, consider the joint posterior density of transmitted
symbols, b0, . . . , bb t

α c, and AR coefficients, a0, . . . , at. Using
Bayes’ rule, the joint posterior density can be expressed as

p(b0:b t
α
c,a0:t+∆1 |y0:t+∆1)

∝p(bb t
α
c|b0:b t

α
c−1,a0:t+∆1 , y0:t+∆1)p(b0:b t

α
c−1,a0:t+∆1 |y0:t+∆1)

∝p(bb t
α
c|b0:b t

α
c−1,a0:t+∆1 , y0:t+∆1)

×p(b0:b t
α
c−1,a0:t+∆1 , yt+∆3+1:t+∆1 |y0:t+∆3)

∝p(bb t
α
c|b0:b t

α
c−1,a0:t+∆1 , y0:t+∆1)

×p(at+∆1 , yt+∆1 |b0:b t
α
c−1,a0:t+∆1−1, y0:t+∆1−1) · · ·

×p(at+∆3+1, yt+∆3+1|b0:b t
α
c−1,a0:t+∆3 , y0:t+∆3)

×p(b0:b t
α
c−1,a0:t−dαe|y0:t−dαe)

∝p(bb t
α
c|b0:b t

α
c−1,a0:t+∆1 , y0:t+∆1)

∆2−1∏
j=0

p(at+∆1−j|at+∆1−j−1)

×
∆2−1∏
j=0

p(yt−j|b0:b t
α
c−1,a0:t−j, yt−j−1)

×p(b0:b t
α
c−1,a0:t−∆2 |y0:t−∆2), (6)

where ∆1 denotes the number of delayed samples, ∆2 stands
for the number of samples per symbol period, and ∆3 = ∆1−
∆2.

The samples are generated from the right hand side of
equation (6) which is referred to as a hybrid importance
function,

p(bb t
α
c|b0:b t

α
c−1,a0:t+∆1 , y0:t+∆1)

∆2−1∏
j=0

p(at+∆1−j|at+∆1−j−1), (7)

with p(at+∆1−j|at+∆1−j−1) = δ(at+∆1−j − at+∆1−j−1),
δ(·) being the Dirac delta function, and
p(bb t

α
c|b0:b t

α
c−1,a0:t+∆1 , y0:t+∆1) is shown in Table I.

The weight of the function is updated via

ŵb t
α
c ∝ wb t

α
c−1

×
∆2−1∏
j=0

p(yt+∆1−j|b0:b t
α
−1c−1,a0:t+∆1−j, y0:t+∆1−j−1).

(8)

The proposal density function (7) does not include any vector
related to the channel taps. Therefore, the channel vector must
be marginalized out. This is implemented using the predictive
and update steps of the Kalman filter. The details are shown
in Table I.

To prevent phase ambiguity, initial AR coefficients are
generated via

a1 = −2rd cos(
2πfdT√

2
),

a2 = r2
d, (9)

and

fd =
v

λ
, (10)

where v denotes the speed of the vehicle, λ stands for the
carrier wavelength, and rd represents the pole radius of the AR
model and fd is the maximum Doppler frequency, which are
drawn from the regions [0.9, 0.999] and [0, 0.1], respectively.
The region of fdT is decided by considering real-world
communication systems. For examples, fdT must be less than
0.062 if the system assumes 2 GHz carrier frequency, symbol
rates are greater than 3600 Hz, and the vehicle speeds are less
than 75 miles/h [3].

Having introduced all elements required for the implementa-
tion of the PF algorithm, the resulting weighted samples, b

(i)

b t
α c

and w
(i)

b t
α c

, i = 1, . . . , N , approximate p(bb t
α c|y0:t), and the

minimum mean square error (MMSE) estimate is calculated
via

b̂b t
α c =

N∑

i=1

b
(i)

b t
α c

w
(i)

b t
α c

. (11)

The resampling step is conducted at the end. However, the
general resampling step does not prevent AR coefficients, at,
from degenerating and assuming very few different values.
Huang and Djurić proposed a novel resampling step [3] based
on the Auxiliary Particle Filter (APF) and the smoothing
kernel approach, which was originally proposed by Liu and
West in [10].

Whenever the resampling step is required, instead of the
general resampling step, the following procedure is performed.
First, the sampled mean and covariance matrix are computed
via

āt−1 =
N∑

i=1

w
(i)
t−1a

(i)
t−1,

Vt−1 =
N∑

i=1

w
(i)
t−1(a

(i)
t−1 − āt−1)2. (12)

A new mean vector is defined as ã(i)
t = εa(i)

t−1+(1−ε)āt−1. An
auxiliary variable is generated from the index set {1, · · · , N}
with the probability proportional to

q(i|y0:t+∆1)
∝wb t

α
c−1

×∏∆2−1

j=0
p(yt+∆1−j |b(i)

0:b t
α
c−1

,ã
(i)
t+∆3+1:t+∆1−j

,a
(i)
0:t+∆3

,y0:t+∆1−j−1).

(13)

Now, consider the generated sample index as a new index ξ,
and draw the channel model coefficients a(i)

t+∆3+1:t+∆1
from
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TABLE I
POSTERIOR DENSITY FUNCTION

p(bb t
α
c = bl|b0:b t

α
c−1,a0:t+∆1 , y0:t+∆1 )

∝
∆1+∆2−1∏

j=0

p(yt+∆1−j |b(i)b t
α
c = bl, b

(i)

1:b t
α
c−1

, y1:t+∆1−j−1)

∝
∆1+∆2−1∏

j=0

p(yt+∆1−j |bf , b
(i)

b t
α
c = bl, b

(i)

1:b t
α
c−1

, y1:t+∆1−j−1)

∝
∆1+∆2−1∏

j=0

∑
bf

∫
p(yt+∆1−j , ht+∆1−j |bf , b

(i)

b t
α
c = bl, b

(i)

1:b t
α
c−1

, y1:t+∆1−j−1)dht+∆1−j

∝
∆1+∆2−1∏

j=0

∑
bf

∫
N(ht+∆1−js

(i)
t+∆1−j,f,l

, σ2)N(µ
(i)
t+∆1−j,f,l

, Σ
(i)
t+∆1−j,f,l

)dht+∆1−j

∝
∆1+∆2−1∏

j=0

∑
bf

N(µ
(i)
t+∆1−j,f,l

s
(i)
t+∆1−j,f,l

, c
(i)
t+∆1−j,f,l

),

where bf denotes future symbols, bf = [bb t
α
c+1, bb t

α
c+2, · · · , bb t+∆1

α
c−1

, bb t+∆1
α

c],

c
(i)
t+∆1−j,f,l

= gT Σ
(i)
t+∆1−j,f,l

g + σ2s
(i)2
t+∆1−j,f,l

, and all the other parameters are
obtained by means of the Kalman filter shown in the Table II.

TABLE II
KALMAN FILTER

1. Time update the channel vector
µ

(i)
t+∆1,f,l

= gTA
(i)
t+∆1

γ
(i)
t+∆1−1,f,l

Σ
(i)
t+∆1,f,l

= A
(i)
t+∆1

Σ
(i)
t+∆1−1,f,l

A
(i)T
t+∆1

+ σ
2(i)
v,t+∆1

ggT.
2. Measurement update the channel vector
K

(i)
t+∆1,f,l

= Σ
(i)
t+∆1,f,l

gc
(i)−1
t+∆1,f,l

s
(i)
t+∆1,f,l

γ
(i)
t+∆1,f,l = A

(i)
t+∆1

γ
(i)
t+∆1−1,f,l + K

(i)
t+∆1,f,l(yt+∆1 − µ

(i)
t+∆1,f,ls

(i)
t+∆1,f,l)

C
(i)
t+∆1,f,l

= (I −K
(i)
t+∆1,f,l

gTs
(i)
t+∆1,f,l

)Σ
(i)
t+∆1,f,l

.

the density represented by

q(at+∆3+1:t+∆1 |a(ξ)
0:t+∆3

)
= p(at+∆1 |a(i)

t+∆1−1)p(a(i)
t+∆1−1|a(i)

t+∆1−2) · · ·
× p(a(i)

t+∆3
|a(i)

t+∆3−1)p(a(i)
t+∆3+1|a(i)

t+∆3
)

= δ(at+∆1 − a(i)
t+∆1−1)δ(a

(i)
t+∆1−1 − a(i)

t+∆1−2) · · ·
× TN(at+∆3+1; ã(ξ)

t+∆3+1, h
2Vt+∆3+1|[al1, au1], [al2, au2]),

(14)

where TN(β; γ1, ∆|[al1, au1], [al2, au2]) denotes a truncated
multivariate normal distribution with the mean γ1, covariance
matrix ∆, and boundaries [al1, au1] and [al2, au2]. Since the
channel is assumed to be stationary, the Dirac delta function
can be used as the prior function of the channel model coeffi-
cients. However, the Dirac delta function makes the algorithm
depend on the initial sample values since the previous samples
are transferred without any changes. Therefore, at each data
symbol b

(i)
t drawing, the first Dirac delta function is replaced

by the truncated normal distribution to vary the samples. Based
on the generated samples a(i)

t+∆1−∆2+1:t+∆1
, the other samples

bb t
α c are drawn from the hybrid importance function (7). The

new updated weight is also evaluated via

ŵ(i)

b t
α
c∝

∏∆2−1

j=0
p(yt+∆1−j |b(i)

0:b t
α
−1c−1

,a
(i)
0:t+∆1−j

,y0:t+∆1−j+1)

∏∆2−1

j=0
p(yt+∆1−j |b(ξ)

0:b t
α
−1c−1

,a
(ξ)
0:t+∆1−j

,y0:t+∆1−j+1)
. (15)

IV. SYMBOL PERIOD ESTIMATION

A. Symbol Period Estimation based on EM

The Expectation Maximization (EM) algorithm is adopted
to estimate the symbol rate. Based on the channel model,
define the vectors

b = [b0, b1, · · · , bb t
α c−1, bb t

α c],
y = [y0, · · · , yt+∆1 ],
A = [a0, · · · ,at+∆1 ]. (16)

Based on the vectors in (16), the E-step in the discrete EM
(D-EM) method is implemented through

Q(α) =
∫

A

∫

b

p(b,A|y, α) log p(y|b,A, α)dbdA. (17)

To simplify the Q-function in equation (17), we approxi-
mate both the probability density function and log-likelihood
function using the Particle Filter (PF) algorithm. The joint
probability density and the log-likelihood function are next
re-expressed as

p(b,A|y, α) = p(b0:b t
α
c,a0:t+∆1 |y0:t+∆1 , α), (18)

log p(y|b,A, α) = log p(y0:t+∆1 |b0:b t
α
c,a0:t+∆1 , α).(19)

Based on the Table I, we generate samples b
(i)

0:b t
α c

and a(i)
0:t+∆1

from (18). The Q-function of the D-EM is then approximated
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as

Q(α)

≈
∫

A

∫

b

N∑
i=1

w(i)

b t
α
cδ(b0:b t

α
c − b(i)

0:b t
α
c)δ(a0:t+∆1 − a(i)

0:t+∆1
)

× log p(y0:t+∆1 |b0:b t
α
c,a0:t+∆1 , α)dbdA

=
N∑

i=1

w
(i)
b t

α
c log p(y0:t+∆1 |b(i)

0:b t
α
c,a

(i)
0:t+∆1

, α)

=
N∑

i=1

w(i)

b t
α
c log

t+∆1∏
j=0

p(yj|b(i)

0: t
α
,a(i)

0:t+∆1
, y0:j−1, α)

=
N∑

i=1

w(i)

b t
α
c

t+∆1∑
j=0

log p(yj|b(i)

0: t
α
,a(i)

0:t+∆1
, y0:j−1, α)

=
N∑

i=1

w(i)

b t
α
c

t+∆1∑
j=0

log N(µ(i)
j s(i)

j , c(i)
j ). (20)

Finally, the M-step of the D-EM algorithm takes the form

α
(n)
0 = arg max

α∈A(n−1)
Q(α), (21)

where n denotes the number of iterations of the EM algorithm
and A represents a discrete set of possible values for α. The
general procedure that we follow is to shrink the range of the
discrete set A(n) as the number of iterations increases. The
procedure is diagramed as follows:

A(0)

↓
α

(1)
0 , ε(1) , η(1)

↓
A(1)

q
{α(1)

0 −η(1),α
(1)
0 −η(1)+ε(1),··· ,α(1)

0 ,··· ,α(1)
0 +η(1)−ε(1),α

(1)
0 +η(1)}

↓
...
↓

α
(n)
0 (22)

where ε and η are small values which satisfy the conditions
ε(1) > · · · > ε(n−1) and η(1) > · · · > η(n−1), respectively.
Given the (n−1)th discrete set A(n−1), the estimated oversam-
pling factor α(n) is estimated by the D-EM. The nth discrete
set A(n) consists of the number of b2η(n)/ε(n)c elements
neighboring α(n). For example, when α(n) = 5.2, η(n) = 0.07,
and ε(n) = 0.01, then

A(n) = {5.13, 5.14, . . . , 5.26, 5.27}. (23)

To represent the (n + 1)th discrete set A(n+1), we choose
values for η(n+1) and ε(n+1) smaller than η(n) and ε(n),
respectively, and repeat the process until the convergence is
achieved. After certain iterations, we finally obtain an accurate
estimate α̂.

B. Initial Symbol Period Estimation

In the previous section, we have discussed the symbol rate
estimator using the discrete EM (D-EM) algorithm. The D-EM
algorithm requires an initial finite set that will be obtained by
using the cyclic correlation based symbol-rate estimator. The
cyclic correlation based symbol rate estimator is suitable as an
initialization estimator because it only requires a sufficiently
small sampling period so that Ts < T/4 [6]. According to [6]
and [12], the initial estimate can be obtained via

p̂0 = arg max
fk∈I

Ĉ(fk)∗Ĉ(fk), (24)

where Ĉ(fk) stands for the vector of cyclic correlations (see
[6], [12] for more details). There is a reciprocal relation be-
tween the oversampling parameter α0 and the cyclic frequency
p0. Therefore, the estimate of oversampling factor can be
represented by

α̂0 =
1
p̂0

. (25)

For more efficient estimation, based on equation (24), the
symbol-rate estimator is reformulated as

p̂0,j = arg max
fk∈Ij

Ĉ(fk)∗Ĉ(fk),

α̂0,j =
1

p̂0,j
, (26)

where j = 1, · · · , J , and J stands for the number of searching
sub-intervals. The searching interval I should be divided into
several sub-intervals, I1, · · · , IJ , and each local maximum
value should be selected from the sub-intervals. The selected
local maximum values consist of the initial finite set A(0), i.e.,

A(0) = {α̂0,1, · · · , α̂0,J}. (27)

V. SIMULATION RESULTS

In this section, the performance of the proposed algorithm
is illustrated through computer simulations. In all computer
simulations, a Rayleigh flat fading channel, BPSK modulation
with unit power, and a square-root raised cosine pulse shaping
filter with roll-off factor ρ are assumed. In addition, all trans-
mitted data symbols are differentially encoded to prevent phase
ambiguities. The signal to noise ratio (SNR) is calculated as
the averaged received SNR.

In the first computer simulation, we compared the BER
performance of the multiple samples per symbol period signal
data detector (MSSD) to the single sample per symbol period
signal data detector (SSSD). As shown in Fig. 1, the MSSD
improves the BER performance much more than the SSSD.
Based on the PF with general resampling, MSSD eliminates
the visible error floor which is exhibited by the SSSD. The
performance gain is much larger at high SNR since the MSSD
tracks the channel much better, and the overall performance
is limited by the channel fading.

In the Fig. 2, the BER performances of each method,
namely Mixture Kalman Filter (MKF) with known channel
model coefficients, Particle Filter with general Resampling
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(PF-RS), and Particle Filter with Smoothing Kernel (PF-SK),
are plotted. When we oversample the received signal, the
gain due to the smoothing kernel is negligible. Therefore,
using PF-RS, the complexity caused by the smoothing kernel
method can be reduced. Both PF-RS and PF-SK show better
performance than the Dual Kalman Filter (DKF) method. To
show the lower bound, the performance of the MKF with
known channel model coefficients is also presented. In the Fig.
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Fig. 1. BERs of PF-SK and PF-RS with one sample per symbol period and
5.25 samples per symbol period (fdT =0.05, α = 5.25, ρ = 0.7).

3, according to the number of particles that are considered, the
BER performances are compared. As the number of particles
increases, the BER performance is improved. Moreover, the
PF-RS algorithm shows better performance than the DKF.
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Fig. 2. BERs of PF-SK, PF-RS, and MKF with known AR coefficients with
50 particles, fdT =0.05, α = 5.25, and , ρ = 0.7.

In Tables III and IV, the performance of the symbol rate
estimator based on PF-RS is compared with the classical
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Fig. 3. BERs of the PF-RS with 50, 100, and 200 particles (fdT =0.05,
α = 5.25, ρ = 0.7).

symbol rate estimator based on cyclic correlation (CC). The
estimated symbol rate is considered up to the accuracy level of
10−2. Namely, if the estimated symbol rate lies in the interval
[5.25, 5.26), then we consider the symbol rate is correctly
estimated. As shown in the Tables III and IV, the proposed
algorithm improve the performance a lot in both SNRs.

TABLE III
ESTIMATOR PERFORMANCE COMPARISON BETWEEN PF AND CC

(α = 5.25, 50 PARTICLES, 10DB)

PF(ρ = 0.5) CC(ρ = 0.5)
Performance(%) 99.99 24.29

PF(ρ = 0.7) CC(ρ = 0.7)
Performance(%) 100.00 75.03

TABLE IV
ESTIMATOR PERFORMANCE COMPARISON BETWEEN PF AND CC

(α = 5.25, 50 PARTICLES, 30DB)

PF(ρ = 0.5) CC(ρ = 0.5)
Performance(%) 100.00 28.03

PF(ρ = 0.7) CC(ρ = 0.7)
Performance(%) 100.00 75.92

VI. CONCLUSIONS

Recently, non-cooperative communication systems have at-
tracted a lot of attention. Numerous researchers have focused
on systems such as automatic modulation classification that is
encountered in both military as well as civilian applications.
The importance of blind estimation of the channel parameters
and blind detection of the data symbols also comes from the
increasing attention given to AMC applications.

In this paper, novel symbol rate estimators with improved
performance compared to the estimator based on cyclic cor-
relation were proposed. The EM algorithm, which is used in
the symbol rate estimator, is simplified and made tractable
by using the PF algorithm. A delayed oversampling based
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data symbol detector is also proposed under the modeling
framework of Rayleigh flat fading channels. Using the delayed
oversampling data symbol detector, the performance of the
data symbol detector is improved compared to the classical
blind PF detector. Moreover, the general resampling technique,
which is very simple, can be adopted since this detector
reduces the effect of the AR coefficient estimation errors.
Finally, since both the symbol rate estimator and data symbol
detector rely on the same PF algorithm, the resulting algorithm
presents low computational complexity.
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