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Abstract—In the Multi Input Multi Output (MIMO) antenna
system, it is known that the Linear Minimum Mean Squared
Error (MMSE) receiver is equivalent to Tikhonov regularization.
Given that, we develop a family of generalized receivers based
on regularization with different penalty functions that penalize
the received symbols outside the convex hull of the modulating
constellation. For illustration purposes we consider two types
of penalty functions, the deadzone and infinity norm penalty
functions. The proposed decoders have low complexity and can
be implemented efficiently using convex optimization algorithms.
Simulation results show that the proposed receivers outperform
the MMSE receiver by as high as 5-dB at low Signal to Noise
Ratio (SNR).

Index Terms—Multiple antenna systems, spatial multiplexing,
lattice problems, wireless communications, regularization.

I. INTRODUCTION

In Spatial Multiplexing (SM) scenario of the Multi Input
Multi Output (MIMO) flat fading wireless communication
system with m transmit and n receive antennas, the relation
between the transmitted and the received signal can be de-
scribed as follows

y =
√

ρ

m
Hx + w (1)

where ρ is the expected value of the Signal to Noise Ratio
(SNR) at each receive antenna, x is the m × 1 transmitted
vector whose elements are complex symbols drown form the
normalized M-QAM constellation with E(xxT) = I, where
M is the constellation order and I is the m × m identity
matrix. y is the n × 1 received vector, H is the n × m
channel matrix with n ≥ m, whose elements represent the
i.i.d. flat fading channel gains hij ∼ CN (0, σ2

h). Without loss
of generality, w is n × 1, i.i.d. zero mean complex white
Gaussian noise, uncorrelated with the transmitted symbols,
with wi ∼ CN (0, 1). For the Gaussian noise scenario, the
optimum decoder is the Maximum Likelihood decoder which
finds the most likely input vector xml according to

xml = arg min
x∈Λ

‖y −
√

ρ/mHx‖2 (2)

where Λ is the lattice whose points represent all possible
combinations of x. The problem (2) is NP-hard in general
that can only be exactly solved by exhaustive search over all
possible Mm vector combinations; where its complexity in
this case grows exponentially with the problem size [1]. This
is due to the discrete nature of the lattice Λ; nearest lattice
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point search algorithms can be used to solve (2) approximately
[2], [3].

Hence, linear decoders have been used to obtain an ap-
proximate solution with lower complexity. The simplest linear
decoder is the decorrelator which is known as the Zero-Forcing
(ZF) decoder in which the constraint x ∈ Λ is relaxed and the
domain in this case is Rn. The zero-forcing decoder inverts
the channel in order to cancel spatial interference, in particular
xzf = Gzf y with

Gzf =
√

m/ρ(H∗H)−1H∗ (3)

is the pseudo-inverse of the channel [4]. Although the zero
forcing solution completely cancels out spatial interference,
it has the disadvantage of enhancing the noise, especially
if the channel matrix is ill-conditioned; in such case, small
eigen values amplify the contaminating noise. In an effort
to reduce noise enhancement, the Linear Minimum Mean
Squared Error (MMSE) decoder is used to strike a balance
between interference cancelation and noise enhancement [5].
The MMSE decoder finds the solution xmmse = Gmmse y
where

Gmmse = arg min
x

E‖Gy − x‖2 (4)

which has the analytical solution

Gmmse =
√

ρ

m
(

ρ

m
H∗H + I)−1H∗ (5)

It is clear that at high SNR the MMSE decoder converges
to the ZF decoder, while at low SNR the MMSE decoder
prevents noise amplification by improving small eigen values
before matrix inversion. Hence, the MMSE decoder reduces
noise enhancement at the expense of complete interference
cancelation. Since the transmitted symbols are drawn from a
specific constellation with certain alphabet, a slicing operation
is required as a post-processing operation for both the zero
forcing and the MMSE decoders over the transmitted constel-
lation. Successive interference cancelation receivers such as
the Bell Laboratories Layered Space-Time (BLAST) receivers
are among the suboptimal categories for solving (2) [6],
[7]. Although the BLAST receiver, in its two forms; the
diagonal (D-BLAST) and the vertical (V-BLAST) versions,
outperform the MMSE and ZF decoders, they suffer from
error propagation due to the its successive nature. A near
optimal receiver is the Sphere Decoder (SD) which finds
the nearest lattice point inside a hypersphere, with variable
radius, centered at the received signal point (2) [3], [8]. The
SD has the best performance among all previous receivers
but its performance varies as a function of the SNR [9]. A
reminiscent of the sphere decoder is the Cube Decoder (CD)
which finds the nearest lattice point inside a hypercube. The
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performance of the CD is inferior to the SD but it does not
depend on the operating SNR [10]. For illustration purpose,
the performance of different MIMO decoders for 4×4 MIMO
system is illustrated in fig. 1. As can be seen from the figure,
the performance of the MMSE receiver approaches the ZF at
high SNR, as expected.

It should be mentioned that in this paper, we are only inter-
ested in the MMSE decoder and its connection to Tikhonov
regularization. In particular, we will introduce a new decoder,
the regularized decoder, which is considered an improved
version of the MMSE decoder that takes into account the
structure of the modulating constellation to gain performance
improvement. In the next section, we will give a brief review
on Tikhonov regularization and its connection to the MMSE
receiver [11], [12]. In section 3, the reglarized decoder is
proposed and the penalty functions are introduced. Simulations
are given in section 4.
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Fig. 1. Performance of MIMO decoders for 4 × 4 MIMO QPSK.

II. TIKHONOV REGULARIZATION

Regularization is a scalarization method that solves a multi-
criterion optimization by converting the multi-criterion objec-
tive function into a positive weighted sum of the individual
objectives. A special type of regularization is Tikhonov regu-
larization solves a least squares problem while penalizing the
squared norm of a function of the solution vector. In particular,
Tikhonov regularization solves the following minimization
problem [13], [14]

xtik = arg min
x
‖y −

√
ρ/mHx‖2 + λ‖Lx‖2 (6)

where λ > 0 is the regularization parameter which controls
how much weight is geared towards penalizing the norm of the
solution vector. It should be noted that as λ → 0,xtik → xzf ,
and as λ →∞,xtik approaches the matched filter solution. L
is the regularization operator that usually approximates a high
pass filter or a derivative operator as in image processing;
Hence, ‖Lx‖ is a measure of the smoothness of the solution
[15]. Thus the regularization problem (6) tries to solve the

least squares problem and at the same time penalizes a certain
variation in the solution vector in the Euclidean norm sense.
The above minimization problem can be re-written as an
unconstrained least squares problem

xtik = arg min
x
‖ỳ − H̀x‖2 (7)

where ỳ =

[
y

0

]
and H̀ =

[ √
ρ/mH√

λL

]
where 0 is the

zero vector of appropriate length. The problem in (7) has the
following analytical solution which can be derived using the
orthogonality principle [4]

xtik =
√

ρ

m
(

ρ

m
H∗H + λL∗L)−1H∗y (8)

which can be expressed as xtik = Gtik y with

Gtik =
√

ρ

m
(

ρ

m
H∗H + λL∗L)−1H∗ (9)

Consider the case where L = I and λ = 1 in (8), we see that
xtik = xmmse. Thus the MMSE decoder can be interpreted
as a 2-norm regularized solution to the least squares problem.
The previous interpretation coincides with the strategy that the
MMSE decoder works, in the sense that it strikes a balance
between interference cancelation ”solving the least squares
problem” and by limiting noise enhancement ”reducing the
norm of the solution vector”.

III. REGULARIZED DECODERS

Given the previous interpretation of the MMSE decoder as
a regularized least squares with penalty function equals to the
`2 norm of the solution vector; it quadratically penalizes the
elements of x as they deviate from the origin which does not
take into account the structure of the modulating constellation.
In particular, assume that QPSK constellation is used in the
modulation with elements equals to α(±1 ± j), where α is
a normalizing factor, then the MMSE decoder quadratically
penalizes the estimated symbols as they deviate from the
origin, while it makes more sense to start penalizing them
as they deviate away from α(±1± j).

Based on the previous observation, we propose a family of
generalized decoders; which can be described as regularized
least squares with different penalty functions that take into
account the structure of the modulating constellation which
leads to performance improvement. In particular, the general-
ized decoder solves the following regularization problem

xrgl = arg min
x
‖y −

√
ρ/mHx‖2 + λΦ(x). (10)

where Φ(x) describes a specific penalty function that pe-
nalizes the received symbols outside the convex hull of the
constellation, these functions are convex and hence (10) is
convex; which means that (10) can be solved efficiently with
low complexity using convex optimization algorithms [14]. It
should be noted that in the special case where Φ(x) = ‖x‖2,
the regularized decoder reduces to MMSE decoder. Similar to
the ZF and MMSE, a slicing operation is required on xrgl in
order to recover the estimated symbols.
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A similar idea was proposed in [12], however, the proposed
decoder here is considered more general in the sense that one
can use different penalty functions for different constellations.
It should be noted that the proposed decoder can also be
considered as a generalization to the box-constrained least
squares detector in the sense that the latter is a limiting case
to the proposed decoder, this fact is illustrated in fig. 4 below
[16].

For illustration purpose, we will consider two types of
convex penalty functions, namely, the deadzone and infinity
norm penalty functions.

A. Deadzone penalty

Two types of deadzone penalty functions are defined,
deadzone-linear and deadzone-quadratic. In this case, Φ(x) =∑

i φdz(xi), 0 ≤ i ≤ m. The deadzone-linear function
φdz−lin(x) is defined as [14]

φdz−lin(x) =

{
0 |x| ≤ α

β(|x| − α) |x| > α
(11)

and the deadzone-quadratic function φdz−quad(x) is defined
as

φdz−quad(x) =

{
0 |x| ≤ α

β(x2 − α2) |x| > α
(12)

where α ≥ 0 is the deadzone width and β ≥ 1 determines the
weight of the penalty function. In particular, fig. 2 shows a plot
for the deadzone-linear and deadzone-quadratic functions with
α = 1 and two different β′s. It is clear that as β increases,
the slope of φdz(x) increases and hence higher penalty is
considered. It should be noted that if we set α = 0 in the
deadzone-linear (11), then it will be equivalent to the `1 norm
penalty ‖ . ‖1.
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Fig. 2. Deadzone functions (α = 1).

The advantage of using the deadzone penalty function over
the usual `2 norm is that φdz(x) does not penalize the solution
vector x when it lies inside the deadzone region. Given that,
if we choose α to be the maximum allowable symbol value

derived from the constellation, then x will not be penalized
when it lies inside the constellation. However, the elements
of x will be linearly or quadratically penalized, depending on
using deadzone linear or deadzone quadratic functions, if they
lie outside the constellation. Using the aforementioned choice
of α, the solution tends to lie inside the constellation and better
performance is gained.

B. Infinity norm penalty

Another possible penalty function is the infinity norm
penalty. The `∞ norm penalizes the maximum absolute value
of the estimated symbols in x, which forces them not to deviate
away from the constellation according to the penalty function
Φ(x) = ‖x‖∞ [4].
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Fig. 3. Performance of 4× 4 MIMO 16-QAM with different values of α.

IV. SIMULATION

In order to illustrate performance of the proposed decoders,
we simulated a 2 × 2 and 4 × 4 MIMO system as in (1)
and compared the performance of the ZF, MMSE and the
regularized decoder. To solve problem (10) we used CVX,
a package for specifying and solving convex programs [17],
[18]. Fig. 3 shows the Symbol Error Rate (SER) as a function
of the Signal to Noise Ratio (SNR) for the 4 × 4 MIMO
system modulated using 16-QAM constellation α(±1 ± j)
where α ∈ {1, 3}, for different values of α, as it is clear from
the figure, the best performance is obtained when α = 3, the
constellation size in this case.

The received constellation of the 4 × 4 MIMO system
modulated using 16-QAM constellation is shown in fig. 4 after
processing it with the dead-zone quadratic function with β = 1
and β = 10 and before slicing. It is clear that as β increases,
the decoder heavily penalizes the received symbols outside
the constellation, as expected. It should be noted that, the
received constellation for high β behaves similar to the boxed
constrained least squares (BCLS) receiver [16]. As is clear
from the figure, the MMSE receiver has the least penalizing
effect.
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Fig. 4. Received constellation for 4× 4 MIMO, 16-QAM.

Fig. 5 illustrates the behavior of the regularized decoder
with β = 1, compared with the ZF and the MMSE decoders.
We can see that the deadzone-quad decoder outperforms the
MMSE decoder by 5-dB at low SNR and by a fraction of dBs
at high SNR, while the `∞ decoder outperforms the MMSE
decoder by a margin. It should be noted that the performance
of the deadzone-lin decoder with β = 1 is comparable to the
MMSE decoder, since for small x values, the quadratic and
linear functions are comparable.

Finally, fig. 6 and fig. 7 show the performance of the
proposed decoder as a function of the parameter β for 2 × 2
and 4 × 4 16-QAM system. In this case, it is clear that the
performance of the regularized decoder with β = 10 is better
than its performance with β = 1 as expected. It also should be
noted that with high β, the deadzone-lin decoder outperforms
the MMSE decoder due to the deviation between the linear
and quadratic penalizing functions.
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Fig. 5. Performance of the regularized decoder for QPSK 2 × 2 MIMO,
β = 1.
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Fig. 6. Performance comparison for 2 × 2 MIMO 16-QAM.
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Fig. 7. Performance comparision for 4 × 4 MIMO, 16-QAM.

V. CONCLUSION

A family of regularized MIMO decoders has been proposed
which is considered to be a generalization to the MMSE
decoder. The MMSE decoder was shown to be equivalent to
Tikhonov regularization, which is an `2 norm regularized least
squares. The proposed decoders solve regularized least squares
with different penalty functions that take into account the con-
stellation structure by penalizing the received symbols outside
the convex hull of the constellation. For illustration purpose,
we have considered two penalty functions, the deadzone and
`∞ norm penalty which led to performance improvement.
It was shown that the regularized decoders outperform the
MMSE at low as well as high SNR. Convex optimization
routines can be used to implement the regularized decoders
with low complexity.
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