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Abstract— The article is an attempt to answer the question if
it makes sense to modify the way of choosing packets to reject in
AQM mechanisms. Simulation and analytical research of RED
and DSRED mechanisms shows that their efficiency grows when
packet is received from the front of the queue. It is especially
conspicuous when taking into account the self-similarity of traffic.
However implementation of the above mentioned mechanisms in
real router does not corroborate such a clear advantage over
Drop-From-Front strategy. In this article the results of analytical,
simulation and real router research based on the Linux operating
system have been presented.

I. INTRODUCTION

The standard IP router working according to the best
effort rule rejects incoming packets only when it is necessary
because of lack of space in input buffers. The active queue
management, recommended by IETF, assumes that earlier
rejection of packets is made with the growing possibility of
router overload. RED algorithms enhances the efficiency of
transfer and cooperate with TCP congestion windows mech-
anisms in adapting the flows intensity to the congestions at
a network [1]. The inventor of RED mechanism - S. Floyd
has assumed that in the normal work of AQM router the rule
of dropping packets (end of the queue, head of the queue)
should not have any influence on the data transfer delay [2].
Currently more and more applications use UDP protocol to
transfer data (VoIP, VOD). As a result the characteristics of
data streams in the network has significantly changed. The
authors of article have shown that rejecting packets from head
of the queue for RED and DSRED mechanisms greatly affects
the decrease of packets average time traversal through router
[3]. For the purpose of this article authors have implemented
chosen algorithms in the router environment based on Linux
operating system. The article presents the results acquired in
the process of research and confronts them with the results
acquired using analytical and simulation methods.

Sections II gives basic notions on active queue management,
Section III presents briefly a self-similar model used in the
article. Section IV contains analytical and simulation analysis
of the problem of choosing either tail or front packets to
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drop in RED and DSRED mechanisms. Section V presents
the results of the implementation of the above mentioned
mechanisms in real router, some conclusions are given in
Section VI.

II. ACTIVE QUEUE MANAGEMENT

In passive queue management, packets coming to a buffer
are rejected only if there is no space in the buffer to store them,
hence the senders have no earlier warning on the danger of
growing congestion. In this case all packets coming during
saturation of the buffer are lost. The existing schemes may
differ on the choice of packet to be deleted (end of the
tail, head of the tail, random). During a saturation period
all connections are affected and all react in the same way,
hence they become synchronised. To enhance the through-
put and fairness of the link sharing, also to eliminate the
synchronisation, the Internet Engineering Task Force (IETF)
recommends active algorithms of buffer management. They
incorporate mechanisms of preventive packet dropping when
there is still place to store some packets, to advertise that the
queue is growing and the danger of congestion is ahead. The
probability of packet rejection is growing together with the
level of congestion. The packets are dropped randomly, hence
only chosen users are notified and the global synchronisation
of connections is avoided. A detailed discussion of the active
queue management goals may be found in [1].

The RED (Random Early Detection) algorithm was pro-
posed by IETF to enhance the transmission via IP routers.
It was primarily described by Sally Floyd and Van Jacobson
in [4]. Its performance is based on a drop function giving
probability that a packet is rejected. The argument avg of this
function is a weighted moving average queue length, acting
as a low-pass filter and calculated at the arrival of each packet
as

avg = (1− w)avg′ + wq

where avg′ is the previous value of avg, q is the current queue
length and w is a weight determining the importance of the
instantaneous queue length, typically w � 1. If w is too small,
the reaction on arising congestion is too slow, if w is too
large, the algorithm is too sensitive on ephemeral changes of
the queue (noise). Articles [4], [5] recommend w = 0.001
or w = 0.002, and [6] shows the efficiency of w = 0.05
and w = 0.07. Article [7] analyses the influence of w on
queueing time fluctuations, obviously the larger w, the higher
fluctuations. In RED drop function there are two thresholds
Minth and Maxth. If avg < Minth all packets are admitted,
if Minth < avg < Maxth then dropping probability p is
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growing linearly from 0 to pmax :

p = pmax
avg −Minth

Maxth −Minth

and if avg > Maxth then all packets are dropped. The value
of pmax has also a strong influence on the RED performance:
if it is too large, the overall throughput is unnecessarily choked
and if it’s too small the danger of synchronisation arises; [5]
recommends pmax = 0.1. The problem of the choice of param-
eters is still discussed, see e.g. [8], [9]. The mean avg may be
also determined in other way, see [10] for discussion. Despite
of evident highlights, RED has also such drawbacks as low
throughput, unfair bandwidth sharing, introduction of variable
latency, deterioration of network stability. Therefore numerous
propositions of basic algorithms improvements appear, their
comparison may be found e.g. in [11].

DSRED (double-slope RED) introduced in [12] and devel-
oped in [13] is one of these modifications. Three thresholds
Kl, Km and Kh (usually Km = (Kl+Kh)/2) and parameter
γ determine two slopes of the DSRED drop function:

p(avg) =


0 if avg < Kl

α(avg −Kl) if Kl ≤ avg < Km

1− γ + β(avg −Km) if Km ≤ avg < Kh

1 if Kh ≤ avg ≤ N
where

α =
2(1− γ)
Kh −Kl

, β =
2γ

Kh −Kl

The double slope function makes the algorithm more elastic
(more parameters to fix); gentle at the beginning (for low
congestion) drop function enhances throughput and reduces
queue waiting times.

In section IV, we present analytical (based on Markov
chain) and simulation models of RED and DSRED. We assume
either Poisson or self-similar traffic. Because of the difficulty
in analyzing RED mathematically [14], RED and DSRED are
studied in an open-loop scenario.

III. SELF-SIMILARITY OF NETWORK TRAFFIC

Measurements and statistical analysis of network traffic, e.g.
[15], [16] show that it displays a self-similar character. It is
observed on various protocol layers and in different network
structures. Self-similarity of a process means that the change
of time scales does not affect the statistical characteristics of
the process. It results in long-range dependence and makes
possible the occurrence of very long periods of high (or low)
traffic intensity. These features have a great impact on a
network performance. They enlarge the mean queue lengths at
buffers and increase the probability of packet losses, reducing
this way the quality of services provided by a network.
Also TCP/IP traffic is characterised by burstiness and long-
term correlation, [17], its features are additionally influenced
by the performance of congestion avoidance and congestion
management mechanisms, [18], [19].

Let a process Xk represent the traffic intensity measured in
fixed time intervals and let the aggregated process X(m)

k be
the average of the basic process over a group of m consecutive
samples: X(m)

k = 1
m (Xk·m−m+1 + ...+Xk·m), where k ≥ 1.

There are several methods used to check if a process is self-
similar. The easiest one is a visual test: one can observe
the behaviour of the basic process Xt and the aggregated
process X(m)

k . If these processes have the same character -
the increase of m does not smooth the process, the process is
self-similar. More formally, the difference between short-range
dependent and long-range dependent (self-similar) process is
as follows [16]: for the first process the sum of covariance∑k=∞
k=0 cov(k) is convergent, the spectrum of the process

S(ω) =
∑k=∞
k=−∞R(k)e−jωk, where R(k) is the autocorrela-

tion function of the process, is finite at ω = 0, and the variance
var(X(m)

k ) tends asymptotically for large m to the function
var(X)
m . In the case of long-range dependent process, the sum

of covariance
∑k=∞
k=0 cov(k) is divergent, S(0) is singular, and

var(X(m)
k ) tends asymptotically to var(X)

mβ
, where 0 < β < 1.

The parameter β is related to the Hurst parameter H (often
used to characterise the self-similarity of a process): H = 1−β2
[16]. For 0.5 < H ≤ 1 process is self-similar; the closer H
is to 1, the greater is the degree of persistence of long-range
dependence.

To represent the self-similar traffic we use here a model
introduced by S. Robert [20], [21]. The time of the model is
discrete and divided into unit length slots. Only one packet
can arrive during each time-slot. In the case of memoryless,
geometrical source, the packet comes into system with fixed
probability α1. In the case of self-similar traffic, packet arrivals
are determined by a n-state discrete time Markov chain called
modulator. It was assumed that modulator has n = 5 states
(i = 0, 1, . . . 4) and packets arrive only when the modulator
is in state i = 0. The elements of the modulator transition
probability matrix depend only on two parameters: q and a –
therefore only two parameters should be fitted to match the
mean value and Hurst parameter of the process. If pij denotes
the modulator transition probability from state i to state j,
then it was assumed that p0j = 1/aj , pj0 = (q/a)j , pjj =
1− (q/a)j where j = 1, . . . , 4, p00 = 1− 1/a− . . .− 1/a4,
and remaining probabilities are equal to zero. The passages
from the state 0 to one of other states determine the process
behaviour on one time scale, hence the number of these states
corresponds to the number of time-scales where the process
may by considered as self-similar.

The model was fitted to real data [22]. This model enables
us to represent, with the use of few parameters, a network
traffic which is self-similar over several time-scales.

IV. INFLUENCE OF CHOICE WHICH PACKET TO DROP ON
RED/DSRED MECHANISM - ANALYTIC AND SIMULATION

RESULTS

The RED or DSRED queue mechanisms are represented by
a single-server model based either on discrete-time Markov
chain or simulation. The service time represents the time of a
packet treatment and dispatching. Its distribution is geometric.
The model of incoming traffic was presented above. For both
considered in comparisons cases, i.e. for geometric interarrival
time distribution (which corresponds to Poisson traffic in case
of continuous time models) and self-similar traffic, the con-
sidered traffic intensities are the same. A detailed discussion
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of the choice of model parameters is also presented in [23].
In Markov model, the Markov chain state is defined by the

number of packets in the queue, the integer part of the avg
value and by four flags u1, u2, u3, u4 approximating the rest of
this value (as avg is a real number, it is impossible to attribute
a state to each of the infinite number of its possible values) in
the following way:

[(i− 1) ∗ 0.25] + (i ∗ 0.25)
2

where i is the number of non-zero flag. If all flags are null, we
assume the integer value of avg. In case of self-similar traffic
this state definition is supplemented by a variable denoting the
state of the modulator.

The vector p of state probabilities is given by a system of
linear equations

p = p ∗ P

where P is the transition probability matrix which is generally
large (the number of states, hence the order of the matrix P
may be hundreds of thousands or millions), sparse and ill
conditioned, and the use of well known and broadly used
numerical algorithms for algebraic and differential equation
systems gives poor results. That is why a projection method
using Krylov subspaces, as recommended in [24] was chosen.

The method of Arnoldi is an orthogonal projection process
onto the Krylov subspace. It may be used to compute approxi-
mations to the unit eigenvalue and the corresponding eigenvec-
tor of the matrix P . The matrix Hm (upper Hessenberg matrix)
represents the restriction of the linear transformation P to the
subspace Km. Approximation of the eigenvalue of P can be
obtained from the eigenvalue of Hm. We often use the so-
called Rayleigh-Ritz procedure for extracting eigenvalue and
eigenvector approximations from a given subspace. If λi is an
eigenvalue of Hm and pi the corresponding eigenvector, i.e.,

Hmpi = λipi,

then λi is taken as an approximation to an eigenvalue of P , and
Vmpi as an approximation to the corresponding eigenvector of
P .

To simplify the notation, we denote: v = p(ti), and
w = p(ti+1). The solution should have the form w = eP v
(for simplicity, we omit here the constant τi = ti+1 − ti).
Following the observation that a truncated series of order
m − 1 (or, more generally, that approximating eP v by a
polynomial of degree m − 1, notice that this polynomial is
a linear combination of the vectors v, Pv, ..., Pm−1v), will
yield an element of the Krylov subspace:

Km(P, v) ≡ Span{v, Pv, ..., Pm−1v}

The method is reduced to find such as element Km(P, v) of
this space, that best approximates w = eP v. The set of base
vectors of these subspace is denoted by Vm = [v1, v2, ..., vm],
v1 = v/β where β =‖ v ‖2, v = βVme1 and:

w ≈ Vm
[
(V TmVm)−1V Tm e

PVm
]
βe1 (1)

In vector ei the i-th element is equal 1 and the others are null.
The set of base vectors Vm is obtained via Arnoldi’s procedure

[24]:
1. v1 = v/ ‖ v ‖2
2. For j=1,2,...,m do

z = Pvj
For i = 1, 2, ..., j do

hij = vTi z
z = z − hijvi

hj+1,j =‖ z ‖2
vj+1 = z/hj+1,j

The above algorithm is the modified Gram-Schmidt orthog-
onalization procedure, the obtained vectors vi are orthonormal,
and the upper Hessenberg matrix Hm (its dimension is m×m)
which is composed of coefficients hij holds the equation:

PVm = VmHm + hm+1,mvm+1e
T
m (2)

The set of vectors Vm is orthonormal, hence we can simplify
the eq. (1):

w ≈ βVm(V Tm e
PVm)e1

If we approximate V Tm e
PVm by eV

T
mPVm the sought vector w

will become:
w ≈ βVmeV

T
mPVme1

Also, because the set of vectors is orthonormal Vm we may
rewrite (1) as:

Hm = V TmPVm (3)

and the solution may be expressed as:

w ≈ βVmeHme1
This solution still needs the calculation of matrix exponential
but the size of the matrix is considerably smaller (m - the
dimension of Krylov subspace is significantly smaller than
n - the number of states of the considered system). Hence
we can use any method advised for small systems. e.g. Padé
approximation.
In the above description the constant τ was omitted. It may be
easily put to the obtained solution because V Tm (Pτ)Vm = Hm,
and Krylov subspaces related to P and Pτ are indentical.
Hence, the use of the Krylov subspaces for transient states
consists in:
• the use of Arnoldi procedure to obtain the orthonormal

set of base vectors Vm and Hessenberg matrix Hm.
• the use of Padé approximation to obtain eHmτ .
• calculation of the state probability vector approximated

by βVmeHmτe1.
To validate the Markovian results, we used a simu-

lation packet OMNET++, written in C++ by A. Varga
[http://www.omnetpp.org/]. Below we present some numerical
results.

Our goal is to capture the influence of the way a packet is
chosen to be deleted (end of the tail, head of the tail) on the
RED and DSRED queueing times. Input traffic intensity (for
geometric and self-similar traffic) was chosen as α = 0.5, and
due to the modulator characteristics, the Hurst parameter of
self-similar traffic was fixed to H = 0.78.

The RED parameters had the following values: buffer size
250 packets, threshold values Minth = 100 and Maxth =
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Fig. 1. Queue distribution for RED queue: geometric source, α = 0.5,
µ = 0.25, w = 0.07, analytic and simulation results.

200, pmax = 0.1, w = 0.002 or w = 0.07. Parameter µ of
geometric distribution of service times (probability of the end
of service within a current time-slot) was µ = 0.25 or µ = 0.5.
Due to the changes of µ, two different traffic loads (low and
high) were considered.

In case of DSRED policy, the traffic pattern and the buffer
size are the same, parameters Kl = Minth = 100 and
Kh = Maxth = 200, intermediate threshold Km = 150.
The shaping parameter γ had three values γ = 0.15, 0.5, 0.85.

Fig. 1 displays a comparison of analytical and simulation
results. They are almost identical if probabilities are greater
then 10−10, for smaller values the simulation results are
not significant (the simulation run involved 250 millions of
packets) while Markov model is able to give probabilities of
very rare events.

If the mean queue length is relatively low, the influence
of dropping scheme on queueing time is negligible: the
introduction of drop-from-front strategy gives 0.7% shorter
mean queueing time in case of RED and 0.8% shorter mean
queueing time in case of DSRED, see Fig. 2.

Naturally, the introduction of DSRED gives shorter mean
queue length and shorter mean queueing time compared to
RED. However, when the Poisson traffic is replaced by self-
similar one with the same intensity and preserving the same
parameters of RED, the length of the queue grows and the
influence of the dropping scheme is more visible: drop-from-
front strategy reduces mean queueing time by 16.4%. A
comparison of response time distributions for RED queue,
for both strategies is presented in Fig. 3 (left). The same
comparison in case of DSRED queue is presented in Fig. 3
(right). In this case the response time with drop-from-front
strategy is 18.1% shorter then for tail-drop mechanism.

The change of wq value (from 0.07 to 0.002) in computation
of moving average results in longer response time and mean
queue – see the Tables – but the introduction of drop-from-
front in place of tail-drop gives about 1% of changes. A
comparison of queueing time distributions in these cases is
given in Fig. 4 (left - RED) and (right - DSRED).

In case of heavy traffic, for both mechanisms RED/DSRED,
irrespective of the wq value and of the traffic self-similarity,
drop-from-front strategy gives two times shorter mean queue-
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Fig. 2. Waiting times for RED (left) DSRED (right) queues: drop-from-front
and drop-from-tail strategies, geometric source, α = 0.5, µ = 0.5, w = 0.07,
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TABLE I
COMPARISON OF RED AND DSRED

Mean queue
length

Variation of
queue length

RED µ = 0.5 w = 0.002
GEO 64.92 1562.07
SELF-S 130.61 6484.46

DSRED γ = 0.5
µ = 0.5 w = 0.002

GEO 54.65 1077.13
SELF-S 89.53 3703.73

RED µ = 0.25
w = 0.002

GEO 199.84 82.33
SELF-S 169.86 5056.31

DSRED γ = 0.5
µ = 0.25 w = 0.002

GEO 150.01 131.036
SELF-S 136.21 3962.95

RED µ = 0.5 w = 0.07
GEO 64.43 1504.8
SELF-S 123.79 5570.37

DSRED γ = 0.15
µ = 0.5 w = 0.07

GEO 53.07 977.58
SELF-S 76.1 2202.89

DSRED γ = 0.85
µ = 0.5 w = 0.07

GEO 54.87 1018.47
SELF-S 83.01 2628.08

DSRED γ = 0.85
µ = 0.5 w = 0.07

GEO 57.91 1182.4
SELF-S 100.03 3731.86

RED µ = 0.25 w = 0.07
GEO 199.75 3.47
SELF-S 163.2 4497.22

DSRED γ = 0.15
µ = 0.25 w = 0.07

GEO 129.41 24.57
SELF-S 109.52 2313.9

DSRED γ = 0.85
µ = 0.25 w = 0.07

GEO 150 40.05
SELF-S 130.26 3100.71

DSRED γ = 0.85
µ = 0.25 w = 0.07

GEO 170.59 24.58
SELF-S 144.43 3642.48

ing times. Queueing time distributions for all considered cases
are presented in Figs. 5, 6, 7.

V. AQM MECHANISMS IN LINUX BASED ROUTERS

We implemented the most popular RED algorithms : RED,
FRED, DSRED and ARED in a Linux based router. Our
solution was based on user defined queues in Iptables Linux
firewall. The behaviour of RED’s algorithms were observed in
three situations:
• connection oriented TCP streams,
• datagram oriented UDP packets,
• mixed flows containing TCP streams and UDP packets.
In the case of TCP traffic the bahaviour of the both methods

(drop-from-front and drop-from-tail) is similar and the choice
of packet drop strategy is insignificant, see fig. 8, 9. The
amount of packets dropped by RED mechanism is low and the
situation is supervised by conguestion avoidance mechanisms
built in TCP protocol.

For UDP traffic and mixed traffic (UDP and TCP together)
the number of dropped packets is greater than that in the TCP
case. In the considered example the RED mechanism drops
75 percent of UDP traffic. In these cases there was also no
improvement of results when using Drop-From-Front strategy

The differences between analytical and experimental results
may be explained by two factors. First, the variability of
generated traffic used in experiments was lower than one may
expect in a real network. Second, the implemented drop-from-
front strategy program has to make additional operations to

TABLE II
COMPARISON OF RED AND DSRED

Loss proba-
bility

RED µ = 0.5 w = 0.002
GEO 0.00389652
SELF-S 0.150939

(0.135347)

DSRED γ = 0.5
µ = 0.5 w = 0.002

GEO 0.00455001
SELF-S 0.168627

(0.168509)

RED µ = 0.25
w = 0.002

GEO 0.500013
SELF-S 0.551741

(0.507265)

DSRED γ = 0.5
µ = 0.25 w = 0.002

GEO 0.500066
SELF-S 0.55552

(0.548233)

RED µ = 0.5 w = 0.07
GEO 0.00390818
SELF-S 0.151645

DSRED γ = 0.15
µ = 0.5 w = 0.07

GEO 0.004675
SELF-S 0.175138

DSRED γ = 0.85
µ = 0.5 w = 0.07

GEO 0.00457423
SELF-S 0.170974

DSRED γ = 0.85
µ = 0.5 w = 0.07

GEO 0.00426957
SELF-S 0.162186

RED µ = 0.25 w = 0.07
GEO 0.500006
SELF-S 0.55187

DSRED γ = 0.15
µ = 0.25 w = 0.07

GEO 0.499999
SELF-S 0.559453

DSRED γ = 0.85
µ = 0.25 w = 0.07

GEO 0.499999
SELF-S 0.555498

DSRED γ = 0.85
µ = 0.25 w = 0.07

GEO 0.499999
SELF-S 0.554022

find the first packet in the queue. In our router this operation
is relatively slow due to its execution in user space (not in
kernel space) thus the results are worse than that for drop-
from-tail strategy.

Fig. 11 presenting results for FRED algorithm. In the imple-
mentation of that AQM algorithm a significant advantage of
Drop-From-Front mechanism can be noticed. Computational
complexity of FRED algorithm lowers the significance of time
overhead caused by searching for the first packet in the queue.

VI. CONCLUSIONS

Drop-from-front strategy, when applied in place of tail-
drop one, results in reduction of mean queueing time in
RED/DSRED mechanisms of active queue management. In
case of light load, the difference is more visible for self-similar
traffic. In case of heavy load, the difference is also substantial
for short-dependent traffic.

This article has presented the implementation of AQM
mechanisms in Linux operating system. Iptables have been
used in order to manage streams of data. Such an assumption
has facilitated the implementation of algorithms but, on the
other hand, it has caused a relatively slower work of the router.
When dropping packets from head of queue the efficiency
of RED mechanisms has been decreased by the necessity of
finding packets to drop from queue.
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TABLE III
COMPARISON OF RED AND DSRED

Mean
waiting
time

Variance of
waiting time

RED µ = 0.5 w = 0.002
GEO 132.34 6340.05
SELF-S 308.49 16866.7

DSRED γ = 0.5
µ = 0.5 w = 0.002

GEO 111.8 4385.54
SELF-S 218.26 10063.2

RED µ = 0.25
w = 0.002

GEO 803.35 3731.58
SELF-S 760.58 34059.4

DSRED γ = 0.5
µ = 0.25 w = 0.002

GEO 604.09 3910.51
SELF-S 617.071 31355

RED µ = 0.5 w = 0.07
GEO 131.375 6109.14
SELF-S 293.89 13634.1

DSRED γ = 0.15
µ = 0.5 w = 0.07

GEO 108.63 3985.63
SELF-S 186.39 4924.46

DSRED γ = 0.85
µ = 0.5 w = 0.07

GEO 110.67 4150.01
SELF-S 202.25 6025.25

DSRED γ = 0.85
µ = 0.5 w = 0.07

GEO 118.314 4811.09
SELF-S 240.73 8821.86

RED µ = 0.25 w = 0.07
GEO 803 2467.85
SELF-S 735.69 25134.7

DSRED γ = 0.15
µ = 0.25 w = 0.07

GEO 521.63 1958.88
SELF-S 501.39 14030.4

DSRED γ = 0.85
µ = 0.25 w = 0.07

GEO 603.98 2554.41
SELF-S 590.9 18972.3

DSRED γ = 0.85
µ = 0.25 w = 0.07

GEO 686.33 2453.79
SELF-S 652.57 21408.3

Fig. 8. Mean queue length for RED algorithm for TCP traffic

Fig. 9. Packet queueing delay for RED algorihm and TCP traffic

Fig. 10. Amount of dropped packets for RED and DSRED algorithm and
TCP traffic

Fig. 11. Mean queue length for FRED algorithm for UDP traffic

Therefore for RED and DSRED mechanisms and strategy of
dropping packets from head of queue the decrease of average
time of data traversal through router has not been obtained.

The desired effect has been acquired only for FRED algo-
rithm. Its complexity causes the time of finding packets to
become not very significant.

The authors of the article expect that the implementation of
AQM algorithms in kernel space will increase the efficiency
of the router’s work and at the same time will corroborate the
results obtained using analytical methods.
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