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Abstract: Gossip is a well-known technique for distributed 

computing in an arbitrarily connected network, that can be 
adopted effectively in wireless sensor networks. Gossip 
algorithms have been widely studied in previous literature, but 
mostly from a theoretical point of view. The aim of this paper is 
to verify the behavior of the gossip approach in practical 
scenarios, through the analysis and interpretation of simulated 
results. So, we investigate the impact of optimizing the neighbor 
selection probabilities, the effect of multiple link failures and 
that of limited transmission radius. The possibility to use 
broadcast-like algorithms to increase the rate of convergence in 
averaging problems is also discussed and its advantage 
estimated. 

Index terms: wireless sensor networks, averaging problems, 
gossip, convergence rate 
 

I. INTRODUCTION 
 

Wireless sensors are usually small devices, characterized 
by limited communications capabilities because of energy and 
bandwidth constraints. However, they can merge their scarce 
resources in networks that aim at supporting very important 
decisions or actions. They are individually cheap, 
unintelligent, imprecise and unreliable but, being part of a 
large network, they together may produce reliable and robust 
information, as the result of their physical measurements and 
of a collaborative process. Sensors are seen as nodes of a 
network that can work with the data they obtain. Typical ways 
for processing sensors data consist in using one of the 
following options: 
i)  elaborating the whole amount of data in a sink node; 
ii) elaborating data in each node, exchanging information 

between them; so, at the end, each node possesses the 
whole information. 

We adopt the second model, where nodes are supposed to 
implement some elementary operations like averages, sums 
and products. In particular, it is interesting to investigate how 
the nodes average their values, trying to achieve a general 
consensus in the shortest possible time. This way, they use a 
limited amount of local information to allow distributed 
knowledge of global network properties. 
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As mentioned above, nodes can elaborate together; so the 
result is a collective property of the network, that, this way, 
will have eventually uniform information. We mean the nodes 
talk together or, in more explicit, though pictorial, terms, they 
“gossip”. This kind of gossip is similar to human gossip. For 
example, when, in a crowd, somebody has a piece of news, 
she/he shares it with her/his neighbors. All the people 
“connected” with her/him learn the news item and repeat it to 
their neighbors, so that the new information is spread like an 
epidemic illness. 

A similar process exists in wireless sensor networks, when 
they are implemented as peer-to-peer networks formed by 
many small and simple devices, able to measure some 
quantities and to transmit their measured values to 
neighboring nodes [1]. When the whole network (or a subset 
of it) is expected to produce a unique value for a measured 
quantity, a group of nodes must communicate in order to 
merge their single contributions into a common result; in 
other terms, the network self-stabilizes the measured value 
[2]. 

Noting by xi and xj the local measures of the i-th and j-th 
nodes, an interaction among them produces as output (xi + 
xj)/2, that is acquired by both nodes and used for the 
subsequent interaction. Through information propagation, the 
object is to find, in the shortest possible time, an estimate of 

the average 
1

N
ave ii

x x N
=

=∑ , where N is the total number 

of nodes in the network. As known, the average provides the 
minimum mean squared error (MMSE) estimate of the sensed 
quantity. 

One of the most interesting features of gossip-based 
networks is scalability. Each sensor node, in fact, sends a 
fixed number of messages (indeed only one message in the 
considered implementation), and this number is independent 
of the network size. On the other hand, provided that effective 
communication among nodes is achieved through suitable 
protocols, a fundamental aspect of gossip algorithms concerns 
convergence to the average [3]-[5]. This topic has been 
discussed extensively in previous literature (see [6]-[10], for 
example, where other references can be found). Most of these 
papers, however, are focused on theoretical issues and system 
modeling. In [6], for example, an analytical framework for the 
design and study of a randomized distributed averaging 
problem was presented, together with specific tools for 
network optimization. In this kind of problems, optimization 
basically consists in minimizing the time taken for the value at 
each node to become sufficiently close to the average value, 
independently of the initial condition. Such time interval is 
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called averaging time and noted by Tave in the following. In 
[6] it was found that Tave depends on the second largest 
eigenvalue, λ2, of a stochastic matrix characterizing the 
averaging algorithm (this matrix will be defined afterward): 
the smaller this eigenvalue, the faster the averaging algorithm. 
So, the fastest averaging algorithm is obtained by minimizing 
the eigenvalue over the set of allowed gossip algorithms. An 
efficient procedure was proposed to solve the problem. 
Moreover, a lower and an upper bound for the averaging time, 
in terms of λ2, were derived. Similar, though less explicit, 
bounds can be found in other papers (see [2] and [11], for 
example). 

In spite of these in-depth analytical studies, however, the 
performance of the gossip algorithms has been rarely 
evaluated in simulation experiments. To support the study 
through simulations is an important issue, as it permits to 
validate the analytical model and to test the distance between 
the theoretical expectations and the true performance. The aim 
of this paper is to present some examples of such simulations, 
and discuss the corresponding results. 

Referring to a specific, though arbitrarily generated, sensor 
network, first we discuss the impact of the optimization 
procedure in a fully-meshed network, showing that the 
convergence rate of the gossip algorithm can be only 
marginally improved in many practical cases (like the ones 
here considered). Then, we examine the effect of possible link 
failures that, preventing connection between nodes, 
necessarily increase the convergence time. Simulation permits 
to quantify the extent of such an increase, also in comparison 
with a non fully-meshed network. To model the latter, a 
classic procedure consists in fixing a transmission radius: two 
nodes can communicate only if their distance is smaller than 
the transmission radius. We investigate the worsening in the 
convergence rate that is due to a limited radius. Moreover, as 
a wireless network is naturally suited to apply broadcast-like 
algorithms [12], where the transmission from a sensor can be 
received by more nodes simultaneously, we simulate the 
performance of this variant of the gossip, too, and show it can 
produce a significant improvement of the convergence speed. 

The organization of the paper is as follows. In Section II we 
introduce the notation and provide a short summary of the 
optimization approach presented in [6]. In Section III we 
describe the simulator, focusing on the relevant parameters it 
is based on. Section IV reports numerical results both for the 
ideal case of a fully-meshed network and for more practical 
scenarios (as in presence of link failures or limited coverage). 
Section V describes the broadcast-like algorithm and its 
benefit against the more conventional gossip. Finally, Section 
VI concludes the paper. 
 

II. NOTATION AND PREVIOUS ANALYTICAL RESULTS 
 

A network of N nodes can be described by a connected 
graph G(V, E), where V is the vertex set containing the nodes 
and E is the edge set. Two nodes that have an edge between 
them are called neighbors. The class of gossip algorithms we 
consider is characterized by an N×N matrix P = [Pij] of non-
negative entries with the condition that Pij ≠ 0 only if (i, j)∈E 
and i ≠ j. We consider an asynchronous time model, in which 

each node has a clock which ticks at the times of a rate 1 
Poisson process. Therefore, the inter-tick times at each node 
are rate 1 exponentials, independent across nodes and over 
time. Equivalently, this corresponds to a single clock ticking 
according to a rate N Poisson process at times Zk, k ≥ 1. Time 
is discretized according to clock ticks, since these are the only 
times at which the measured values change. Therefore, the 
interval [Zk; Zk+1) denotes the k-th time-slot and, on average, 
there are N clock ticks per unit of absolute time. In [6] it is 
shown how to pass from quantities measured in terms of the 
number of clock ticks to quantities expressed in absolute time. 

We assume that each node i, when its clock ticks, contacts 
one of its neighbors, j, by choosing it according with the 
selection probability Pij. At each clock tick, node i tries to 
communicate and its attempt has always success in absence of 
link failures. Therefore, in such case, P is a stochastic matrix 
(i.e., each row sums to 1); consequently, its largest eigenvalue 
is equal to 1, while all the remaining N − 1 eigenvalues have 
magnitude strictly smaller than 1 [13].  

Let us denote by x(0) = [x1(0), x2(0),…, xN(0)]T a vector 
collecting the initial (sensed) values at the nodes. So, 

1
N

ave ii
x x N

=
=∑  is the average of the entries of x(0); the 

goal of a gossip algorithm is to compute xave in a distributed 
manner. Only one node is contacted at each time, and 
simultaneous transmissions are avoided through suitable 
access control protocols. After k ticks, the updated values are 
collected in the vector x(k) = [x1(k), x2(k),…, xN(k)]T, where 
superscript T denotes transposition. On the other hand, it is 
easy to verify that the following recursive relationship holds: 

( ) ( ) ( 1)k k k= ⋅ −x W x  

where, with probability Pij/N, the random matrix W(k) is: 

( )( )
( )

2

T
i j i jk
− −

= = −ij
e e e e

W W I  

where I represents the identity matrix of size N×N, and ei is 
the vector with all 0’s except for a 1 in the i-th coordinate. 
Now, for a given matrix P, let us define the ε-averaging time 
of a gossip algorithm as follows [6]: 

(0)

(0)
( ) sup ( )ave aveT Tε, = ε,x

x
P P  (1) 

with 

(0) ( )
( ) inf Pr

(0)
ave

ave
k x

T k
⎧ ⎫−⎛ ⎞⎪ ⎪ε, = : ≥ ε ≤ ε⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

x x 1
P

x
, 

where: Pr(A) stays for the probability of A, ||v|| denotes the l2-
norm of vector v, and 1 is an N×1 vector with all components 
equal to 1. In practice, Tave(ε, P) is the smallest time, 
expressed in number of clock ticks, it takes for x(k) to get 
within ε of xave1 with probability 1 − ε, regardless of the initial 
value x(0). If ε is small, then this probability is high. 

As mentioned above, in [6], by using some results on the 
convergence of moments, it was proved that the ε-averaging 
time, for the asynchronous time model, can be bounded as 
follows: 
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where λ2(C) is the second largest eigenvalue of matrix 

1 1

1 N N

ij
i j

P
N

= =

= ∑∑ ijC W . 

It is evident, from their expressions, that the ratio between 
the upper bound and the lower bound is always equal to 6, 
and that their absolute values decrease for decreasing λ2. This 
observation introduces the optimization problem, as finding 
the fastest averaging algorithm corresponds to finding P such 
that λ2(C) is the smallest one, while satisfying constraints on 
P. Formally, the optimization problem is as follows: 

• minimize λ2(C), 
• subject to Pij ≥ 0; Pij ≠ 0 if (i, j) ∈  E; ΣjPij = 1 for any 

i. 

In [6] a distributed subgradient method was proposed, able 
to solve the optimization problem over the network. In 
essence, the solving method can be summarized as follows. 

First of all, for the sake of convenience, the non-zero entries 
of matrix P are collected in a vector p. Noting by m the 
number of edges in the graph G, a number l is assigned to 
each edge (i, j), with i < j; this way, the l-th entry of p, with l 
= 1, 2,…, m is pl = Pij. On the other hand, as P is stochastic 
(but not, necessarily, double stochastic), there is no symmetry 
requirement on P, and the entries of p corresponding to Pji 
must be separately specified. This is done by setting, p−l = Pji. 
Globally, vector p has therefore 2m entries, that corresponds 
to replace each edge in the undirected graph G with two 
directed edges, one in each direction. Then, a classic 
subgradient method is applied to vector p, which consists in 
updating this vector, through an iterative procedure, as 
follows: 

( 1) ( ) ( )k k k
kv+ = −p p g  

where g(k) is a subgradient for vector p at the k-th clock tick 
(p(k)) and vk is a step size (to be properly chosen). The l-th 
component of g can be obtained as 

21 ( )
2l i jg u u

N
= − −  

where ui is the i-th component of the unit eigenvector 
associated with λ2(C), i.e., a solution of the equation 

2 ( ) T=C u Cuλ  

Obviously, matrix C is updated in turn, according with its 
definition, because of updating of the Pij’s, when the 
subgradient method proceeds. 

On the other hand, it is not sure that the updated values of p 
are feasible; for this reason, the subgradient step is followed 
by a projection onto feasible set step. In practice, noting by 

ijp%  the non-zero entries in the i-th row of P, updated 

according with the subgradient g(k), it is checked if 

1ijj p ≤∑ % , i∀ ; if not, a real δi is found such that 

( ) 1iijj p − δ =∑ %  and the ijp% ’s changed in iijp − δ%  [6]. 

 
III. SIMULATION PARAMETERS 

 
In a first series of simulations, we have developed 

numerical programs in Octave and C++ language that permit: 

• to simulate the performance of the gossip algorithm for 
a given matrix P; 

• to optimize matrix P, in such a way as to find a good 
approximation of the fastest averaging algorithm; 

• to compute lower and upper bounds for both cases. 

Simulation aims at exploring where the simulated 
convergence time is located against the lower and upper 
bounds and, more important, to determine any actual (i.e., not 
just theoretically foreseen) improvement achievable through 
optimization, in terms of reduced convergence time. 

The starting values Pij are generated according to an 
assigned distribution, satisfying the property to have a 
stochastic matrix. For the gossip algorithm, simulation is also 
necessary to produce samples of the sensed quantities. For 
this purpose, we have used different probability distributions. 
As a first example, we have adopted a gaussian generator, and 
acted on its parameters to simulate different operational 
scenarios. This choice is suited to model practical cases, like 
the temperature measurement, where the distributed 
computation strategy can be efficiently applied. 

Once having obtained matrix P, simulation proceeds as 
follows: a uniform random generator selects one node at a 
time (each node has a probability 1/N to be selected). Noting 
by i the selected node, the node j it contacts is chosen, once 
again, at random, according with the Pij’s distribution. 
Changing the seed of the uniform random generator, the 
communication sequence is changed as well, this way 
obtaining different realizations of the considered random 
experiment. 

The random variable e(k) = ||x(k) – xave1||/||x(0)|| is 
estimated in R experiments, thus obtaining a set of R curves 
εsim

q(k), q = 1…R, expressed as functions of the number of 
clock ticks k. This permits to draw Tsim(ε, P) curves that can 
be compared with the bounds on Tave(ε, P), as provided by the 
analytical model. The simulated curves are also averaged 
among the R realizations, i.e., 

1

1( ) ( )             
R

q
sim sim

q
k k k

R =
ε = ε , ∀∑  

thus obtaining an estimated average curve 〈Tsim(ε, P)〉, 
intended as a set of (ε, k) couples and referred to the specific 
matrix P and the specific (though arbitrary) initial condition 
x(0). According to the probability theory, it is: 

lim ( ) ( )             sim
R

k e k k
→∞

ε = , ∀  

where ( )e k  represents the average of e(k). It is easy to prove 
that the variance of the input vector probability density 
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function (p.d.f.) has no impact on e(k). For this purpose, let us 
consider a simple network with N = 3 nodes, and let us 
suppose that, because of the assumptions on the p.d.f., the 
input vector is xa(0) = [x1(0), x2(0), x3(0)]T. If, at the first 
clock tick, node #1 talks with node #2, the vector at k = 1 
results in: 

1 2
1 2 1 3 3

(0) (0)
(1) (1) (1) (1) (1) (0)

2

T
a x x

x x x x x
+⎡ ⎤= = , = , =⎢ ⎥⎣ ⎦

x  

Correspondingly, we have: 

( ) ( ) ( )2 2 2
(1) (1) (1)1 2 3

(1)
2 2 2(0) (0) (0)1 2 3

a
a a ax x x x x xave ave ave

e
x x x

− + − + −
=

+ +
. 

If the variance of the p.d.f. is scaled by a factor α2, the 
random extraction of the input vector would provide xb(0) = 
αxa(0). The same scale factor acts on xb

ave, since 

1 (0)Nb a
ave i aveix x N x== α = α∑ . Under the same assumption 

that node #1 and node #2 talk between them first, we have 
xb(1) = αxa(1); anyway, the value of eb(1) is unchanged as: 

( )3 3
2 2 2

1 1

2
(1) (1) (0) (1)b a

i
i i

ae x x x ei ave
= =

= α − α =∑ ∑  

From now on, the evolution of the two networks with 
different input variance proceeds exactly in the same way. 

To give an idea of the dispersion of the simulated curves 
around the mean, the standard deviation is also computed as: 

( )2
1

1( ) ( ) ( )
1

R
q

simsim
q

k k k
R =

σ = ε − ε
− ∑  

As known, division by R − 1, instead of R, makes impartial 
the estimator. Another parameter we have simulated is 
Tave

x(0),R(ε, P), that represents an estimate of Tave
x(0)(ε, P), for 

the specific vector of initial values x(0) and for a finite 
number (R) of realizations. In fact, though important from a 
theoretic viewpoint, Tave(ε, P) is impossible to evaluate in 
practical cases. Also Tave

x(0)(ε, P), that is referred to a fixed 
initial vector x(0), should be evaluated considering, in 
principle, an infinite number of realizations. 

In order to calculate Tave
x(0),R(ε, P), the results of gossip 

simulations are stored in a matrix S. The q-th row of S 
contains the value of εsim

q(k) for the q-th realization; therefore 
S has R rows and K columns, where K is the maximum 
number of simulated clock ticks (assumed to be the same for 
all realizations), i.e., 1 ≤ k ≤ K. 

The estimate of Tave
x(0),R(ε, P) is the result of a classic 

quantile evaluation. The value of ε is varied within an interval 
of interest [εmin, εmax], according with a given step size. The q-
th row of S is scanned, searching for the minimum k that 
gives εsim

q(k) < ε. The values of k(q) so found are stored in a 
vector t whose elements are sorted in ascending order. The 
element in position l ≈ R(1 − ε) + 1 is then identified and used 
as Tave

x(0),R(ε, P). For R → ∞, the curves of 〈Tsim(ε, P)〉 and 
Tave

x(0),R(ε, P) intersect at the point corresponding to ε = 1/2. 

IV. NUMERICAL SIMULATIONS 
 
A. Fully-meshed Networks 

Fig. 1 shows simulation results for a fully-meshed network 
with N = 50 nodes. Explicitly, this means that Pij ≠ 0 for any 
(i, j), with i ≠ j. 

The values of Pij are obtained through a uniform random 
generator, under the constraint ΣijPij = 1; suitable 
normalization is applied to satisfy the constraint. The 
assumption of a fully-meshed network is unrealistic in most 
operational environments, but it represents a useful 
benchmark. On the other hand, in Subsection IV.C, this 
hypothesis will be removed, and we will consider the effect of 
a limited transmission radius for each node. 

As expected, the simulated curves place themselves within 
the lower and upper bounds, determined through the 
calculation of λ2(C). In the figure, these bounds have been 
denoted by inf{Tave} and sup{Tave}, respectively. We observe 
that the bounds are rather loose (because of the factor 6 in 
their ratio). However, simulations demonstrate that the ε-
averaging time is closer to the upper bound than to the lower 
bound. The curves of 〈Tsim(ε, P)〉 ± σ have been also plotted in 
the figure, for the sake of clarity. 

Matrix P can be optimized according with the subgradient 
method described in Section II. This corresponds to minimize 
the eigenvalue λ2(C), this way reducing both the upper and 
lower bounds to the averaging time. In Fig. 2 we compare the 
results already shown in Fig. 1 with those of numerical 
simulations for the same example, but considering the 
optimized version of matrix P. 

From the figure, we observe that the optimization process 
increases, as expected, the slope of the bound curves, thus 
accelerating, in principle, the averaging process. Nevertheless, 
the simulated realizations of the gossip algorithm seem 
scarcely affected by optimization: the original and optimized 
curves, both for 〈Tsim(ε, P)〉 and Tave

x(0),R(ε, P), are in fact 
practically superposed. 
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Fig. 1.  Bounds and simulated results for a fully-meshed network 
with N = 50 nodes 
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Fig. 2.  Original (solid lines) and optimized (dotted lines) case for a 
fully-meshed network with N = 50 nodes 

 
B. Effect of Multiple Link Failures 

In Section IV.A we have assumed that all the selection 
probabilities Pij, with i ≠ j, are different from 0, which means 
that the i-th node is able to communicate with any other node 
of the network. Actually, because of natural, or artificial, 
obstacles or even node disruptions (particularly when the 
sensors are placed in hostile environments) some elements of 
matrix P can be forced to become zero, so matrix P is no 
longer stochastic. A relevant feature of gossip algorithms is 
their good tolerance to faults: the convergence of the 
averaging process is in fact generally ensured, although the 
averaging time can increase significantly. Some examples are 
presented next. 

In the simulations, faulty links are chosen in a pseudo-
random way, through a uniform generator, and their elements 
in matrix P are substituted with null entries. This corresponds 
to a multi-link failure model, that simulates the loss of 
connectivity in a subset of all the couples of linked nodes. 
Due to the fact that matrix P is no longer stochastic, the i-th 
node of the network has probability to communicate ΣjPij < 1. 
In other terms, at each clock tick, a node could try to connect 
to another node without success, thus wasting the 
communication attempt. 

100 200 300 400 500 600 700
10-3

10-2

10-1

100

                <Tsim>  Tave
x(0),R

50% Faults  
30% Faults  
0%   Faults  

ε

Clock ticks  
 

Fig. 3.  Effect of link failures in a fully-meshed network with N = 50 
nodes 

 

Simulated curves for faulty networks are reported in Fig. 3 
for different percentages of faults. All curves are 
monotonously decreasing; this implies that the averaging 
algorithm converges, even in the case of a high number of 
link failures. However, failures reflect on the averaging time. 
If we refer to Tave

x(0),R(ε, P) with the target ε = 0.1, the number 
of steps required in absence of link failures (k = 250) 
increases by about 1.5 times with 30% link failures (k = 366) 
and is more than doubled with 50% link failures (k = 551). 

The performance of a fully-meshed network affected by 
link failures can be compared with that of a non fully-meshed 
network with the same topology. 

In Section IV.C non fully-meshed networks will be 
modeled through the introduction of a transmission radius for 
each node. In this section we adopt a more approximate 
representation, where missing links are generated at random, 
according with a given percentage. Precisely, we speak of y% 
meshed network (y = 10 or 20, for example) if the density of 
non zero elements Pij in matrix P is of the same order. It 
should be noted that to have an y% meshed network is not 
equivalent to have a fully meshed network with y% link 
failures. In both cases only part of the nodes can be reached 
directly, while communications towards the other require 
transit through intermediate nodes. In the case of faulty 
networks, however, transmissions over faulty links are lost; in 
non fully-meshed networks, instead, the missing links are 
never used (see section IV.C for details about the way it can 
be) and, in fact, matrix P is stochastic. So, in the latter case, a 
faster convergence is expected when the two kind of networks 
are compared for a given percentage of missing links. 

An example of such comparison is shown in Fig. 4; the 
simulated non-faulty network is regular (i.e., each sensor is 
linked to the same number of other sensors), but irregular 
matrices P’s could be considered as well. Fig. 4 shows that 
non fully-meshed networks reach convergence within a 
smaller number of clock cycles with respect to faulty fully-
meshed networks. However, the performance of a 10% 
meshed network is comparable with that of a fully-meshed 
network affected by 30% link failures (at least for the 
specified conditions and in the region of ε values explored). 
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ε
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Fig. 4.  Values of 〈Tsim(ε, P)〉 for networks with different mesh levels 
compared with a faulty fully-meshed network 
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TABLE I 
NUMBER OF CLOCK TICKS CORRESPONDING TO 〈TSIM(ε, P)〉 AT ε = 0.1 

Network type k 

Fully-meshed network without link failures 220 

Fully-meshed network with 30% link failures 320 

Fully-meshed network with 50% link failures 481 

20% meshed network without link failures 251 

10% meshed network without link failures 305 

 
This result is clearly shown in Table I, that reports the 

values of k for which the 〈Tsim(ε, P)〉 curve is at ε = 0.1: a 10% 
meshed network free of link failures employs almost the same 
time (number of clock ticks) as a fully-meshed network with 
30% link failures. This means that, despite the gossip 
algorithm is fault tolerant in the sense that its absolute 
convergence is scarcely affected by link failures, the 
occurrence of faults significantly influences the convergence 
time. 

Finally, it should be noted that the convergence time gives 
a measure of the complexity of the distributed algorithm and, 
therefore, of the power consumption at each node. In presence 
of faulty links, convergence is reached, but at the expense of 
an increase in the computational effort. However, the 
simplicity of the operations required by each node seems able 
to guarantee the feasibility of the system even in very 
unfavorable conditions. 
 
C. Effect of a Limited Transmission Radius 

A more realistic model of non fully-meshed network takes 
into account that, because of its limited energy capabilities, 
each sensor can communicate only with sensors within some 
fixed radius r > 0. 

Let us consider a very typical situation where sensors are 
placed uniformly at random in an area. This corresponds to 
the assumption of a well-known random geometric graph 
[14]. Before the gossip algorithm starts, i.e., at the beginning 
of the procedure, each sensor informs the others it is active 
and ready to interact. This way, the i-th node, i = 1, …, N, can 
recognize the nodes it can link, whose number will be denoted 
by Ni in the following, and can fix the selection rule, for 
example according with a uniform law. Explicitly, this means 
to assume: 

1/ ,

0,
i ij

ij
ij

N d r
P

d r

≤⎧⎪= ⎨ >⎪⎩
 (2) 

having noted by dij the Euclidean distance between the i-th 
and the j-th nodes. According with (2), the nodes at distance 
dij ≤ r can be reached in one hop, that is, by using a single 
transmission. Conversely, communication with nodes at 
distance dij > r require multiple hops, that is passing through 
intermediate nodes. Depending on the value of r, some nodes 
could be unreachable, since disjointed from the rest of the 
network. This situation, that prevents full connectivity, should 
be avoided (and, in fact, it is not considered in this paper), as 
it does not permit convergence to the true average value. If 

the starting procedure includes a localization phase, which 
means that each node knows its own geographic location and 
can learn those of its one-hop neighbors1, more involved rules 
could be adopted, for example depending on the value of the 
Euclidean distances between the nodes. 

On the other hand, based on the results in Subsection IV.A, 
we can expect that changing the selection rule, and even 
optimizing it, does not produce any significant improvement 
if the new rule maintains selection within the transmission 
radius of the considered node. Localization can contribute to 
improve significantly the convergence speed but at the 
expense of an increase in complexity. In [15], for example, a 
geographic gossip algorithm has been proposed, based on 
greedy routing, that is potentially able to provide remarkable 
gains. But applicability of this kind of protocols, where each 
node must compute and compare a large number of distances 
from a prefixed target, seems difficult. For this reason, we 
have not included these gossip versions in our study. To 
simulate the effect of a limited transmission radius, we have 
generated a random geometric graph, for a fixed number of 
nodes; an example, for N = 50, is shown in Fig. 5; dots 
indicate the positions of the sensors. For the sake of 
convenience, we have normalized the radius to the side of the 
square (that is unit in the figure), and repeated the 
experiments for different values of r. Some results obtained 
for the considered graph are plotted in Fig. 6. The curves 
report the value of 〈εsim(k)〉; contrary to the previous figures, 
in this case the initial condition x(0) has been randomly 
changed at the beginning of any simulation, in such a way as 
to average possible good and bad conditions. It is evident, 
from the figure, that the convergence speed becomes slower 
and slower for decreasing r. This result is expected, but 
simulation permits to quantify an effect that cannot be 
described through asymptotic analytical studies. 
 

V. BROADCAST-LIKE ALGORITHM 
 

In a wireless network, when a node transmits some 
information, all the other nodes in its coverage area are able to 
receive the transmitted data. This suggests to implement a 
modified version of the gossip algorithm that, at the expense 
of a slight increase in complexity, permits to reduce 
significantly the averaging time. 
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Fig. 5.  Example of random geometric graph for a network with N = 
50 nodes 

                                                           
1 This facility is frequent in modern sensor networks but, obviously, it 

needs extra-processing. 

110 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 4, NO. 2, JUNE 2008



0 500 1000 1500 2000 2500 3000
10-5

10-4

10-3

10-2

10-1

100

<ε
si

m
(k

)>

Clock ticks

 r = 0.3
 r = 0.4
 r = 0.9
 full mesh

 
 

Fig. 6.  Performance of the gossip algorithm for different values of 
the transmission radius 

 
Contrary to the gossip described in the previous sections, 

this modified protocol is not bidirectional, in the sense that 
information flows from a transmitting node to a number of 
receiving nodes (depending on the transmission radius and the 
random nodes distribution) but not in the opposite sense. 
More explicitly, in this modified protocol, each node i 
maintains a sum, si(k), and a weight, wi(k). When the 
algorithm starts, that is for k = 0, it is wi(0) = 1 and si(0) = 
xi(0) = xi, that coincides with the initial sensed value at node i. 
When the i-th node’s clock ticks, say at step k, the node splits 
its information into Ni + 1 parts; it keeps the first, so that 
[wi(k+1), si(k+1)] = αi[wi(k), si(k)], while sends each neighbor 
j one of the remaining parts: αij[wi(k), si(k)]. Node j receives 
the transmission and updates its values by adding the received 
ones, so that [wj(k+1), sj(k+1)] = [wj(k), sj(k)] + αij[wi(k), 
si(k)]. As stated in the expressions, this sharing is ruled by the 
share parameters αi and αij; these parameters can be collected 
in a matrix A, having αii = αi along the main diagonal. The 
elements of A, satisfying the condition αi + Σjαij = 1, can be 
chosen at random or following some suitable deterministic 
rule. We prefer the second choice and adopt, in our 
simulations, the following two simple laws: 
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According with (3) the information from node i is equally 

split among its neighbors and itself; according with (4), 
instead, the self-share can be different. In the latter case, the 
value of αi should be optimized. An example of the impact of 
different αi for a fully-meshed network is shown in Fig. 7. It is 
possible to verify [16] that the faster curve [corresponding to 
the choice (4) with αi ≈ 0] can be also achieved by using the 
uniform law (3). 
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Fig. 7.  Impact of different share factors when using law (4) in the 
broadcast-like algorithm for a fully-meshed network 
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Fig. 8.  Performance comparison between the broadcast-like 
algorithm and the gossip for a fully-meshed network 
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Fig. 9. Performance comparison between the broadcast-like 
algorithm and the gossip for a non fully-meshed network with r = 0.4 

 
In Fig. 8 we compare the performance of the broadcast-like 
algorithm with that of the gossip algorithm, for the same 
graph of Fig. 5. As each clock tick in the gossip algorithm 
implies two transmissions, for a fair comparison, the average 
simulated curves have been plotted as functions of the number 
of transmissions, instead of the number of clock ticks. The 
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figure confirms the advantage offered by the broadcast-like 
solution against the more conventional gossip one; for a given 
αi�, the broadcast-like algorithm requires about 1/3 of the 
number of transmissions needed by the gossip algorithm. In 
Fig. 9, the comparison is extended to the case of a non fully-
meshed network with r = 0.4; the convergence is slower but 
the advantage offered by the broadcast-like algorithm is 
confirmed. 
 

 
VI. CONCLUSIONS 

 
Resorting to simulations is an important step to validate the 

conclusions of the analytical treatment and to study those 
situations that cannot be simply expressed in mathematical 
terms. In gossip algorithms, there are a lot of practical aspects 
that need a verification of this type; among them: the effect of 
optimizing the selection probabilities for each node and the 
impact of physical limitations as link failures or limited 
transmission radius. Focusing on some specific, though 
arbitrary, examples, we have analyzed the practical behavior 
of a gossip-based sensor network under different operational 
conditions. Based on our numerical evaluations, we can draw 
a number of conclusions. 

First of all, we have seen that the lower and upper bounds 
to the averaging time are sensitive to the optimization process, 
as theoretically expected, and can be significantly improved 
through it. Nevertheless, our simulations demonstrate that 
there are cases of practical interest where to minimize the 
second eigenvalue, certainly effective as regards the bounds 
reduction, is not equally effective as regards lowering of the 
actual averaging time. 

Moreover, we have verified that the gossip algorithm is 
fault tolerant, in the sense that convergence to the average 
value occurs even in the case of a high number of link 
failures. The averaging time, however, is significantly 
affected by link failures, as results from the comparison with 
non-fully meshed topologies. The absence of full connectivity 
reflects on a reduction of the rate of convergence, depending 
on the value of the transmission radius. 

Another important issue concerns comparison between 
different versions of the gossip algorithm. In this paper we 
have considered a broadcast version of the classic unicast, 
though bidirectional, solution, and we have shown that it can 
permit significant improvements in the convergence rate. 

Obviously, as based on a limited number of experiments, 
these conclusions cannot have a general meaning, but remain 
valid in many real cases, since referred to actual scenarios. 
Future research could adopt more complete network simulator 
tools in order to evaluate more complex network conditions 
and to consider networking issues in a thorough manner. 
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